
Data Structures for Minimum Spanning Trees:
Graphs & Heaps

Slides by Carl Kingsford

Jan. 17, 2014

KT 2.5,3.1

Recall Prim’s Algorithm

1: # distToT[u] is distance from current tree to u

2: for u 2 V do distToT[u] 1
3: u s
4: while u 6= null do

5: # We put u in the tree, so distance is �1
6: distToT[u] �1
7: # Each of u’s neighbors v are now incident to the current tree

8: for v 2 Neighbors(u) do
9: # If the distance is smaller than before, we have to update

10: if d(u,v) < distToT[v] then
11: distToT[v] d(u,v)
12: parent[v] u

13: u ClosestVertex(distToT)

14: return parent

RAM = Symbols + Pointers
(for our purposes)

RAM is an array of bits, broken up into words, where each word
has an address.

0100101001111011

0010000100100011

0110111010100000

1000010001010001

0000000000000100

1001010110001010

1000000111000001

1111111111111111

16-bit words

0

2

4

6

8

10

12

14

We may interpret the bits as
numbers, or letters, or other symbols

We may interpret
bits as a memory
address (pointer)

A
dd

re
ss

es

We can store and manipulate arbitrary symbols (like letters) and
associations between them.

Storing a list

Store a list of numbers such as 3, 7, 32, 8:

3 next

7 next

32 next

8 next
First

0

I Records located anywhere in memory

I Don’t have to know the size of data at the start

I Pointers let us express relationships between pieces of
information

What is a data structure anyway?

It’s an agreement about:

I how to store a collection of objects in memory,

I what operations we can perform on that data,

I the algorithms for those operations, and

I how time and space e�cient those algorithms are.

Data structures ! Data structurING:

How do we organize information in memory so that we can find,
update, add, and delete portions of it e�ciently?

Often, the key to a fast algorithm is an e�cient data structure.

Abstract data types (ADT)

ADT specifies permitted operations as well as time and space
guarantees.

Example Graph ADT (without time/space guarantees):

I G.add vertex(u) — adds a vertex to graph G.

I G.add edge(u, v, d) — adds an edge of weight d between
vertices u and v.

I G.has edge(u, v) — returns True i↵ edge {u,v} exists in G.

I G.neighbors(u) — gives a list of vertices adjacent to u in G.

I G.weight(u,v) — gives the weight of edge u and v

Representing Graphs

Adjacency matrix:

0

BBBB@

0 1 1 0 0
1 0 0 0 1
1 0 0 1 1
0 0 1 0 0
0 1 1 0 0

1

CCCCA

Adjacency list:

2 3

1 5

1 4 5

3

2 3

1

2

3

4

5

Representing Graphs

Adjacency matrix:

0

BBBB@

0 1 1 0 0
1 0 0 0 1
1 0 0 1 1
0 0 1 0 0
0 1 1 0 0

1

CCCCA

Adjacency list:

2 3

1 5

1 4 5

3

2 3

1

2

3

4

5

How long does
G.neighbors(u) take?

Representing Graphs

Adjacency matrix:

0

BBBB@

0 1 1 0 0
1 0 0 0 1
1 0 0 1 1
0 0 1 0 0
0 1 1 0 0

1

CCCCA

Adjacency list:

2 3

1 5

1 4 5

3

2 3

1

2

3

4

5

How long does
G.neighbors(u) take?

How would you implement
G.weight(u,v)?

Implementing ClosestVertex:

Priority Queue ADT & d-Heaps

Priority Queue ADT

A priority queue, also called a heap, holds items i that have keys
key(i).

They support the following operations:

I H.insert(i) — put item i into heap H

I H.deletemin() — return item with smallest key in H and
delete it from H

I H.makeheap(S) — create a heap from a set S of items

I H.findmin() — return item with smallest key in H

I H.delete(i) — remove item i from H

ClosestVertex via Heaps

Items: vertices that are on the “frontier” (incident to the current
tree)

Key(v) = distToT[v]

ClosestVertex: return H.deletemin()

How can we e�ciently implement the heap ADT?

Priority Queue ADT

• Efficiently support the following operations on a set
of keys:!
- findmin: return the smallest key!

- deletemin: return the smallest key & delete it!

- insert: add a new key to the set!

- delete: delete an arbitrary key!

• Would like to be able to do findmin faster (say in
time independent of the # of items in the set).

Job Scheduling: UNIX process priorities
PRI COMM!
 14 /System/Library/Frameworks/CoreServices.framework/Frameworks/Metadata.framework/Versions/A/Support/mdworker!
 31 -bash!
 31 /Applications/iTunes.app/Contents/Resources/iTunesHelper.app/Contents/MacOS/iTunesHelper!
 31 /System/Library/CoreServices/Dock.app/Contents/MacOS/Dock!
 31 /System/Library/CoreServices/FileSyncAgent.app/Contents/MacOS/FileSyncAgent!
 31 /System/Library/CoreServices/RemoteManagement/AppleVNCServer.bundle/Contents/MacOS/AppleVNCServer!
 31 /System/Library/CoreServices/RemoteManagement/AppleVNCServer.bundle/Contents/Support/RFBRegisterMDNS!
 31 /System/Library/CoreServices/RemoteManagement/AppleVNCServer.bundle/Contents/Support/VNCPrivilegeProxy!
 31 /System/Library/CoreServices/Spotlight.app/Contents/MacOS/Spotlight!
 31 /System/Library/CoreServices/coreservicesd!
...!
 31 /System/Library/PrivateFrameworks/MobileDevice.framework/Versions/A/Resources/usbmuxd!
 31 /System/Library/Services/AppleSpell.service/Contents/MacOS/AppleSpell!
 31 /sbin/launchd!
 31 /sbin/launchd!
 31 /usr/bin/ssh-agent!
 31 /usr/libexec/ApplicationFirewall/socketfilterfw!
 31 /usr/libexec/hidd!
 31 /usr/libexec/kextd!
...!
 31 /usr/sbin/mDNSResponder!
 31 /usr/sbin/notifyd!
 31 /usr/sbin/ntpd!
 31 /usr/sbin/pboard!
 31 /usr/sbin/racoon!
 31 /usr/sbin/securityd!
 31 /usr/sbin/syslogd!
 31 /usr/sbin/update!
 31 autofsd!
 31 login!
 31 ps!
 31 sort!
 46 /Applications/Preview.app/Contents/MacOS/Preview!
 46 /Applications/iCal.app/Contents/MacOS/iCal!
 47 /Applications/Utilities/Terminal.app/Contents/MacOS/Terminal!
 50 /System/Library/Frameworks/CoreServices.framework/Frameworks/Metadata.framework/Support/mds!
 50 /System/Library/Frameworks/CoreServices.framework/Versions/A/Frameworks/CarbonCore.framework/Versions/A/Support/fseventsd!
 62 /System/Library/CoreServices/Finder.app/Contents/MacOS/Finder!
 63 /Applications/Safari.app/Contents/MacOS/Safari!
 63 /Applications/iWork '08/Keynote.app/Contents/MacOS/Keynote!
 63 /System/Library/CoreServices/Dock.app/Contents/Resources/DashboardClient.app/Contents/MacOS/DashboardClient!
 63 /System/Library/CoreServices/SystemUIServer.app/Contents/MacOS/SystemUIServer!
 63 /System/Library/CoreServices/loginwindow.app/Contents/MacOS/loginwindow!
 63 /System/Library/Frameworks/ApplicationServices.framework/Frameworks/CoreGraphics.framework/Resources/WindowServer!
 63 /sbin/dynamic_pager!
 63 /usr/sbin/UserEventAgent!
 63 /usr/sbin/coreaudiod!

When scheduler asks “What should I
run next?” it could findmin(H).

Plane Sweep: Process points left to right:

Store points in a priority queue, ordered
by their x coordinate.

Plane Sweep: Process points left to right:

Store points in a priority queue, ordered
by their x coordinate.

Plane Sweep: Process points left to right:

Store points in a priority queue, ordered
by their x coordinate.

Plane Sweep: Process points left to right:

Store points in a priority queue, ordered
by their x coordinate.

Plane Sweep: Process points left to right:

Store points in a priority queue, ordered
by their x coordinate.

Heap-Ordered Trees

• The keys of the children of u are ≥ the key(u), for all nodes u. !

• (This “heap” has nothing to do with the “heap” part of computer memory.)

2

8 3

12 9 7

10

Heap-Ordered Trees

• The keys of the children of u are ≥ the key(u), for all nodes u. !

• (This “heap” has nothing to do with the “heap” part of computer memory.)

2

8 3

12 9 7

10

Along each path!
keys are monotonically
non-decreasing

Heap – Find min

2

8 3

12 9 7

10

The minimum
element is always

the root

Heap – Insert

2

3

12 7

10

9

8

1. Add node as a leaf
(we’ll see where later)

Heap – Insert

2

3

12 7

106

9

8

1. Add node as a leaf
(we’ll see where later)

Heap – Insert

2

3

12 7

10

2. “sift up:” while current
node is < its parent, swap
them.

6

9

8

1. Add node as a leaf
(we’ll see where later)

Heap – Insert

2

3

12 7

10

2. “sift up:” while current
node is < its parent, swap
them.

6

9

8

1. Add node as a leaf
(we’ll see where later)

Heap – Insert

2

3

12 7

10

2. “sift up:” while current
node is < its parent, swap
them.

6

9

8

Heap – Delete(i)

2

3

12 7

10

6

9

8

Heap – Delete(i)

2

3

12 7

10

6

9

8

1. need a pointer to
node containing key i

Heap – Delete(i)

2

3

12 7

10

2. replace key to delete i with key
j at a leaf node  
(we’ll see how to find a leaf soon)

9

8

1. need a pointer to
node containing key i

Heap – Delete(i)

2

3

12 7

10

2. replace key to delete i with key
j at a leaf node  
(we’ll see how to find a leaf soon)

9

8

1. need a pointer to
node containing key i

3. Delete leaf

Heap – Delete(i)

2

3

12 7

10

2. replace key to delete i with key
j at a leaf node  
(we’ll see how to find a leaf soon)

9

8

4. If i > j then sift up, moving j up
the tree.!

If i < j then “sift down”: swap
current node with smallest of
children until its bigger than all
of its children.

1. need a pointer to
node containing key i

3. Delete leaf

Running Times

• findmin takes constant time [O(1)]!

• insert, delete take time ∝ tree height plus the time to
find the leaves.!

• deletemin: same as delete!

• Q1: How do we find leaves used in insert and delete?!
- delete: use the last inserted node.!

- insert: choose node so tree remains complete.!

• Q2: How do we ensure the tree has low height?

2115

Store Heap in a Complete Tree

2

8 3

12 9 7 10

A2115

Store Heap in a Complete Tree

2

8 3

12 9 7 10

BA2115

Store Heap in a Complete Tree

2

8 3

12 9 7 10

CBA2115

Store Heap in a Complete Tree

2

8 3

12 9 7 10

C DBA2115

Store Heap in a Complete Tree

2

8 3

12 9 7 10

C D EBA2115

Store Heap in a Complete Tree

2

8 3

12 9 7 10

C D E FBA2115

Store Heap in a Complete Tree

2

8 3

12 9 7 10

Arrays ⇔ Complete Binary Trees

C D E FBA2115

2

8 3

12 9 7 10

2115

Store Heap in a Complete Tree

2

8 3

12 9 7 10

2 8 3 12 9 7 10 15 21 A B C D E F
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

left(i): 2i if 2i ≤ n otherwise None!
right(i): (2i + 1) if 2i + 1 ≤ n otherwise None!
parent(i): #i/2$ if i ≥ 2 otherwise None

A2115

Store Heap in a Complete Tree

2

8 3

12 9 7 10

2 8 3 12 9 7 10 15 21 A B C D E F
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

left(i): 2i if 2i ≤ n otherwise None!
right(i): (2i + 1) if 2i + 1 ≤ n otherwise None!
parent(i): #i/2$ if i ≥ 2 otherwise None

BA2115

Store Heap in a Complete Tree

2

8 3

12 9 7 10

2 8 3 12 9 7 10 15 21 A B C D E F
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

left(i): 2i if 2i ≤ n otherwise None!
right(i): (2i + 1) if 2i + 1 ≤ n otherwise None!
parent(i): #i/2$ if i ≥ 2 otherwise None

CBA2115

Store Heap in a Complete Tree

2

8 3

12 9 7 10

2 8 3 12 9 7 10 15 21 A B C D E F
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

left(i): 2i if 2i ≤ n otherwise None!
right(i): (2i + 1) if 2i + 1 ≤ n otherwise None!
parent(i): #i/2$ if i ≥ 2 otherwise None

C DBA2115

Store Heap in a Complete Tree

2

8 3

12 9 7 10

2 8 3 12 9 7 10 15 21 A B C D E F
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

left(i): 2i if 2i ≤ n otherwise None!
right(i): (2i + 1) if 2i + 1 ≤ n otherwise None!
parent(i): #i/2$ if i ≥ 2 otherwise None

C D EBA2115

Store Heap in a Complete Tree

2

8 3

12 9 7 10

2 8 3 12 9 7 10 15 21 A B C D E F
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

left(i): 2i if 2i ≤ n otherwise None!
right(i): (2i + 1) if 2i + 1 ≤ n otherwise None!
parent(i): #i/2$ if i ≥ 2 otherwise None

C D E FBA2115

Store Heap in a Complete Tree

2

8 3

12 9 7 10

2 8 3 12 9 7 10 15 21 A B C D E F
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

left(i): 2i if 2i ≤ n otherwise None!
right(i): (2i + 1) if 2i + 1 ≤ n otherwise None!
parent(i): #i/2$ if i ≥ 2 otherwise None

d-Heaps – Don’t have to use binary trees

• What about complete non-binary trees (e.g. every
node has d children)?!
- insert takes O(logd n) [because height O(logd n)]!

- delete takes O(d logd n) [why?]!

!

• Can still store in an array.!
!

• If you have few deletions, make d bigger so that tree
is shorter.!

• Can tune d to fit the relative proportions of inserts /
deletes.

3-Heap Example

d-Heap Runtime Summary

!

- findmin takes O(1) time!

- insert takes O(logd n) time !

- delete takes O(d logd n) time!

- deletemin takes time O(d logd n)!

- makeheap takes O(n) time

Reason: height of a complete!
binary tree with n nodes is about!
log n.

One more operation needed for Prim’s

• H.decreaseKey(u,j): reduce the key for item u by j.

One more operation needed for Prim’s

• H.decreaseKey(u,j): reduce the key for item u by j.

Why is this needed?

One more operation needed for Prim’s

• H.decreaseKey(u,j): reduce the key for item u by j.

Why is this needed?

How can we implement it?

One more operation needed for Prim’s

• H.decreaseKey(u,j): reduce the key for item u by j.

Why is this needed?

How can we implement it?

1. Reduce the key by j!
2. siftup to put it in the right place.!
3. Takes time proportional to the height of the tree ≈ log n

Make Heap – Create a heap from n items

• n inserts take time ∝ n log n.!

• Better: !

- put items into array
arbitrarily.!

- for i = n ... 1, siftdown(i).!

• Each element trickles down to
its correct place.

By the time you sift level i, all
levels i + 1 and greater are already
heap ordered.

Make Heap – Time Bound

There are at most n/2h
items at height h.

Siftdown for all height h nodes is ≈ hn/2h time

Total time !
 ≈ ∑h hn/2h [sum of time for each height]!
 = n ∑h (h / 2h) [factor out the n]!
 ≈ n [sum bounded by const]

2H-h nodes at height h!
in a tree with total  
height H = 2H / 2h!
!
H ≈ log n; 2H = n

Height counts from bottom!
Level counts from top

Heapsort – Another application of Heaps

2 12 10 7 15 21 9
1 2 3 4 5 6 7 8 9

8 3Given unsorted
array of integers

end

Heapsort – Another application of Heaps

3 12 8 7 15 21 9
1 2 3 4 5 6 7 8 9

2 12 10 7 15 21 9
1 2 3 4 5 6 7 8 9

8 3

2 10

Given unsorted
array of integers

makeheap – O(n)!
Now first position
has smallest item.

end

end

Swap first & last items.

Heapsort – Another application of Heaps

3 12 8 7 15 21 9
1 2 3 4 5 6 7 8 9

2 12 10 7 15 21 9
1 2 3 4 5 6 7 8 9

8 3

210

Given unsorted
array of integers

makeheap – O(n)!
Now first position
has smallest item.

end

end

Swap first & last items.

Heapsort – Another application of Heaps

3 12 8 7 15 21 9
1 2 3 4 5 6 7 8 9

2 12 10 7 15 21 9
1 2 3 4 5 6 7 8 9

8 3

210

Given unsorted
array of integers

makeheap – O(n)!
Now first position
has smallest item.

Delete last item from heap. 3 12 8 7 15 21 9
1 2 3 4 5 6 7 8 9

210

end

end

end

Heapsort – Another application of Heaps

3 12 8 7 15 21 9
1 2 3 4 5 6 7 8 9

2 12 10 7 15 21 9
1 2 3 4 5 6 7 8 9

8 3

210

Given unsorted
array of integers

makeheap – O(n)!
Now first position
has smallest item.

Delete last item from heap. 3 12 8 7 15 21 9
1 2 3 4 5 6 7 8 9

210

end

end

end

Heapsort – Another application of Heaps

3 12 8 7 15 21 9
1 2 3 4 5 6 7 8 9

2 12 10 7 15 21 9
1 2 3 4 5 6 7 8 9

8 3

10 2

Given unsorted
array of integers

makeheap – O(n)!
Now first position
has smallest item.

Delete last item from heap. 3 12 8 7 15 21 9
1 2 3 4 5 6 7 8 9

210

end

end

end

8 21 9
1 2 3 4 5 6 7 8 9

210

end

12 15siftdown new root key
down 3 7

Heapsort – Another application of Heaps

3 12 8 7 15 21 9
1 2 3 4 5 6 7 8 9

2 12 10 7 15 21 9
1 2 3 4 5 6 7 8 9

8 3

10 2

Given unsorted
array of integers

makeheap – O(n)!
Now first position
has smallest item.

Delete last item from heap. 3 12 8 7 15 21 9
1 2 3 4 5 6 7 8 9

210

end

end

end

8 21 9
1 2 3 4 5 6 7 8 9

210

end

12 15siftdown new root key
down 3 7

Heapsort – Another application of Heaps

3 12 8 7 15 21 9
1 2 3 4 5 6 7 8 9

2 12 10 7 15 21 9
1 2 3 4 5 6 7 8 9

8 3

10 2

Given unsorted
array of integers

makeheap – O(n)!
Now first position
has smallest item.

Delete last item from heap. 3 12 8 7 15 21 9
1 2 3 4 5 6 7 8 9

210

end

end

end

8 21 9
1 2 3 4 5 6 7 8 9

210

end

12 15siftdown new root key
down 3 7

