Approximation Algorithms, I: Traveling Salesman

Slides by Carl Kingsford

Jan. 20, 2014

Approximation Algorithms

► How do we deal with problems where we don't have an efficient algorithm?

One option: heuristics

▶ But we'd like some guarantee: the answer we get should never be *too* far from the optimal.

► → Approximation Algorithms

The desired statement

Definitions:

- Let $A_P(I)$ be the value of the solution using algorithm A to instance I of some minimization problem P
- ▶ Let $OPT_P(I)$ be the optimal (smallest) solution for instance I.

Goal: To say we have an approximation algorithm for a minimization problem P, we want to prove something like:

For any instance
$$I$$
, $A_P(I) \leq \alpha(|I|)OPT_P(I)$.

for some function $\alpha(|I|)$.

 $\alpha(n)$ might be a constant like "2" or maybe $O(\log n)$, etc.

Approximation Guarantee

Approximation Guarantee:

For any instance
$$I$$
, $A(I) \leq \alpha(|I|)OPT(I)$.

Clearly, $\alpha \geq 1$ (for minimization problems) because we can't have a solution smaller than the optimal.

Want $\alpha(\cdot)$ to be as small as possible.

For example, if $\alpha(n) = 2$, we have the statement that the solution returned by our greedy algorithm is never more than twice as large as the optimal.

Lower Bounds

Analysis Problem: We don't know the optimal, so how do we compare against it?

Insight: A lower bound on the optimal works almost as well:

- ▶ Suppose we know that $B(I) \le OPT(I)$ for some function B.
- ▶ If we can prove $A(I) \le \alpha B(I)$, then that immediately implies that $A(I) \le \alpha OPT(I)$.

Euclidean Traveling Salesman

Euclidean TSP

Given n cities, with distances d(u, v) between them (that satisfy the triangle inequality), find the order to visit them that minimizes the length of the route.

Can think of input as a complete graph G with $\binom{n}{2}$ edges.

- eld Helsnaun Roskilde University
- ► TSP visiting 24,978 (all) cities in Sweden.
- Solved by David Applegate, Robert Bixby, Vašek Chvátal, William Cook, and Keld Helsgaun
- http://www.tsp.gatech.edu/sweden/ index.html
- Lots more cool TSP at http://www.tsp.gatech.edu/

Approximation Algorithm

Euclidean TSP Approximation Algorithm:

- 1. Compute a minimum spanning tree T connecting the cities.
- 2. Visit the cities in order of a preorder traversal of T.

"Preorder traversal" = visit a node, then the entire subtree of its first child, then the entire subtree of the second child, etc.

Example

Example

Example

TSP Approximation Algorithm

Notation:

- Let cost(A) be the total length of the edges in some set A.
- ▶ Let A* be the edges visited on the optimal tour.
- Let A be the edges visited on the tour found by our algorithm.

Theorem. $cost(A) \leq 2cost(A^*)$.

(The algorithm gives a 2-approximation to the optimal TSP.)

Proof

Proof. The cost of a minimum spanning tree T is less than the cost of the optimal tour: $cost(T) \le cost(A^*)$. Why?

A full walk W that "traces" the MST is of length 2cost(T) because every edge is crossed twice.

So:
$$cost(W) = 2cost(T) \le 2cost(A^*)$$
.

W isn't a tour because it visits cities more than once. We can shortcut all but the *first* visit to a city. By the triangle inequality, this only reduces the cost of the tour.

So:
$$cost(A) \le 2cost(T) \le 2cost(A^*)$$
.

Approximation Algorithms Summary

- A way to deal with hard problems.
- Analysis main idea: good lower bounds to "approximate" optimal.
- ► A constant-factor approximation algorithm for Metric Traveling Salesman uses MST.

We will see additional approximation algorithms toward the end of the course.