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Depth-First Search

DFS keeps walking down a path
until it is forced to backtrack.

It backtracks until it finds a
new path to go down.

Think: Solving a maze.

It results in a search tree, called
the depth-first search tree.

In general, the DFS tree will be
very different than the BFS
tree.
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Tree Terminology

The root of the tree is a distinguished node that we “hang” the
rest of the tree off of. Here, the roots are the starting nodes for
DFS or BFS.

A node x is an ancestor of node y in a tree if there's a path from y
to x to the root of the tree.

Note that x does not need to have an edge to y to be its ancestor.

Node y is a descendent of x if x is an ancestor of y.



A property of Non-DFS-Tree Edges

Theorem. Let x and y be nodes in the DFS tree T such that
{x,y} is an edge in undirected graph G. Then one of x or y is an
ancestor of the other in T¢.

Proof. Suppose, wlog, x is reached first in the DFS. When we
reach x, node y must not yet have been explored.

All the nodes that are marked explored between first encountering
x and leaving x for the last time are descendants of x in Tg.

It must become explored before leaving x for the last time
(otherwise, we should add {x,y} to T¢). Hence, y is a descendent
of x in Tg. ]



Proof, Picture

Either y is visited through some other child w of x, or it is visited
directly from x just before we leave x for good:
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Breadth-First Search

Breadth-first search explores the nodes of a graph in increasing
distance away from some starting vertex s.

It decomposes the component into layers L; such that the shortest
path from s to each of nodes in L; is of length i.

Breadth-First Search:

1. Lg is the set {s}.

2. Given layers Lo, L1,...,L;, then L; ;1 is the set of nodes that
are not in a previous layer and that have an edge to some
node in layer L;.



BFS Tree Example

A BFS traversal of a graph results in a breadth-first search tree:




BFS Tree Example

A BFS traversal of a graph results in a breadth-first search tree:

Can we say anything about the non-tree edges?



BFS Tree




Property of Non-BFS-Tree Edges

Theorem. Choose x € Lj and y € L; such that {x,y} is an edge
in undirected graph G. Then i and j differ by at most 1.

In other words, edges of G that do not appear in the tree connect
nodes either in the same layer or adjacent layer.

Proof. Suppose not, and that i < j — 1.
All the neighbors of x will be found by layer i 4 1.

Therefore, the layer of y is less than i + 1, so j < i+ 1, which
contradicts / < j — 1. O



General Tree Growing (following Gross & Yellen)

We can think of BFS and DFS (and several other algorithms) as
special cases of tree growing:
» Let T be the current tree T, and

» Maintain a list of frontier edges: the set of edges of G that
have one endpoint in T and one endpoint not in T:

» Repeatedly choose a frontier edge (somehow) and add it to T.



Tree Growing

TreeGrowing(graph G, vertex v, func nextEdge):
T = (v,0)
S = set of edges incident to v
While S is not empty:

e = nextEdge(G, S)
T=T+e // add edge e to T
S = updateFrontier(G, S, e)

return T

» The function nextEdge (G, S) returns a frontier edge from S.

» updateFrontier(G, S, e) returns the new frontier after we
add edge e to T.



Prim's Algorithm

Prim’s Algorithm: Run TreeGrowing starting with any root
node, adding the frontier edge with the smallest weight.

Theorem. Prim’s algorithm produces a minimum spanning tree.

S = set of nodes already in
the tree when e is added



Tree Growing

These algorithms are all special cases / variants of Tree Growing,
with different versions of nextEdge:

Depth-first search

Breadth-first search

Prim’'s minimum spanning tree algorithm
Dijkstra's shortest path
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BFS & DFS as Tree Growing

What's nextEdge for DFS?

What's nextEdge for BFS?



BFS & DFS as Tree Growing

What's nextEdge for DFS?

Select a frontier edge whose tree endpoint was discovered
most recently.

Why? We can use a stack to implement DFS.
Runtime for DFS: O(|Edges|)

What's nextEdge for BFS?



BFS & DFS as Tree Growing

What's nextEdge for DFS?

Select a frontier edge whose tree endpoint was discovered
most recently.

Why? We can use a stack to implement DFS.
Runtime for DFS: O(|Edges|)

What's nextEdge for BFS?

Select a frontier edge whose tree endpoint was discovered earliest.

Why? We can use a queue to implement BFS.
Runtime for BFS: O(|Edges|)



Implementations of BFS and DFS



nextEdge for BFS

nextEdge: frontier edge connecting to node with earliest discovery
time.

A queue maintains a list of items in order of their discovery so that
the item discovered farthest in the past can be accessed quickly:

tail head

,,,,,,, | dequeue()

enqueue(F)

Queues are “first in, first out” (FIFO) data structures.



BFS implementation

procedure bfs(G, s):

Q := queue containing only s
while Q not empty
v := Q.front(); Q.remove_front()

for w € G.neighbors(v):
if w not seen:
mark w seen
Q.enqueue (w)



Recursive implementation of DFS

procedure dfs(G, u):
while u has an unvisited neighbor in G
v := an unvisited neighbor of u
mark v visited
dfs(G, v)



nextEdge for DFS
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Stack-based implementation of DFS

procedure dfs(G, s):

S := stack containing only s
while S not empty
v := S.pop()

if v not visited:
mark v visited
for w € G.neighbors(v): S.push(w)
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