Kruskal's Minimum Spanning Tree Algorithm &
Union-Find Data Structures

Slides by Carl Kingsford

Jan. 22, 2014

AD 45-4.6

Greedy minimum spanning tree rules

All of these greedy rules work:

1. Starting with any root node, add the frontier edge with the
smallest weight. (Prim’s Algorithm)

2. Add edges in increasing weight, skipping those whose addition
would create a cycle. (Kruskal’s Algorithm)

3. Start with all edges, remove them in decreasing order of
weight, skipping those whose removal would disconnect the
graph. (“Reverse-Delete” Algorithm)

Prim's Algorithm

Prim’s Algorithm: Starting with any root node, add the frontier
edge with the smallest weight.

Theorem. Prim’s algorithm produces a minimum spanning tree.

S = set of nodes already in
the tree when e is added

Cycle Property

Theorem (Cycle Property). Let C be a cycle in G. Let
e = (u, v) be the edge with maximum weight on C. Then e is not
in any MST of G.

Suppose the theorem is false. Let T be a MST that contains e.

Deleting e from T partitions vertices into 2 sets:

S (that contains u) and V — S (that contains v).

Cycle C must have some other edge f that goes from S and V —S.

Replacing e by f produces a lower cost tree, contradicting that T
is an MST.

Cycle Property, Picture

V

MST Property Summary

. Cut Property: The smallest edge crossing any cut must be in
all MSTs.

. Cycle Property: The largest edge on any cycle is never in any
MST.

Reverse-Delete Algorithm

Reverse-Delete Algorithm: Remove edges in decreasing order of
weight, skipping those whose removal would disconnect the graph.

Theorem. Reverse-Delete algorithm produces a minimum
spanning tree.

Because removing e won't disconnect the graph,
there must be another path between u and v

Because we're removing in order of decreasing weight,
e must be the largest edge on that cycle.

Kruskal's Algorithm

Kruskal’s Algorithm: Add edges in increasing weight, skipping
those whose addition would create a cycle.

Theorem. Kruskal's algorithm produces a minimum spanning tree.

Proof. Consider the point when edge e = (u, v) is added:

e=(uyv)
uisin V-S
(otherwise there
would be a cycle)
S = nodes to which v has a path
just before e is added

of Kruskal's

Example run

of Kruskal's

Example run

of Kruskal's

Example run

of Kruskal's

Example run

of Kruskal's

Example run

of Kruskal's

Example run

of Kruskal's

Example run

of Kruskal's

Example run

of Kruskal's

Example run

Another example

Data Structure for Kruskal's Algorithm

Kruskal’s Algorithm: Add edges in increasing weight, skipping
those whose addition would create a cycle.

How would we check if adding an edge {u, v} would create a cycle?

Data Structure for Kruskal's Algorithm

Kruskal’s Algorithm: Add edges in increasing weight, skipping
those whose addition would create a cycle.

How would we check if adding an edge {u, v} would create a cycle?

» Would create a cycle if v and v are already in the same
component.

Data Structure for Kruskal's Algorithm

Kruskal’s Algorithm: Add edges in increasing weight, skipping
those whose addition would create a cycle.

How would we check if adding an edge {u, v} would create a cycle?

» Would create a cycle if v and v are already in the same
component.

» We start with a component for each node.

Data Structure for Kruskal's Algorithm

Kruskal’s Algorithm: Add edges in increasing weight, skipping
those whose addition would create a cycle.

How would we check if adding an edge {u, v} would create a cycle?

» Would create a cycle if v and v are already in the same
component.

» We start with a component for each node.

» Components merge when we add an edge.

Data Structure for Kruskal's Algorithm

Kruskal’s Algorithm: Add edges in increasing weight, skipping
those whose addition would create a cycle.

How would we check if adding an edge {u, v} would create a cycle?
» Would create a cycle if v and v are already in the same
component.
» We start with a component for each node.
» Components merge when we add an edge.

> Need a way to: check if v and v are in same component and
to merge two components into one.

Union-Find Abstract Data Type

The Union-Find abstract data type supports the following
operations that maintain a collection of sets of elements:

» UF.create(S) — create the data structure containing |S| sets,
each containing one item from S.

» UF.find(i) — return the “name” of the set containing item i.

» UF.union(a,b) — merge the sets with names a and b into a
single set.

A Union-Find Data Structure

UF ltems: UF Sizes:
1 [1 [3 | > 8 B 13 | > 9 4
2 | 2 |»{ 10 (> 5 >
6 —» 6 6
7 —»| 7 || 12 (> 16 7
17 | 17 17
4 +—» 4 || 11 | 14 | 15 4

UF Sets Array:

Implementing the union & find operations

make_union_find(S) Create data structures on previous slide.
Takes time proportional to the size of S.

find(i) Return UF.sets]i].
Takes a constant amount of time.

union(x,y) Use the “size” array to decide which set is smaller.
Assume x is smaller.
Walk down elements i in set x, setting sets[i] =y.
Set size[y] = size[y] + size[x].
Make y point to start of x list and end of x list point
toy.

Last step of Union operation

Update links to prepend smaller list to larger list.
Example for union(7,4):

UF Items:

6 —» 6
7 7 | 12 || 16
17 17

Runtime of array-based Union-Find

Theorem. Any sequence of k union operations on a collection of n
items takes time at most proportional to klog k.

Proof. After k unions, at most 2k items have been involved in a
union. (Each union can touch at most 2 new items).

We upper bound the number of times set[v] changes for any v:

» Every time set[v] changes, the size of the set that v is in at
least doubles. why?

» So, set[v] can have changed at most log,(2k) times.

At most 2k items have been modified at all, and each were
updated at most log,(2k) times = 2k log,(2k) work. O

Running time of Kruskal's algorithm

Sorting the edges: =~ mlog m for m edges.
m < n?, so logm < logn®> = 2logn
Therefore sorting takes =~ mlog n time.

At most 2m “find" operations: ~ 2m time. To check if u and v
are in the same component.

At most n — 1 union operations: = nlog n time.
= Total running time of =~ mlogn -+ 2m+ nlog n.

The biggest term is mlog n since m > n if the graph is connected
and not already a tree.

nt Union-Fin

Another way to implement U

o
“o—-0—6

nt Union-Fin

Another way to implement U

&
“o—-0—6

Tree-based Union-Find

make_union_find(S) Create |S| trees each containing a single item
and size 1. Takes time proportional to the size of S.

find(i) Follow the pointer from /i to the root of its tree.

union(x,y) If the size of set x is < that of y, make y point to x.
Takes constant time.

Runtime of tree-based Find

Theorem. find(i) takes time =~ log n in a tree-based union-find
data structure containing n items.

Proof. The depth of an item equals the number of times the set it
was in was renamed.

The size of the set containing v at least doubles every time the
name of the set containing v is changed.

The largest number of times the size can double is log, n. O

Running time of Kruskal's algorithm using
tree-based union-find

Same running time as using the array-based union-find:
» Sorting the edges: ~ mlog n for m edges.
> At most 2m “find" operations: = log n time each.
» At most n — 1 union operations: = n time.

= Total running time of ~ mlogn+ 2mlogn + n.

The biggest term is mlog n since m > n if the graph is connected
and not already a tree.

	Reverse-Delete Algorithm
	Kruskal's Algorithm

