
Asymptotic Analysis

Slides by Carl Kingsford

Jan. 27, 2014

AD Chapter 2

Independent Set

Definition (Independent Set). Given a graph G = (V ,E) an
independent set is a set S ⊆ V if no two nodes in S are joined by
an edge.

Independent Set

Definition (Independent Set). Given a graph G = (V ,E) an
independent set is a set S ⊆ V if no two nodes in S are joined by
an edge.

Maximum Independent Set. Given a graph G , find the largest
independent set.

Apparently a difficult problem. (No efficient algorithm known, and
good reason to suspect that none exists.)

Combinatorial Problems

Problems like Independent Set, Minimum Spanning Tree, etc. can
be thought of as families of instances:

I An instance of Independent Set is specified by a particular
graph G .

I An instance of Minimum Spanning Tree is given by the graph
G and weights d .

Instances often have a natural way of encoding them in the
computer:

I A graph with n nodes might be specified by an n × n matrix
or a list of edges.

Instance Sizes

Size of the instance is the space used to represent it.

Usually use n to represent this size.

Generally, “larger” instances are more difficult than smaller ones.

Can often break the problem down into:

I Search space: the set of feasible solutions (every independent
set or spanning tree)

I Objective function: a way of measuring how good the solution
is (size of independent set, stability of perfect matching)

Central Dogma of Computer Science

Difficulty is not necessarily
proportional to size of the

search space.

Efficient Algorithms

Definition (Efficiency). An algorithm is efficient if its worst-case
runtime is bounded by a polynomial function of the input size.

I There is a polynomial p(n) such that for every instance of size
n, the algorithm solves the instance in fewer than p(n) steps.

Generally, the problems we consider will have huge search spaces.

How many subsets of nodes are there in a graph of n nodes?

2n

Any polynomial is much smaller than the search space.

Efficient Algorithms

Definition (Efficiency). An algorithm is efficient if its worst-case
runtime is bounded by a polynomial function of the input size.

I There is a polynomial p(n) such that for every instance of size
n, the algorithm solves the instance in fewer than p(n) steps.

Generally, the problems we consider will have huge search spaces.

How many subsets of nodes are there in a graph of n nodes? 2n

Any polynomial is much smaller than the search space.

Efficient Algorithms, II

This definition of efficiently is not perfect:

1. There are non-polynomal algorithms that are usually the best
choice in practice (e.g. simplex method for linear
programming).

2. There are polynomial time algorithms that are almost never
used in practice (e.g. ellipsoid algorithm for linear
programming).

3. An algorithm that takes n100 steps would be “efficient” by
this definition, but horrible in practice.

4. An algorithm that takes n1+0.002 log n is probably useful in
practice, but it is not “efficient”.

Benefits of the definition

But it has a lot of benefits:

1. It’s concrete and falsifiable — avoids “vague” arguments
about which algorithm is better.

2. Average performance is hard to define.

3. The exceptions are apparently fewer than the cases where
polynomial time corresponds to useful algorithms in practice.

4. There is normally a huge difference between polynomial time
and other natural runtimes

(If you can do 1 million steps per second and n = 1, 000, 000, then a

n2 algorithm would take 12 days, but a 1.5n algorithm would take

far more than 1025 years)

Asymptotic Upper Bounds

A running time of n2 + 4n + 2 is usually too detailed. Rather, we’re
interested in how the runtime grows as the problem size grows.

Definition (O). A runtime T (n) is O(f (n)) if there exist
constants n0 ≥ 0 and c > 0 such that:

T (n) ≤ cf (n) for all n ≥ n0

What does this mean?

I for all large enough instances

I the running time is bounded by a constant multiple of f (n)

Asymptotic Lower Bounds

O(·) talks about the longest possible time an algorithm could take.
Ω(·) talks about the shortest possible time.

Definition (Ω). T (n) is Ω(f (n)) if there are constants ε > 0 and
n0 ≥ 0 so that:

T (n) ≥ εf (n) for all n ≥ n0

Tight bounds

Definition (Θ). T (n) is Θ(f (n)) if T (n) is O(f (n)) and Ω(f (n)).

If we know that T (n) is Θ(f (n)) then f (n) is the “right”
asymptotic running time: it will run faster than O(f (n)) on all
instances and some instances might take that long.

Asymptotic Limit

Theorem (Theta). If limn→∞
T (n)
g(n) equals some c > 0, then

T (n) = Θ(g(n)).

0

n

T(n) / g(n)

c

2c

c/2

There is an n0 such that c/2 ≤ T (n)/g(n) ≤ 2c for all n ≥ n0.

Therefore, T (n) ≤ 2cg(n) for n ≥ n0 ⇒ T (n) = O(g(n)).

Also, T (n) ≥ c
2g(n) for n ≥ n0 ⇒ T (n) = Ω(g(n)).

Linear Time

Linear time usually means you look at each element a constant
number of times.

• Finding the maximum element in a list:

max = a[1]

for i = 2 to n:

if a[i] > max then

set max = a[i]

Endfor

This does a constant amount of work per element in array a.

• Merging sorted lists.

O(n log n)

O(n log n) time is common because of sorting (often the slowest
step in an algorithm).

Where does the O(n log n) come from?

n

n/2 n/2

n/4 n/4 n/4 n/4

T (n) = 2T (n/2) + n

O(n log n)

O(n log n) time is common because of sorting (often the slowest
step in an algorithm).

Where does the O(n log n) come from?

n

n/2 n/2

n/4 n/4 n/4 n/4

T (n) = 2T (n/2) + n

Quadratic Time — O(n2)

A brute force algorithm for: Given a set of points, what is the
smallest distance between them.

(n
2

)
pairs

O(n3)

Ex. 1. Given n sets S1, S2, . . . ,Sn that are subsets of {1, . . . , n}, is
there some pair of sets that is disjoint?

Assume the sets are represented as bit vectors. Natural
algorithm: for every pair of sets i and j, test whether
they overlap by going through all the elements in i and j.

Ex. 2. “Standard” rule for matrix multiplication:

c2c1= r2

A1
A2

r1
r2 =×

r1 × c2

(r1 × c2) × c1 = multiplications

O(nk)

Larger polynomials arise from exploring smaller search spaces
exhaustively:

Independent Set of Size k . Given a graph with n nodes, find an
independent set of size k or report none exists.

For every subset S of k nodes

If S is an independent set then (*)

return S

Endfor

return Failure

How many subsets of k nodes are there?

Exponential Time

What if we didn’t limit ourselves to independent sets of size k, and
instead want to find the largest independent set?

Brute force algorithms search through all possibilities.

How many subsets of nodes are there in an n-node graph?

2n

What’s the runtime of the brute force search search for a largest
independent set?

O(n22n)

Exponential Time

What if we didn’t limit ourselves to independent sets of size k, and
instead want to find the largest independent set?

Brute force algorithms search through all possibilities.

How many subsets of nodes are there in an n-node graph? 2n

What’s the runtime of the brute force search search for a largest
independent set?

O(n22n)

Exponential Time

What if we didn’t limit ourselves to independent sets of size k, and
instead want to find the largest independent set?

Brute force algorithms search through all possibilities.

How many subsets of nodes are there in an n-node graph? 2n

What’s the runtime of the brute force search search for a largest
independent set? O(n22n)

Sublinear Time

Sublinear time means we don’t even look at every input.

Since it takes n time just to read the input, we have to work in a
model where we count how many queries to the data we make.

Sublinear usually means we don’t have too look at every element.

Example?

Binary search — O(log n)

Sublinear Time

Sublinear time means we don’t even look at every input.

Since it takes n time just to read the input, we have to work in a
model where we count how many queries to the data we make.

Sublinear usually means we don’t have too look at every element.

Example? Binary search — O(log n)

Properties of O,Ω,Θ

Example (Transitivity of O).

Show that if f (n) = O(g(n)) and g = O(h(n))
then f (n) = O(h(n)).

Solution:

By the assumptions, there are constants cf , nf , cg , ng such that
f (n) ≤ cf g(n) and g(n) ≤ cgh(n) for all n ≥ max{nf , ng}.

Therefore
f (n) ≤ cf g(n) ≤ cf cgh(n)

and setting c = cf cg and n0 = max{nf , ng}.

Example (Transitivity of Ω).

Show that if f = Ω(g) and g = Ω(h) then f = Ω(h).

Solution:

A very similar argument to the previous example:

I there are cf , nf such that f (n) ≥ cf g(n) for all n ≥ nf , and

I there are cg , ng such that g(n) ≥ cgh(n) for all n ≥ ng .

Substituting in for g(n) we get f (n) ≥ cf cgh(n) for all
n ≥ max{nf , ng}.

Example (Multiplication).

For positive functions f (n), f ′(n), g(n), g ′(n), if f (n) = O(f ′(n))
and g(n) = O(g ′(n)) then f (n)g(n) = O(f ′(n)g ′(n)).

Solution:

There are constants cf , nf , cg , ng as specified in the definition of
O-notation:

f (n) ≤ cf f
′(n) for all n > nf

g(n) ≤ cgg
′(n) for all n > ng

So for n > max{nf , ng} both statements above hold, and we have:

f (n)g(n) ≤ cf f
′(n)cgg

′(n) = cf cg f
′(n)g ′(n).

Taking c = cf cg and n0 = max{nf , ng} yields the desired
statement.

Example (Max).

Show that max{f (n), g(n)} = Θ(f (n) + g(n)) for any f (n), g(n)
that eventually become and stay positive.

Solution:

We have max{f (n), g(n)} = O(f (n) + g(n)) by taking c = 1 and
n0 equal to be the point where they become positive.

We have max{f (n), g(n)} = Ω(f (n) + g(n)) taking the same n0
and c = 1/2 since the average of positive functions f (n) and g(n)
is always less than the max.

Example (Polynomials).

Prove that an2 + bn + d = O(n2) for all real a, b, d .

Solution:

an2 + bn + d ≤ |a|n2 + |b|n + |d | for all n ≥ 0

≤ |a|n2 + |b|n2 + |d |n2 for all n ≥ 1

= (|a|+ |b|+ |d |)n2.

Take c = |a|+ |b|+ |d | and n0 = 1.

Example (Polynomials and Θ).

Show that any degree-d polynomial p(n) =
∑d

i=0 αin
i

with αd > 0 is Θ(nd).

Solution:

Step 1: A similar argument to the previous example shows that
p(n) is O(nd). For all n ≥ 1:

p(n) =
d∑

i=0

αin
i ≤

d∑
i=0

|αi |ni ≤
d∑

i=0

|αi |nd = nd
d∑

i=0

|αi |.

So take c =
∑d

i=0 |αi | and n0 = 1.

Step 2 on next slide.

Step 2: We now show that p(n) is Ω(nd). We try to find a c that works
in the definition. For n ≥ 1, we have:

cnd ≤
d∑

i=0

αini ⇐⇒ c ≤
d∑

i=0

αin
i/nd

= αd +
d−1∑
i=0

αin
i−d take out nd/nd term

= αd +
d−1∑
i=0

αi

nd−i
x i = 1/x−i .

So: need to show that the R.H.S. of the above is > 0 for large enough n.
If so, then there will be a c that we can choose.

Step 2, continued: Let N = {i : αi < 0}. Then we have:

αd +
d−1∑
i=0

αi

nd−i
≥ αd +

∑
i∈N

αi

nd−i
b/c we threw out the positive terms

= αd −
∑
i∈N

|αi |
nd−i

≥ αd −
1

n

∑
i∈N

|αi | b/c 1/n is the largest dependence on n

Now: αd >
1
n

∑
i∈N |αi | when n >

∑
i∈N |αi |
αd

.

At that n and larger, the last line above is strictly greater than 0.

So we choose n0 equal to
∑

i∈N |αi |
αd

+ 1 and any c between 0 and

αd − 1
n0

∑
i∈N |αi |.

Example.

Show that (n + a)d = Θ(nd) when d > 0.

Solution:

(n + a)d =
∑d

i=0

(d
i

)
ad−ini by the binomial theorem.

This equals
∑d

i=0 αin
i for αi =

(d
i

)
ad−i , which is a degree-d

polynomial, which is Θ(nd) by the previous example.

	Combinatorial Problems
	Efficient Algorithms
	Common Running Times

