Data Structures for Minimum Spanning Trees: Graphs & Heaps

Slides by Carl Kingsford

Jan. 17, 2014

Recall Prim's Algorithm

```
1: # distToT[u] is distance from current tree to u
 2: for u \in V do distToT[u] \leftarrow \infty
 3: II ← S
 4: while u \neq null do
 5:
        # We put u in the tree, so distance is -\infty
        distToT[u] \leftarrow -\infty
 6:
        # Each of u's neighbors v are now incident to the current tree
 7:
        for v \in NEIGHBORS(u) do
 8:
             # If the distance is smaller than before, we have to update
 9.
            if d(u,v) < distToT[v] then
10:
                distToT[v] \leftarrow d(u,v)
11:
                 parent[v] \leftarrow u
12:
        u \leftarrow CLOSESTVERTEX(distToT)
13:
14: return parent
```

RAM = Symbols + Pointers (for our purposes)

RAM is an array of bits, broken up into words, where each word has an address.

We can store and manipulate arbitrary symbols (like letters) and associations between them.

Storing a list

Store a list of numbers such as 3, 7, 32, 8:

- Records located anywhere in memory
- ▶ Don't have to know the size of data at the start
- Pointers let us express relationships between pieces of information

What is a data structure anyway?

It's an agreement about:

- how to store a collection of objects in memory,
- what operations we can perform on that data,
- the algorithms for those operations, and
- how time and space efficient those algorithms are.

Data structures \rightarrow Data structurING:

How do we organize information in memory so that we can find, update, add, and delete portions of it efficiently?

Often, the key to a fast algorithm is an efficient data structure.

Abstract data types (ADT)

ADT specifies permitted operations as well as time and space guarantees.

Example Graph ADT (without time/space guarantees):

- ▶ G.add_vertex(u) adds a vertex to graph G.
- ▶ G.add_edge(u, v, d) adds an edge of weight d between vertices u and v.
- ► G.has_edge(u, v) returns True iff edge {u,v} exists in G.
- ▶ G.neighbors(u) gives a list of vertices adjacent to u in G.
- ► G.weight(u,v) gives the weight of edge u and v

Representing Graphs

Adjacency matrix:

$$\left(\begin{array}{ccccc}
0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0
\end{array}\right)$$

Adjacency list:

Representing Graphs

Adjacency matrix:

$$\left(\begin{array}{ccccc} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{array}\right)$$

How long does G.neighbors(u) take?

Adjacency list:

Representing Graphs

Adjacency matrix:

$$\left(\begin{array}{cccccc}
0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0
\end{array}\right)$$

How long does G.neighbors(u) take?

How would you implement G.weight(u,v)?

Adjacency list:

Implementing CLOSESTVERTEX:

Priority Queue ADT & d-Heaps

Priority Queue ADT

A priority queue, also called a heap, holds items i that have keys key(i).

They support the following operations:

- ► H.insert(i) put item i into heap H
- ► H.deletemin() return item with smallest key in H and delete it from H
- ▶ H.makeheap(S) create a heap from a set S of items
- ► H.findmin() return item with smallest key in H
- ► H.delete(i) remove item i from H

CLOSESTVERTEX via Heaps

Items: vertices that are on the "frontier" (incident to the current tree)

 $\mathsf{Key}(v) = \mathsf{distToT}[v]$

CLOSESTVERTEX: return H.deletemin()

How can we efficiently implement the heap ADT?

Priority Queue ADT

- Efficiently support the following operations on a set of keys:
 - *findmin*: return the smallest key
 - *deletemin*: return the smallest key & delete it
 - *insert*: add a new key to the set
 - delete: delete an arbitrary key
- Would like to be able to do *findmin* faster (say in time independent of the # of items in the set).

Job Scheduling: UNIX process priorities

63 /usr/sbin/coreaudiod

```
14 /System/Library/Frameworks/CoreServices.framework/Frameworks/Metadata.framework/Versions/A/Support/mdworker
31 -bash
31 /Applications/iTunes.app/Contents/Resources/iTunesHelper.app/Contents/MacOS/iTunesHelper
31 /System/Library/CoreServices/Dock.app/Contents/MacOS/Dock
31 /System/Library/CoreServices/FileSyncAgent.app/Contents/MacOS/FileSyncAgent
31 /System/Library/CoreServices/RemoteManagement/AppleVNCServer.bundle/Contents/MacOS/AppleVNCServer
31 /System/Library/CoreServices/RemoteManagement/AppleVNCServer.bundle/Contents/Support/RFBRegisterMDNS
31 /System/Library/CoreServices/RemoteManagement/AppleVNCServer.bundle/Contents/Support/VNCPrivilegeProxy
31 /System/Library/CoreServices/Spotlight.app/Contents/MacOS/Spotlight
31 /System/Library/CoreServices/coreservicesd
31 /System/Library/PrivateFrameworks/MobileDevice.framework/Versions/A/Resources/usbmuxd
31 /System/Library/Services/AppleSpell.service/Contents/MacOS/AppleSpell
31 /sbin/launchd
31 /sbin/launchd
31 /usr/bin/ssh-agent
31 /usr/libexec/ApplicationFirewall/socketfilterfw
31 /usr/libexec/hidd
31 /usr/libexec/kextd
31 /usr/sbin/mDNSResponder
31 /usr/sbin/notifyd
                                                                  When scheduler asks "What should I
31 /usr/sbin/ntpd
31 /usr/sbin/pboard
                                                                  run next?" it could findmin(H).
31 /usr/sbin/racoon
31 /usr/sbin/securityd
31 /usr/sbin/syslogd
31 /usr/sbin/update
31 autofsd
31 login
31 ps
46 /Applications/Preview.app/Contents/MacOS/Preview
46 /Applications/iCal.app/Contents/MacOS/iCal
47 /Applications/Utilities/Terminal.app/Contents/MacOS/Terminal
50 /System/Library/Frameworks/CoreServices.framework/Frameworks/Metadata.framework/Support/mds
50 /System/Library/Frameworks/CoreServices.framework/Versions/A/Frameworks/CarbonCore.framework/Versions/A/Support/fseventsd
62 /System/Library/CoreServices/Finder.app/Contents/MacOS/Finder
63 /Applications/Safari.app/Contents/MacOS/Safari
63 /Applications/iWork '08/Keynote.app/Contents/MacOS/Keynote
63 /System/Library/CoreServices/Dock.app/Contents/Resources/DashboardClient.app/Contents/MacOS/DashboardClient
63 /System/Library/CoreServices/SystemUIServer.app/Contents/MacOS/SystemUIServer
63 /System/Library/CoreServices/loginwindow.app/Contents/MacOS/loginwindow
63 /System/Library/Frameworks/ApplicationServices.framework/Frameworks/CoreGraphics.framework/Resources/WindowServer
63 /sbin/dynamic pager
63 /usr/sbin/UserEventAgent
```


Heap-Ordered Trees

- The keys of the children of u are \geq the key(u), for all nodes u.
- (This "heap" has nothing to do with the "heap" part of computer memory.)

Heap-Ordered Trees

Along each path keys are monotonically non-decreasing

- The keys of the children of u are \geq the key(u), for all nodes u.
- (This "heap" has nothing to do with the "heap" part of computer memory.)

Heap – Find min

1. Add node as a leaf (we'll see where later)

1. Add node as a leaf (we'll see where later)

2. "sift up:" while current node is < its parent, swap them.

1. Add node as a leaf (we'll see where later)

2. "sift up:" while current node is < its parent, swap them.

1. Add node as a leaf (we'll see where later)

2. "sift up:" while current node is < its parent, swap them.

1. need a pointer to node containing key *i*

1. need a pointer to node containing key *i*

2. replace key to delete *i* with key *j* at a leaf node (we'll see how to find a leaf soon)

1. need a pointer to node containing key *i*

2. replace key to delete *i* with key *j* at a leaf node (we'll see how to find a leaf soon)

3. Delete leaf

1. need a pointer to node containing key *i*

2. replace key to delete *i* with key *j* at a leaf node (we'll see how to find a leaf soon)

3. Delete leaf

4. If i > j then sift up, moving j up the tree.

If *i* < *j* then "sift down": swap current node with **smallest of children** until its bigger than all of its children.

Running Times

- *findmin* takes constant time [O(1)]
- *insert, delete* take time ∝ tree height plus the time to find the leaves.
- *deletemin*: same as delete
- Q1: How do we find leaves used in *insert* and *delete*?
 - *delete*: use the last inserted node.
 - insert: choose node so tree remains complete.
- Q2: How do we ensure the tree has low height?

Store Heap in a Complete Tree

Store Heap in a Complete Tree

Store Heap in a Complete Tree

Arrays ⇔ **Complete Binary Trees**

2	8	3	12	9	7	10	15	21	A	В	С	D	Е	F
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

left(i): 2i if $2i \le n$ otherwise None

right(i): (2i + 1) if $2i + 1 \le n$ otherwise None

2	8	3	12	9	7	10	15	21	A	В	С	D	Е	F
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

left(i): 2i if $2i \le n$ otherwise None

right(i): (2i + 1) if $2i + 1 \le n$ otherwise None

2	8	3	12	9	7	10	15	21	A	В	С	D	Е	F
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

left(i): 2i if $2i \le n$ otherwise None

right(i): (2i + 1) if $2i + 1 \le n$ otherwise None

2	8	3	12	9	7	10	15	21	A	В	С	D	Е	F
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

left(i): 2i if $2i \le n$ otherwise None

right(i): (2i + 1) if $2i + 1 \le n$ otherwise None

2	8	3	12	9	7	10	15	21	A	В	С	D	Е	F
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

left(i): 2i if $2i \le n$ otherwise None

right(i): (2i + 1) if $2i + 1 \le n$ otherwise None

2	8	3	12	9	7	10	15	21	A	В	С	D	Е	F
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

left(i): 2i if $2i \le n$ otherwise None

right(i): (2i + 1) if $2i + 1 \le n$ otherwise None

2	8	3	12	9	7	10	15	21	A	В	С	D	Е	F
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

left(i): 2i if $2i \le n$ otherwise None

right(i): (2i + 1) if $2i + 1 \le n$ otherwise None

d-Heaps – Don't have to use binary trees

- What about complete non-binary trees (e.g. every node has *d* children)?
 - insert takes $O(\log_d n)$ [because height $O(\log_d n)$]
 - delete takes $O(d \log_d n)$ [why?]

- Can still store in an array.
- If you have few deletions, make *d* bigger so that tree is shorter.
- Can tune *d* to fit the relative proportions of inserts / deletes.

3-Heap Example

d-Heap Runtime Summary

- findmin takes O(1) time
- insert takes $O(\log_d n)$ time
- delete takes $O(d \log_d n)$ time
- deletemin takes time $O(d \log_d n)$
- makeheap takes O(n) time

Reason: height of a complete binary tree with *n* nodes is about log *n*.

• H.decreaseKey(u,j): reduce the key for item u by j.

• H.decreaseKey(u,j): reduce the key for item u by j.

Why is this needed?

• H.decreaseKey(u,j): reduce the key for item u by j.

Why is this needed?

How can we implement it?

• H.decreaseKey(u,j): reduce the key for item u by j.

Why is this needed?

How can we implement it?

- 1. Reduce the key by *j*
- 2. *siftup* to put it in the right place.
- 3. Takes time proportional to the height of the tree $\approx \log n$

Make Heap – Create a heap from *n* items

- *n* inserts take time $\propto n \log n$.
- Better:
 - put items into array arbitrarily.
 - **for** i = n ... 1, siftdown(i).
- Each element trickles down to its correct place.

By the time you sift level i, all levels i + 1 and greater are already heap ordered.

Make Heap - Time Bound

Height counts from bottom Level counts from top

 2^{H-h} nodes at height h in a tree with total height $H = 2^H / 2^h$

(

There are at most $n/2^h$ items at height h.

 $H \approx \log n$; $2^H = n$

Siftdown for all height h nodes is $\approx hn/2^h$ time

Total time

 $\approx \sum_{h} h n / 2^{h}$ $= n \sum_{h} (h / 2^{h})$ $\approx n$

[sum of time for each height]
[factor out the n]
[sum bounded by const]

Given unsorted array of integers

								end ↓
8	2	12	10	7	15	21	9	3
1	2	3	4	5	6	7	8	9

Given unsorted array of integers

end

makeheap – O(n) Now first position has smallest item.

Swap first & last items.

Given unsorted array of integers

end

makeheap – O(n) Now first position has smallest item.

Swap first & last items.

Given unsorted array of integers

end

makeheap – O(n) Now first position has smallest item.

Delete last item from heap.

Given unsorted array of integers

end

makeheap – O(n) Now first position has smallest item.

Delete last item from heap.

end

makeheap – O(n) Now first position has smallest item.

Delete last item from heap.

siftdown new root key down

end

makeheap – O(n) Now first position has smallest item.

Delete last item from heap.

siftdown new root key down

end

makeheap – O(n) Now first position has smallest item.

Delete last item from heap.

siftdown new root key down

