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Recall Prim’s Algorithm

1: # distToT[u] is distance from current tree to u

2: for u 2 V do distToT[u]  1
3: u  s
4: while u 6= null do

5: # We put u in the tree, so distance is �1
6: distToT[u]  �1
7: # Each of u’s neighbors v are now incident to the current tree

8: for v 2 Neighbors(u) do
9: # If the distance is smaller than before, we have to update

10: if d(u,v) < distToT[v] then
11: distToT[v]  d(u,v)
12: parent[v]  u

13: u  ClosestVertex(distToT)

14: return parent



RAM = Symbols + Pointers
(for our purposes)

RAM is an array of bits, broken up into words, where each word
has an address.

0100101001111011

0010000100100011

0110111010100000

1000010001010001

0000000000000100

1001010110001010

1000000111000001

1111111111111111

16-bit words

0

2

4

6

8

10

12

14

We may interpret the bits as 
numbers, or letters, or other symbols

We may interpret 
bits as a memory 
address (pointer)

A
dd

re
ss

es

We can store and manipulate arbitrary symbols (like letters) and
associations between them.



Storing a list

Store a list of numbers such as 3, 7, 32, 8:

3 next

7 next

32 next

8 next
First

0

I Records located anywhere in memory

I Don’t have to know the size of data at the start

I Pointers let us express relationships between pieces of
information



What is a data structure anyway?

It’s an agreement about:

I how to store a collection of objects in memory,

I what operations we can perform on that data,

I the algorithms for those operations, and

I how time and space e�cient those algorithms are.

Data structures ! Data structurING:

How do we organize information in memory so that we can find,
update, add, and delete portions of it e�ciently?

Often, the key to a fast algorithm is an e�cient data structure.



Abstract data types (ADT)

ADT specifies permitted operations as well as time and space
guarantees.

Example Graph ADT (without time/space guarantees):

I G.add vertex(u) — adds a vertex to graph G.

I G.add edge(u, v, d) — adds an edge of weight d between
vertices u and v.

I G.has edge(u, v) — returns True i↵ edge {u,v} exists in G.

I G.neighbors(u) — gives a list of vertices adjacent to u in G.

I G.weight(u,v) — gives the weight of edge u and v



Representing Graphs

Adjacency matrix:
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Representing Graphs

Adjacency matrix:

0

BBBB@

0 1 1 0 0
1 0 0 0 1
1 0 0 1 1
0 0 1 0 0
0 1 1 0 0

1

CCCCA

Adjacency list:

2 3

1 5

1 4 5

3

2 3

1

2

3

4

5

How long does
G.neighbors(u) take?

How would you implement
G.weight(u,v)?



Implementing ClosestVertex:

Priority Queue ADT & d-Heaps



Priority Queue ADT

A priority queue, also called a heap, holds items i that have keys
key(i).

They support the following operations:

I H.insert(i) — put item i into heap H

I H.deletemin() — return item with smallest key in H and
delete it from H

I H.makeheap(S) — create a heap from a set S of items

I H.findmin() — return item with smallest key in H

I H.delete(i) — remove item i from H



ClosestVertex via Heaps

Items: vertices that are on the “frontier” (incident to the current
tree)

Key(v) = distToT[v]

ClosestVertex: return H.deletemin()

How can we e�ciently implement the heap ADT?



Priority Queue ADT

• Efficiently support the following operations on a set 
of keys:!
- findmin: return the smallest key!

- deletemin: return the smallest key & delete it!

- insert: add a new key to the set!

- delete: delete an arbitrary key!

• Would like to be able to do findmin faster (say in 
time independent of the # of items in the set).



Job Scheduling: UNIX process priorities
PRI COMM!
 14 /System/Library/Frameworks/CoreServices.framework/Frameworks/Metadata.framework/Versions/A/Support/mdworker!
 31 -bash!
 31 /Applications/iTunes.app/Contents/Resources/iTunesHelper.app/Contents/MacOS/iTunesHelper!
 31 /System/Library/CoreServices/Dock.app/Contents/MacOS/Dock!
 31 /System/Library/CoreServices/FileSyncAgent.app/Contents/MacOS/FileSyncAgent!
 31 /System/Library/CoreServices/RemoteManagement/AppleVNCServer.bundle/Contents/MacOS/AppleVNCServer!
 31 /System/Library/CoreServices/RemoteManagement/AppleVNCServer.bundle/Contents/Support/RFBRegisterMDNS!
 31 /System/Library/CoreServices/RemoteManagement/AppleVNCServer.bundle/Contents/Support/VNCPrivilegeProxy!
 31 /System/Library/CoreServices/Spotlight.app/Contents/MacOS/Spotlight!
 31 /System/Library/CoreServices/coreservicesd!
...!
 31 /System/Library/PrivateFrameworks/MobileDevice.framework/Versions/A/Resources/usbmuxd!
 31 /System/Library/Services/AppleSpell.service/Contents/MacOS/AppleSpell!
 31 /sbin/launchd!
 31 /sbin/launchd!
 31 /usr/bin/ssh-agent!
 31 /usr/libexec/ApplicationFirewall/socketfilterfw!
 31 /usr/libexec/hidd!
 31 /usr/libexec/kextd!
...!
 31 /usr/sbin/mDNSResponder!
 31 /usr/sbin/notifyd!
 31 /usr/sbin/ntpd!
 31 /usr/sbin/pboard!
 31 /usr/sbin/racoon!
 31 /usr/sbin/securityd!
 31 /usr/sbin/syslogd!
 31 /usr/sbin/update!
 31 autofsd!
 31 login!
 31 ps!
 31 sort!
 46 /Applications/Preview.app/Contents/MacOS/Preview!
 46 /Applications/iCal.app/Contents/MacOS/iCal!
 47 /Applications/Utilities/Terminal.app/Contents/MacOS/Terminal!
 50 /System/Library/Frameworks/CoreServices.framework/Frameworks/Metadata.framework/Support/mds!
 50 /System/Library/Frameworks/CoreServices.framework/Versions/A/Frameworks/CarbonCore.framework/Versions/A/Support/fseventsd!
 62 /System/Library/CoreServices/Finder.app/Contents/MacOS/Finder!
 63 /Applications/Safari.app/Contents/MacOS/Safari!
 63 /Applications/iWork '08/Keynote.app/Contents/MacOS/Keynote!
 63 /System/Library/CoreServices/Dock.app/Contents/Resources/DashboardClient.app/Contents/MacOS/DashboardClient!
 63 /System/Library/CoreServices/SystemUIServer.app/Contents/MacOS/SystemUIServer!
 63 /System/Library/CoreServices/loginwindow.app/Contents/MacOS/loginwindow!
 63 /System/Library/Frameworks/ApplicationServices.framework/Frameworks/CoreGraphics.framework/Resources/WindowServer!
 63 /sbin/dynamic_pager!
 63 /usr/sbin/UserEventAgent!
 63 /usr/sbin/coreaudiod!

When scheduler asks “What should I 
run next?” it could findmin(H).



Plane Sweep: Process points left to right:

Store points in a priority queue, ordered 
by their x coordinate.
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Plane Sweep: Process points left to right:

Store points in a priority queue, ordered 
by their x coordinate.



Heap-Ordered Trees

• The keys of the children of u are ≥ the key(u), for all nodes u. !

• (This “heap” has nothing to do with the “heap” part of computer memory.)
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Heap-Ordered Trees

• The keys of the children of u are ≥ the key(u), for all nodes u. !

• (This “heap” has nothing to do with the “heap” part of computer memory.)
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12 9 7
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Along each path!
keys are monotonically 
non-decreasing



Heap – Find min
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The minimum 
element is always 

the root



Heap – Insert
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1. Add node as a leaf 
(we’ll see where later)
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1. Add node as a leaf 
(we’ll see where later)
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1. Add node as a leaf 
(we’ll see where later)

Heap – Insert
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Heap – Delete(i)
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Heap – Delete(i)
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1. need a pointer to 
node containing key i



Heap – Delete(i)
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2. replace key to delete i with key 
j at a leaf node  
(we’ll see how to find a leaf soon)
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Heap – Delete(i)
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Heap – Delete(i)

2

3

12 7

10

2. replace key to delete i with key 
j at a leaf node  
(we’ll see how to find a leaf soon)

9

8

4. If i > j then sift up, moving j up 
the tree.!

If i < j then “sift down”: swap 
current node with smallest of 
children until its bigger than all 
of its children. 

1. need a pointer to 
node containing key i

3. Delete leaf 



Running Times

• findmin takes constant time [O(1)]!

• insert, delete take time ∝ tree height plus the time to 
find the leaves.!

• deletemin: same as delete!

• Q1: How do we find leaves used in insert and delete?!
- delete: use the last inserted node.!

- insert: choose node so tree remains complete.!

• Q2: How do we ensure the tree has low height?



2115

Store Heap in a Complete Tree
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Arrays ⇔ Complete Binary Trees
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Store Heap in a Complete Tree
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2 8 3 12 9 7 10 15 21 A B C D E F
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

left(i): 2i if 2i ≤ n otherwise None!
right(i): (2i + 1) if 2i + 1 ≤ n otherwise None!
parent(i): #i/2$ if i ≥ 2 otherwise None
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Store Heap in a Complete Tree
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Store Heap in a Complete Tree
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Store Heap in a Complete Tree
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2 8 3 12 9 7 10 15 21 A B C D E F
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left(i): 2i if 2i ≤ n otherwise None!
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d-Heaps – Don’t have to use binary trees

• What about complete non-binary trees (e.g. every 
node has d children)?!
- insert takes O(logd n)       [because height O(logd n)]!

- delete takes O(d logd n)    [why?]!

!

• Can still store in an array.!
!

• If you have few deletions, make d bigger so that tree 
is shorter.!

• Can tune d to fit the relative proportions of inserts / 
deletes.



3-Heap Example



d-Heap Runtime Summary

!

- findmin takes O(1) time!

- insert takes O(logd n)  time  !

- delete takes O(d logd n)  time!

- deletemin takes time O(d logd n)!

- makeheap takes O(n) time

Reason: height of a complete!
binary tree with n nodes is about!
log n.



One more operation needed for Prim’s

• H.decreaseKey(u,j): reduce the key for item u by j.
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One more operation needed for Prim’s

• H.decreaseKey(u,j): reduce the key for item u by j.

Why is this needed?

How can we implement it?

1. Reduce the key by j!
2. siftup to put it in the right place.!
3. Takes time proportional to the height of the tree ≈ log n



Make Heap – Create a heap from n items

• n inserts take time ∝ n log n.!

• Better: !

- put items into array 
arbitrarily.!

- for i = n ... 1, siftdown(i).!

• Each element trickles down to 
its correct place.

By the time you sift level i, all 
levels i + 1 and greater are already 
heap ordered.



Make Heap – Time Bound

There are at most n/2h 
items at height h.

Siftdown for all height h nodes is ≈ hn/2h time

Total time !
   ≈ ∑h hn/2h                [sum of time for each height]!
   = n ∑h (h / 2h)          [factor out the n]!
   ≈ n                             [sum bounded by const]

2H-h nodes at height h!
in a tree with total  
height H = 2H / 2h!
!
H ≈ log n; 2H = n

Height counts from bottom!
Level counts from top



Heapsort – Another application of Heaps

2 12 10 7 15 21 9
1 2 3 4 5 6 7 8 9

8 3Given unsorted 
array of integers

end
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Now first position 
has smallest item.
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Swap first & last items.
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