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Depth-First Search

DFS keeps walking down a path
until it is forced to backtrack.

It backtracks until it finds a
new path to go down.

Think: Solving a maze.

It results in a search tree, called
the depth-first search tree.

In general, the DFS tree will be
very different than the BFS
tree.
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Tree Terminology

The root of the tree is a distinguished node that we “hang” the
rest of the tree off of. Here, the roots are the starting nodes for
DFS or BFS.

A node x is an ancestor of node y in a tree if there’s a path from y
to x to the root of the tree.

Note that x does not need to have an edge to y to be its ancestor.

Node y is a descendent of x if x is an ancestor of y .



A property of Non-DFS-Tree Edges

Theorem. Let x and y be nodes in the DFS tree TG such that
{x , y} is an edge in undirected graph G. Then one of x or y is an
ancestor of the other in TG .

Proof. Suppose, wlog, x is reached first in the DFS. When we
reach x , node y must not yet have been explored.

All the nodes that are marked explored between first encountering
x and leaving x for the last time are descendants of x in TG .

It must become explored before leaving x for the last time
(otherwise, we should add {x , y} to TG ). Hence, y is a descendent
of x in TG .



Proof, Picture

Either y is visited through some other child w of x , or it is visited
directly from x just before we leave x for good:

y

ww y

xx
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Breadth-First Search

Breadth-first search explores the nodes of a graph in increasing
distance away from some starting vertex s.

It decomposes the component into layers Li such that the shortest
path from s to each of nodes in Li is of length i .

Breadth-First Search:

1. L0 is the set {s}.
2. Given layers L0, L1, . . . , Lj , then Lj+1 is the set of nodes that

are not in a previous layer and that have an edge to some
node in layer Lj .



BFS Tree Example

A BFS traversal of a graph results in a breadth-first search tree:
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Can we say anything about the non-tree edges?
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BFS Tree

s

1 2 3 4 5

6 7 8 9

10 11 12 13 14 15 16



Property of Non-BFS-Tree Edges

Theorem. Choose x ∈ Li and y ∈ Lj such that {x , y} is an edge
in undirected graph G. Then i and j differ by at most 1.

In other words, edges of G that do not appear in the tree connect
nodes either in the same layer or adjacent layer.

Proof. Suppose not, and that i < j − 1.

All the neighbors of x will be found by layer i + 1.

Therefore, the layer of y is less than i + 1, so j ≤ i + 1, which
contradicts i < j − 1.



General Tree Growing (following Gross & Yellen)

We can think of BFS and DFS (and several other algorithms) as
special cases of tree growing:

I Let T be the current tree T , and

I Maintain a list of frontier edges: the set of edges of G that
have one endpoint in T and one endpoint not in T :

v

I Repeatedly choose a frontier edge (somehow) and add it to T .



Tree Growing

TreeGrowing(graph G, vertex v, func nextEdge):

T = (v,∅)
S = set of edges incident to v

While S is not empty:

e = nextEdge(G, S)

T = T + e // add edge e to T

S = updateFrontier(G, S, e)

return T

I The function nextEdge(G, S) returns a frontier edge from S .

I updateFrontier(G, S, e) returns the new frontier after we
add edge e to T.



Prim’s Algorithm

Prim’s Algorithm: Run TreeGrowing starting with any root
node, adding the frontier edge with the smallest weight.

Theorem. Prim’s algorithm produces a minimum spanning tree.

ur

v

e

S = set of nodes already in 

the tree when e is added 



Tree Growing

These algorithms are all special cases / variants of Tree Growing,
with different versions of nextEdge:

1. Depth-first search

2. Breadth-first search

3. Prim’s minimum spanning tree algorithm

4. Dijkstra’s shortest path

5. A*



BFS & DFS as Tree Growing

What’s nextEdge for DFS?

Select a frontier edge whose tree endpoint was discovered
most recently.

Why? We can use a stack to implement DFS.
Runtime for DFS: O(|Edges|)

What’s nextEdge for BFS?

Select a frontier edge whose tree endpoint was discovered earliest.

Why? We can use a queue to implement BFS.
Runtime for BFS: O(|Edges|)
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Implementations of BFS and DFS



nextEdge for BFS

nextEdge: frontier edge connecting to node with earliest discovery
time.

A queue maintains a list of items in order of their discovery so that
the item discovered farthest in the past can be accessed quickly:

G E D B A

F

enqueue(F)

∅

dequeue()

tail head

Queues are “first in, first out” (FIFO) data structures.



BFS implementation

procedure bfs(G, s):

Q := queue containing only s

while Q not empty

v := Q.front(); Q.remove front()

for w ∈ G.neighbors(v):

if w not seen:

mark w seen

Q.enqueue(w)



Recursive implementation of DFS

procedure dfs(G, u):

while u has an unvisited neighbor in G

v := an unvisited neighbor of u

mark v visited

dfs(G, v)



nextEdge for DFS

nextEdge: frontier edge connecting to node
with latest discovery time.

A stack maintains a list of items so they can
be accessed in reverse order of their discovery
times.

A stack is a “last in, first out” (LIFO) data
structure.

A

B

D

E

G

F

∅

push(F)

pop() top

bottom



Stack-based implementation of DFS

procedure dfs(G, s):

S := stack containing only s

while S not empty

v := S.pop()

if v not visited:

mark v visited

for w ∈ G.neighbors(v): S.push(w)
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