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Greedy minimum spanning tree rules

All of these greedy rules work:

1. Starting with any root node, add the frontier edge with the
smallest weight. (Prim’s Algorithm)

2. Add edges in increasing weight, skipping those whose addition
would create a cycle. (Kruskal’s Algorithm)

3. Start with all edges, remove them in decreasing order of
weight, skipping those whose removal would disconnect the
graph. (“Reverse-Delete” Algorithm)



Prim’s Algorithm

Prim’s Algorithm: Starting with any root node, add the frontier
edge with the smallest weight.

Theorem. Prim’s algorithm produces a minimum spanning tree.
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Cycle Property

Theorem (Cycle Property). Let C be a cycle in G. Let
e = (u, v) be the edge with maximum weight on C. Then e is not
in any MST of G .

Suppose the theorem is false. Let T be a MST that contains e.

Deleting e from T partitions vertices into 2 sets:

S (that contains u) and V − S (that contains v).

Cycle C must have some other edge f that goes from S and V −S .

Replacing e by f produces a lower cost tree, contradicting that T
is an MST.



Cycle Property, Picture
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MST Property Summary

1. Cut Property: The smallest edge crossing any cut must be in
all MSTs.

2. Cycle Property: The largest edge on any cycle is never in any
MST.



Reverse-Delete Algorithm

Reverse-Delete Algorithm: Remove edges in decreasing order of
weight, skipping those whose removal would disconnect the graph.

Theorem. Reverse-Delete algorithm produces a minimum
spanning tree.

v
u

e = (u,v)

Because removing e won't disconnect the graph, 
there must be another path between u and v

Because we're removing in order of decreasing weight, 
e must be the largest edge on that cycle.



Kruskal’s Algorithm

Kruskal’s Algorithm: Add edges in increasing weight, skipping
those whose addition would create a cycle.

Theorem. Kruskal’s algorithm produces a minimum spanning tree.

Proof. Consider the point when edge e = (u, v) is added:

v
u

S = nodes to which v has a path
just before e is added

u is in V-S
(otherwise there 

would be a cycle)

e = (u,v)



Example run of Kruskal’s
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Another example
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Data Structure for Kruskal’s Algorithm

Kruskal’s Algorithm: Add edges in increasing weight, skipping
those whose addition would create a cycle.

How would we check if adding an edge {u, v} would create a cycle?

I Would create a cycle if u and v are already in the same
component.

I We start with a component for each node.

I Components merge when we add an edge.

I Need a way to: check if u and v are in same component and
to merge two components into one.
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Union-Find Abstract Data Type

The Union-Find abstract data type supports the following
operations that maintain a collection of sets of elements:

I UF.create(S) — create the data structure containing |S | sets,
each containing one item from S .

I UF.find(i) — return the “name” of the set containing item i .

I UF.union(a,b) — merge the sets with names a and b into a
single set.



A Union-Find Data Structure
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Implementing the union & find operations

make union find(S) Create data structures on previous slide.
Takes time proportional to the size of S.

find(i) Return UF.sets[i].
Takes a constant amount of time.

union(x,y) Use the “size” array to decide which set is smaller.
Assume x is smaller.
Walk down elements i in set x, setting sets[i ] = y.
Set size[y] = size[y] + size[x].
Make y point to start of x list and end of x list point
to y.



Last step of Union operation

Update links to prepend smaller list to larger list.
Example for union(7,4):
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Runtime of array-based Union-Find

Theorem. Any sequence of k union operations on a collection of n
items takes time at most proportional to k log k.

Proof. After k unions, at most 2k items have been involved in a
union. (Each union can touch at most 2 new items).

We upper bound the number of times set[v ] changes for any v :

I Every time set[v ] changes, the size of the set that v is in at
least doubles. why?

I So, set[v ] can have changed at most log2(2k) times.

At most 2k items have been modified at all, and each were
updated at most log2(2k) times =⇒ 2k log2(2k) work.



Running time of Kruskal’s algorithm

Sorting the edges: ≈ m log m for m edges.
m ≤ n2, so log m < log n2 = 2 log n

Therefore sorting takes ≈ m log n time.

At most 2m “find” operations: ≈ 2m time. To check if u and v
are in the same component.

At most n − 1 union operations: ≈ n log n time.

=⇒ Total running time of ≈ m log n + 2m + n log n.

The biggest term is m log n since m ≥ n if the graph is connected
and not already a tree.



Another way to implement Union-Find
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Another way to implement Union-Find
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Tree-based Union-Find

make union find(S) Create |S | trees each containing a single item
and size 1. Takes time proportional to the size of S .

find(i) Follow the pointer from i to the root of its tree.

union(x,y) If the size of set x is < that of y , make y point to x .
Takes constant time.



Runtime of tree-based Find

Theorem. find(i) takes time ≈ log n in a tree-based union-find
data structure containing n items.

Proof. The depth of an item equals the number of times the set it
was in was renamed.

The size of the set containing v at least doubles every time the
name of the set containing v is changed.

The largest number of times the size can double is log2 n.



Running time of Kruskal’s algorithm using
tree-based union-find

Same running time as using the array-based union-find:

I Sorting the edges: ≈ m log n for m edges.

I At most 2m “find” operations: ≈ log n time each.

I At most n − 1 union operations: ≈ n time.

=⇒ Total running time of ≈ m log n + 2m log n + n.

The biggest term is m log n since m ≥ n if the graph is connected
and not already a tree.
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