
Approximation Algorithms, I:
Traveling Salesman

Slides by Carl Kingsford

Jan. 20, 2014

Approximation Algorithms

I How do we deal with problems where we don’t have an
efficient algorithm?

I One option: heuristics

I But we’d like some guarantee: the answer we get should never
be too far from the optimal.

I −→ Approximation Algorithms

The desired statement

Definitions:

I Let AP(I) be the value of the solution using algorithm A to
instance I of some minimization problem P

I Let OPTP(I) be the optimal (smallest) solution for instance I .

Goal: To say we have an approximation algorithm for a
minimization problem P, we want to prove something like:

For any instance I , AP(I) ≤ α(|I |)OPTP(I).

for some function α(|I |).

α(n) might be a constant like “2” or maybe O(log n), etc.

Approximation Guarantee

Approximation Guarantee:

For any instance I , A(I) ≤ α(|I |)OPT (I).

Clearly, α ≥ 1 (for minimization problems) because we can’t have
a solution smaller than the optimal.

Want α(·) to be as small as possible.

For example, if α(n) = 2, we have the statement that the solution
returned by our greedy algorithm is never more than twice as large
as the optimal.

Lower Bounds

Analysis Problem: We don’t know the optimal, so how do we
compare against it?

Insight: A lower bound on the optimal works almost as well:

I Suppose we know that B(I) ≤ OPT (I) for some function B.

I If we can prove A(I) ≤ αB(I), then that immediately implies
that A(I) ≤ αOPT (I).

Lower Bounds, Picture

Lower Bound B

OPT

Our algorithm A

Bound αB

αOPT

Euclidean Traveling Salesman

Euclidean TSP

Given n cities, with distances d(u, v) between them (that satisfy
the triangle inequality), find the order to visit them that minimizes
the length of the route.

Can think of input as a complete graph G with
(n
2

)
edges.

TSP Large Instance

• David Applegate, AT&T Labs - Research
• Robert Bixby, ILOG and Rice University
• Vašek Chvátal, Rutgers University
• William Cook, Georgia Tech
• Keld Helsgaun, Roskilde University

http://www.tsp.gatech.edu/sweden/index.html

I TSP visiting 24,978 (all) cities in Sweden.

I Solved by David Applegate, Robert Bixby,
Vašek Chvátal, William Cook, and Keld
Helsgaun

I http://www.tsp.gatech.edu/sweden/

index.html

I Lots more cool TSP at
http://www.tsp.gatech.edu/

http://www.tsp.gatech.edu/sweden/index.html
http://www.tsp.gatech.edu/sweden/index.html
http://www.tsp.gatech.edu/

Approximation Algorithm

Euclidean TSP Approximation Algorithm:

1. Compute a minimum spanning tree T connecting the cities.

2. Visit the cities in order of a preorder traversal of T .

“Preorder traversal” = visit a node, then the entire subtree of
its first child, then the entire subtree of the second child, etc.

Example

Example

Example

Example

TSP Approximation Algorithm

Notation:

I Let cost(A) be the total length of the edges in some set A.

I Let A∗ be the edges visited on the optimal tour.

I Let A be the edges visited on the tour found by our algorithm.

Theorem. cost(A) ≤ 2cost(A∗).

(The algorithm gives a 2-approximation to the optimal TSP.)

Proof

Proof. The cost of a minimum spanning tree T is less than the
cost of the optimal tour: cost(T) ≤ cost(A∗). Why?

A full walk W that “traces” the MST is of length 2cost(T)
because every edge is crossed twice.

So: cost(W) = 2cost(T) ≤ 2cost(A∗).

W isn’t a tour because it visits cities more than once. We can
shortcut all but the first visit to a city. By the triangle inequality,
this only reduces the cost of the tour.

So: cost(A) ≤ 2cost(T) ≤ 2cost(A∗). �

Approximation Algorithms Summary

I A way to deal with hard problems.

I Analysis main idea: good lower bounds to “approximate”
optimal.

I A constant-factor approximation algorithm for Metric
Traveling Salesman uses MST.

We will see additional approximation algorithms toward the end of
the course.

