Kruskal's Minimum Spanning Tree Algorithm & Union-Find Data Structures

Slides by Carl Kingsford

Jan. 22, 2014

AD 4.5-4.6

Greedy minimum spanning tree rules

All of these greedy rules work:

1. Starting with any root node, add the frontier edge with the smallest weight. (**Prim's Algorithm**)

Add edges in increasing weight, skipping those whose addition would create a cycle. (Kruskal's Algorithm)

Start with all edges, remove them in decreasing order of weight, skipping those whose removal would disconnect the graph. ("Reverse-Delete" Algorithm)

Prim's Algorithm

Prim's Algorithm: Starting with any root node, add the frontier edge with the smallest weight.

Theorem. Prim's algorithm produces a minimum spanning tree.

S = set of nodes already in the tree when e is added

Cycle Property

Theorem (Cycle Property). Let C be a cycle in G. Let e = (u, v) be the edge with maximum weight on C. Then e is not in any MST of G.

Suppose the theorem is false. Let T be a MST that contains e.

Deleting e from T partitions vertices into 2 sets:

S (that contains u) and V - S (that contains v).

Cycle C must have some *other* edge f that goes from S and V - S.

Replacing e by f produces a lower cost tree, contradicting that T is an MST.

Cycle Property, Picture

MST Property Summary

1. Cut Property: The smallest edge crossing any cut must be in all MSTs.

2. Cycle Property: The largest edge on any cycle is never in any MST.

Reverse-Delete Algorithm

Reverse-Delete Algorithm: Remove edges in decreasing order of weight, skipping those whose removal would disconnect the graph.

Theorem. Reverse-Delete algorithm produces a minimum spanning tree.

Because removing e won't disconnect the graph, there must be another path between u and v

Because we're removing in order of decreasing weight, e must be the largest edge on that cycle.

Kruskal's Algorithm

Kruskal's Algorithm: Add edges in increasing weight, skipping those whose addition would create a cycle.

Theorem. Kruskal's algorithm produces a minimum spanning tree.

Proof. Consider the point when edge e = (u, v) is added:

Another example

Kruskal's Algorithm: Add edges in increasing weight, skipping those whose addition would create a cycle.

Kruskal's Algorithm: Add edges in increasing weight, skipping those whose addition would create a cycle.

How would we check if adding an edge $\{u, v\}$ would create a cycle?

▶ Would create a cycle if *u* and *v* are already in the same component.

Kruskal's Algorithm: Add edges in increasing weight, skipping those whose addition would create a cycle.

- ▶ Would create a cycle if *u* and *v* are already in the same component.
- We start with a component for each node.

Kruskal's Algorithm: Add edges in increasing weight, skipping those whose addition would create a cycle.

- Would create a cycle if u and v are already in the same component.
- We start with a component for each node.
- Components merge when we add an edge.

Kruskal's Algorithm: Add edges in increasing weight, skipping those whose addition would create a cycle.

- Would create a cycle if u and v are already in the same component.
- We start with a component for each node.
- Components merge when we add an edge.
- ▶ Need a way to: check if *u* and *v* are in same component and to merge two components into one.

Union-Find Abstract Data Type

The Union-Find abstract data type supports the following operations that maintain a collection of **sets of elements**:

- ▶ UF.create(S) create the data structure containing |S| sets, each containing one item from S.
- ▶ UF.find(i) return the "name" of the set containing item i.
- ▶ UF.union(a,b) merge the sets with names a and b into a single set.

A Union-Find Data Structure

UF Items:

UF Sizes:

1	5
2	3
6	1
7	3
17	1
4	4

UF Sets Array:

Implementing the union & find operations

 $\label{eq:make_union_find} \begin{array}{ll} \text{make_union_find}(S) & \text{Create data structures on previous slide}. \\ & \text{Takes time proportional to the size of } S. \end{array}$

find(i) Return UF.sets[i].

Takes a constant amount of time.

union(x,y) Use the "size" array to decide which set is smaller.

Assume x is smaller.

Walk down elements i in set x setting sets[i] = y

Walk down elements i in set x, setting sets[i] = y. Set size[y] = size[y] + size[x].

Make y point to start of x list and end of x list point to y.

Last step of Union operation

Update links to prepend smaller list to larger list. Example for union(7,4):

UF Items:

Runtime of array-based Union-Find

Theorem. Any sequence of k union operations on a collection of n items takes time at most proportional to $k \log k$.

Proof. After k unions, at most 2k items have been involved in a union. (Each union can touch at most 2 new items).

We upper bound the number of times set[v] changes for any v:

- ► Every time set[v] changes, the size of the set that v is in at least doubles. why?
- ▶ So, set[v] can have changed at most $log_2(2k)$ times.

At most 2k items have been modified at all, and each were updated at most $\log_2(2k)$ times $\implies 2k \log_2(2k)$ work.

Running time of Kruskal's algorithm

Sorting the edges: $\approx m \log m$ for m edges.

$$m \le n^2$$
, so $\log m < \log n^2 = 2 \log n$

Therefore sorting takes $\approx m \log n$ time.

At most 2m "find" operations: $\approx 2m$ time. To check if u and v are in the same component.

At most n-1 union operations: $\approx n \log n$ time.

 \implies Total running time of $\approx m \log n + 2m + n \log n$.

The biggest term is $m \log n$ since $m \ge n$ if the graph is connected and not already a tree.

Another way to implement Union-Find

Another way to implement Union-Find

Tree-based Union-Find

make_union_find(S) Create |S| trees each containing a single item and size 1. Takes time proportional to the size of S.

find(i) Follow the pointer from i to the root of its tree.

union(x,y) If the size of set x is < that of y, make y point to x. Takes constant time.

Runtime of tree-based Find

Theorem. find(i) takes time $\approx \log n$ in a tree-based union-find data structure containing n items.

Proof. The depth of an item equals the number of times the set it was in was renamed.

The size of the set containing v at least doubles every time the name of the set containing v is changed.

The largest number of times the size can double is $log_2 n$.

Running time of Kruskal's algorithm using tree-based union-find

Same running time as using the array-based union-find:

- ▶ Sorting the edges: $\approx m \log n$ for m edges.
- ▶ At most 2m "find" operations: $\approx \log n$ time each.
- ▶ At most n-1 union operations: $\approx n$ time.
- \implies Total running time of $\approx m \log n + 2m \log n + n$.

The biggest term is $m \log n$ since $m \ge n$ if the graph is connected and not already a tree.