
Shortest Paths in a Graph

Slides by Carl Kingsford

Feb. 5, 2014

Based on/Reading: Chapter 4.5 of Kleinberg & Tardos

Shortest Paths in a Weighted, Directed Graph

Given a directed graph G with lengths `e > 0 on each edge e:

s

v

u

x

w

z

y

1
1

4

3

3

1

2

2

1

Goal: Find the shortest path from a given node s to every other
node in the graph.

Shortest Paths

Shortest Paths. Given directed graph G with n nodes, and
non-negative lengths on each edge, find the n shortest paths from
a given node s to each vi .

I Dijkstra’s algorithm (1959) solves this problem.

I If we have an undirected graph, we can replace each
undirected edge by 2 directed edges:

k

k

k

I If all the edge lengths are = 1, how can we solve this?

BFS

Shortest Paths

Shortest Paths. Given directed graph G with n nodes, and
non-negative lengths on each edge, find the n shortest paths from
a given node s to each vi .

I Dijkstra’s algorithm (1959) solves this problem.

I If we have an undirected graph, we can replace each
undirected edge by 2 directed edges:

k

k

k

I If all the edge lengths are = 1, how can we solve this? BFS

General Tree Growing

Dijkstra’s algorithm is just a special case of tree growing:

I Let T be the current tree T , and

I Maintain a list of frontier edges: the set of edges of G that
have one endpoint in T and one endpoint not in T :

v

I Repeatedly choose a frontier edge (somehow) and add it to T .

Tree Growing

TreeGrowing(graph G, vertex v, func nextEdge):

T = (v,∅)
S = set of edges incident to v

While S is not empty:

e = nextEdge(G, S)

T = T + e // add edge e to T

S = updateFrontier(G, S, e)

return T

I The function nextEdge(G, S) returns a frontier edge from S .

I updateFrontier(G, S, e) returns the new frontier after we
add edge e to T.

nextEdge for Shortest Path

I Let u be some node that we’ve already visited
(it will be in S).

I Let d(u) be the length of the s−u path found for node u ∈ S .

I nextEdge: return the frontier edge (u, v) for which
d(u) + length(u, v) is minimized.

I The “d(u)” term is the difference from Prim’s algorithm.

Example

d[s] = 0; d[u] = 1
(green gives frontier)

s

u

v

w

x

y

1
1

4

3 2

4

2

3

d[w] = 2
s

u

v

w

x

y

1
1

4

3 2

4

2

3

Proof of Correctness

Theorem. Let T be the set of nodes explored at some point
during the algorithm. For each u ∈ T, the path to u found by
Dijkstra’s algorithm is the shortest.

Proof. By induction on the size of T . Base case: When |T | = 1,
the only node in T is s, for which we’ve obviously found the
shortest path.

Induction Hypothesis: Assume theorem is true when |T | ≤ k.

Let v be the (k + 1)st node added using edge (u, v).

Let Pv be the path chosen by Dijkstra’s to v and let P be any
other path from s to v .

Then we have the situation on the next slide.

Proof, cont.

s

u

x

v

y

T

k+1 node added = v

Blue = alternative

path to v

y->v path must

have length ! 0

The path to v chosen by Dijkstra’s is of length ≤ the alternative
blue path.

Shortest Paths =⇒ Tree

Theorem. There is some optimal set of shortest paths from source
s such that their union forms a tree.

Proof. Dijkstra’s algorithm is correct and produces a tree.

Implementation of Dijkstra

1: for u ∈ V do dist[u] ←∞
2: H ← MakeHeap()
3: u ← s # (s is an arbitrary start vertex)

4: while u 6= null do
5: for v ∈ Neighbors(u) do
6: # If the distance is smaller than before, we have to update

7: if dist[u] + d(u,v) < dist[v] then
8: dist[v] ← dist[u] + d(u,v)
9: if v 6∈ H then

10: Insert(H, v, dist[v])
11: else
12: ReduceKey(H, v, dist[v]) # Sift up for new key

13: parent[v] ← u

14: u ← DeleteMin(H)

15: return parent

Running time of Dijkstra’s Algorithm

Same as Prim’s MST algorithm:

I Every edge is processed in the for loop at most once.

I In response to that processing, we may either

1. do nothing; O(1),
2. insert a item into the heap of at most |V | items; O(log |V |), or
3. reduce the key of an item in a heap of at most |V | items;

O(log |V |)

I Total time is therefore: O(|E | log |V |).

