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Greedy minimum spanning tree rules

All of these greedy rules work:

1. Starting with any root node, add the frontier edge with the
smallest weight. (Prim’s Algorithm)

2. Add edges in increasing weight, skipping those whose addition
would create a cycle. (Kruskal’s Algorithm)

3. Start with all edges, remove them in decreasing order of
weight, skipping those whose removal would disconnect the
graph. (“Reverse-Delete” Algorithm)



Prim's Algorithm

Prim’s Algorithm: Starting with any root node, add the frontier
edge with the smallest weight.

Theorem. Prim’s algorithm produces a minimum spanning tree.

S = set of nodes already in
the tree when e is added



Cycle Property

Theorem (Cycle Property). Let C be a cycle in G. Let
e = (u, v) be the edge with maximum weight on C. Then e is not
in any MST of G.

Suppose the theorem is false. Let T be a MST that contains e.

Deleting e from T partitions vertices into 2 sets:

S (that contains u) and V — S (that contains v).

Cycle C must have some other edge f that goes from S and V —S.

Replacing e by f produces a lower cost tree, contradicting that T
is an MST.



Cycle Property, Picture
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MST Property Summary

. Cut Property: The smallest edge crossing any cut must be in
all MSTs.

. Cycle Property: The largest edge on any cycle is never in any
MST.



Reverse-Delete Algorithm

Reverse-Delete Algorithm: Remove edges in decreasing order of
weight, skipping those whose removal would disconnect the graph.

Theorem. Reverse-Delete algorithm produces a minimum
spanning tree.

Because removing e won't disconnect the graph,
there must be another path between u and v

Because we're removing in order of decreasing weight,
e must be the largest edge on that cycle.



Kruskal's Algorithm

Kruskal’s Algorithm: Add edges in increasing weight, skipping
those whose addition would create a cycle.

Theorem. Kruskal's algorithm produces a minimum spanning tree.

Proof. Consider the point when edge e = (u, v) is added:

e=(uyv)
uisin V-S
(otherwise there
would be a cycle)
S = nodes to which v has a path
just before e is added
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Another example




Data Structure for Kruskal's Algorithm

Kruskal’s Algorithm: Add edges in increasing weight, skipping
those whose addition would create a cycle.

How would we check if adding an edge {u, v} would create a cycle?



Data Structure for Kruskal's Algorithm

Kruskal’s Algorithm: Add edges in increasing weight, skipping
those whose addition would create a cycle.

How would we check if adding an edge {u, v} would create a cycle?

» Would create a cycle if v and v are already in the same
component.



Data Structure for Kruskal's Algorithm

Kruskal’s Algorithm: Add edges in increasing weight, skipping
those whose addition would create a cycle.

How would we check if adding an edge {u, v} would create a cycle?

» Would create a cycle if v and v are already in the same
component.

» We start with a component for each node.



Data Structure for Kruskal's Algorithm

Kruskal’s Algorithm: Add edges in increasing weight, skipping
those whose addition would create a cycle.

How would we check if adding an edge {u, v} would create a cycle?

» Would create a cycle if v and v are already in the same
component.

» We start with a component for each node.

» Components merge when we add an edge.



Data Structure for Kruskal's Algorithm

Kruskal’s Algorithm: Add edges in increasing weight, skipping
those whose addition would create a cycle.

How would we check if adding an edge {u, v} would create a cycle?
» Would create a cycle if v and v are already in the same
component.
» We start with a component for each node.
» Components merge when we add an edge.

> Need a way to: check if v and v are in same component and
to merge two components into one.



Union-Find Abstract Data Type

The Union-Find abstract data type supports the following
operations that maintain a collection of sets of elements:

» UF.create(S) — create the data structure containing |S| sets,
each containing one item from S.

» UF.find(i) — return the “name” of the set containing item i.

» UF.union(a,b) — merge the sets with names a and b into a
single set.



A Union-Find Data Structure

UF ltems: UF Sizes:
1 [ 1 [ 3 | > 8 B 13 | > 9 4
2 | 2 |»{ 10 (> 5 >
6 —» 6 6
7 —»| 7 || 12 (> 16 7
17 | 17 17
4 +—» 4 || 11 | 14 | 15 4

UF Sets Array:




Implementing the union & find operations

make_union_find(S) Create data structures on previous slide.
Takes time proportional to the size of S.

find(i) Return UF.sets]i].
Takes a constant amount of time.

union(x,y) Use the “size” array to decide which set is smaller.
Assume x is smaller.
Walk down elements i in set x, setting sets[i] =y.
Set size[y] = size[y] + size[x].
Make y point to start of x list and end of x list point
toy.



Last step of Union operation

Update links to prepend smaller list to larger list.
Example for union(7,4):

UF Items:

6 —» 6
7 7 | 12 || 16
17 17




Runtime of array-based Union-Find

Theorem. Any sequence of k union operations on a collection of n
items takes time at most proportional to klog k.

Proof. After k unions, at most 2k items have been involved in a
union. (Each union can touch at most 2 new items).

We upper bound the number of times set[v] changes for any v:

» Every time set[v] changes, the size of the set that v is in at
least doubles. why?

» So, set[v] can have changed at most log,(2k) times.

At most 2k items have been modified at all, and each were
updated at most log,(2k) times = 2k log,(2k) work. O



Running time of Kruskal's algorithm

Sorting the edges: =~ mlog m for m edges.
m < n?, so logm < logn®> = 2logn
Therefore sorting takes =~ mlog n time.

At most 2m “find" operations: ~ 2m time. To check if u and v
are in the same component.

At most n — 1 union operations: = nlog n time.
= Total running time of =~ mlogn -+ 2m+ nlog n.

The biggest term is mlog n since m > n if the graph is connected
and not already a tree.
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Tree-based Union-Find

make_union_find(S) Create |S| trees each containing a single item
and size 1. Takes time proportional to the size of S.

find(i) Follow the pointer from /i to the root of its tree.

union(x,y) If the size of set x is < that of y, make y point to x.
Takes constant time.



Runtime of tree-based Find

Theorem. find(i) takes time =~ log n in a tree-based union-find
data structure containing n items.

Proof. The depth of an item equals the number of times the set it
was in was renamed.

The size of the set containing v at least doubles every time the
name of the set containing v is changed.

The largest number of times the size can double is log, n. O



Running time of Kruskal's algorithm using
tree-based union-find

Same running time as using the array-based union-find:
» Sorting the edges: ~ mlog n for m edges.
> At most 2m “find" operations: = log n time each.
» At most n — 1 union operations: = n time.

= Total running time of ~ mlogn+ 2mlogn + n.

The biggest term is mlog n since m > n if the graph is connected
and not already a tree.
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