Graph Traversals

Slides by Carl Kingsford

Jan. 31, 2014

Based on/Reading: Chapter 3 of Kleinberg & Tardos

Depth-First Search

DFS keeps walking down a path
until it is forced to backtrack.

It backtracks until it finds a
new path to go down.

Think: Solving a maze.

It results in a search tree, called
the depth-first search tree.

In general, the DFS tree will be
very different than the BFS
tree.

Depth-First Search

Example DFS

Example DFS

Example DFS

Example DFS

Example DFS

Example DFS

Example DFS

Example DFS

Example DFS

Example DFS

Example DFS

Example DFS

Example DFS

Example DFS

Example DFS

Example DFS

Tree Terminology

The root of the tree is a distinguished node that we “hang” the
rest of the tree off of. Here, the roots are the starting nodes for
DFS or BFS.

A node x is an ancestor of node y in a tree if there's a path from y
to x to the root of the tree.

Note that x does not need to have an edge to y to be its ancestor.

Node y is a descendent of x if x is an ancestor of y.

A property of Non-DFS-Tree Edges

Theorem. Let x and y be nodes in the DFS tree T such that
{x,y} is an edge in undirected graph G. Then one of x or y is an
ancestor of the other in T¢.

Proof. Suppose, wlog, x is reached first in the DFS. When we
reach x, node y must not yet have been explored.

All the nodes that are marked explored between first encountering
x and leaving x for the last time are descendants of x in Tg.

It must become explored before leaving x for the last time
(otherwise, we should add {x,y} to T¢). Hence, y is a descendent
of x in Tg.]

Proof, Picture

Either y is visited through some other child w of x, or it is visited
directly from x just before we leave x for good:

Example Breadth-First Search

Example Breadth-First Search

Example Breadth-First Search

Example Breadth-First Search

Example Breadth-First Search

Example Breadth-First Search

Example Breadth-First Search

Example Breadth-First Search

Example Breadth-First Search

Example Breadth-First Search

Example Breadth-First Search

Example Breadth-First Search

Example Breadth-First Search

Example Breadth-First Search

Example Breadth-First Search

Breadth-First Search

Breadth-first search explores the nodes of a graph in increasing
distance away from some starting vertex s.

It decomposes the component into layers L; such that the shortest
path from s to each of nodes in L; is of length i.

Breadth-First Search:

1. Lg is the set {s}.

2. Given layers Lo, L1,...,L;, then L; ;1 is the set of nodes that
are not in a previous layer and that have an edge to some
node in layer L;.

BFS Tree Example

A BFS traversal of a graph results in a breadth-first search tree:

BFS Tree Example

A BFS traversal of a graph results in a breadth-first search tree:

Can we say anything about the non-tree edges?

BFS Tree

Property of Non-BFS-Tree Edges

Theorem. Choose x € Lj and y € L; such that {x,y} is an edge
in undirected graph G. Then i and j differ by at most 1.

In other words, edges of G that do not appear in the tree connect
nodes either in the same layer or adjacent layer.

Proof. Suppose not, and that i < j — 1.
All the neighbors of x will be found by layer i 4 1.

Therefore, the layer of y is less than i + 1, so j < i+ 1, which
contradicts / < j — 1. O

General Tree Growing (following Gross & Yellen)

We can think of BFS and DFS (and several other algorithms) as
special cases of tree growing:
» Let T be the current tree T, and

» Maintain a list of frontier edges: the set of edges of G that
have one endpoint in T and one endpoint not in T:

» Repeatedly choose a frontier edge (somehow) and add it to T.

Tree Growing

TreeGrowing(graph G, vertex v, func nextEdge):
T = (v,0)
S = set of edges incident to v
While S is not empty:

e = nextEdge(G, S)
T=T+e // add edge e to T
S = updateFrontier(G, S, e)

return T

» The function nextEdge (G, S) returns a frontier edge from S.

» updateFrontier(G, S, e) returns the new frontier after we
add edge e to T.

Prim's Algorithm

Prim’s Algorithm: Run TreeGrowing starting with any root
node, adding the frontier edge with the smallest weight.

Theorem. Prim’s algorithm produces a minimum spanning tree.

S = set of nodes already in
the tree when e is added

Tree Growing

These algorithms are all special cases / variants of Tree Growing,
with different versions of nextEdge:

Depth-first search

Breadth-first search

Prim’'s minimum spanning tree algorithm
Dijkstra's shortest path

A

AR A

BFS & DFS as Tree Growing

What's nextEdge for DFS?

What's nextEdge for BFS?

BFS & DFS as Tree Growing

What's nextEdge for DFS?

Select a frontier edge whose tree endpoint was discovered
most recently.

Why? We can use a stack to implement DFS.
Runtime for DFS: O(|Edges|)

What's nextEdge for BFS?

BFS & DFS as Tree Growing

What's nextEdge for DFS?

Select a frontier edge whose tree endpoint was discovered
most recently.

Why? We can use a stack to implement DFS.
Runtime for DFS: O(|Edges|)

What's nextEdge for BFS?

Select a frontier edge whose tree endpoint was discovered earliest.

Why? We can use a queue to implement BFS.
Runtime for BFS: O(|Edges|)

Implementations of BFS and DFS

nextEdge for BFS

nextEdge: frontier edge connecting to node with earliest discovery
time.

A queue maintains a list of items in order of their discovery so that
the item discovered farthest in the past can be accessed quickly:

tail head

,,,,,,, | dequeue()

enqueue(F)

Queues are “first in, first out” (FIFO) data structures.

BFS implementation

procedure bfs(G, s):

Q := queue containing only s
while Q not empty
v := Q.front(); Q.remove_front()

for w € G.neighbors(v):
if w not seen:
mark w seen
Q.enqueue (w)

Recursive implementation of DFS

procedure dfs(G, u):
while u has an unvisited neighbor in G
v := an unvisited neighbor of u
mark v visited
dfs(G, v)

nextEdge for DFS

F ' push(F)
nextEdge: frontier edge connecting to node Ty
with /atest discovery time. pop() | G |«top
v
A stack maintains a list of items so they can E
be accessed in reverse order of their discovery ¥
times. D
L1
A stack is a “last in, first out” (LIFO) data B
structure. ¥
A [<bottom
v
%,

Stack-based implementation of DFS

procedure dfs(G, s):

S := stack containing only s
while S not empty
v := S.pop()

if v not visited:
mark v visited
for w € G.neighbors(v): S.push(w)

	Depth-First Search
	Breadth-First Search

