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Problem: Cost effective wiring of a network
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Other applications for the problem

1. Circles = DNA sequences
Edge u − v weighted by the similarity of sequences u and v .

Find the most parsimonious way to explain how the sequences
are evolutionarily related.

2. Remove long edges ⇒ clustering:



Graphs

Graphs specify pairwise relationships between objects.

An undirected graph G = (V ,E ) is a pair of sets:

I V is a set of nodes, aka vertices.

I E is a set of two-element subsets of V .
An element of E is of the form: e = {u, v} with u, v ∈ V .

A graph is directed if E is a set of ordered pairs (u, v), u, v ∈ V :



Subgraphs and components

a

c

d
b

e

VG = {a,b,c,d,e}
EG = { {a,b}, {a,d}, {b,d}, {b,c}, {c,d}, {c,e} }

VH = {a,b,c,e}
EH = { {a,b}, {b,d}, {b,c} }

A graph H = (VH ,EH) is a subgraph of G = (VG ,EG ) if

I VH ⊆ VG , and

I EH ⊆ EG .

Note: {u, v} ∈ EH implies u, v ∈ VH .

Connected component: a maximal connected subgraph.



Graph modeling examples

Graphs naturally model many concepts:

1. Social networks

2. Geographic adjacency

3. Polyhedra

4. Chemical molecules

5. Assigning jobs to
applicants

6. Food webs

7. Finite-state machines

8. Markov processes

9. Project dependencies

10. World Wide Web

11. Telephone network

12. Roads

13. Graphical models (e.g.
Bayesian networks)

14. Phylogenetic relationships

15. Mesh approximations to
surfaces



Trees

Trees are a special type of graph that occur often in algorithms.

Definition (Cycle). A cycle of a
graph G = (V ,E ) is a sequence of
distinct vertices v1, . . . , vk ∈ V such
that {vi , vi+1} ∈ E for all i = 1, . . . , k
and {vk , v1} ∈ E .

a

d

e
b

g

j

h

i

fc

a,e,g,f,d,b is a cycle

Definition (Tree). A graph G is a tree if it is connected and
contains no cycles.
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The Minimum Spanning Tree problem

Given:
I undirected graph G with vertices for each of n objects

I weights d(u, v) = cost of using edge {u,v}.

Find the subgraph T that connects all vertices and minimizes

cost(T ) :=
∑

{u,v}∈T

d(u, v).

T will be a tree. Why?

If there was a cycle, we could remove any edge on the cycle to get
a new subgraph T ′ with smaller cost(T ′).
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Prim’s MST algorithm

1. Given graph G = (V ,E ), select an arbitrary vertex s ∈ V and
let T be a “tree” that contains only s.

2. Repeat the following |V | − 1 times:

Add to T the lowest-cost edge {u, v} where u ∈ T and
v 6∈ T .

V

T
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Another example
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Prim’s MST algorithm pseudocode

1: # distToT[u] is distance from current tree to u

2: for u ∈ V do distToT[u] ←∞
3: u ← s # (s is an arbitrary start vertex)

4: while u 6= null do
5: # We put u in the tree, so distance is −∞
6: distToT[u] ← −∞
7: # Each of u’s neighbors v are now incident to the current tree

8: for v ∈ Neighbors(u) do
9: # If the distance is smaller than before, we have to update

10: if d(u,v) < distToT[v] then
11: distToT[v] ← d(u,v)
12: parent[v] ← u

13: u ← ClosestVertex(distToT)

14: return parent



Questions

I How do we know it will always find the minimum?
(Correctness)

I How can we find quickly the ClosestVertex and iteratate ?
(Choice of data structure)

I What’s the longest amount of time the algorithm will take?
(Worst-case running time)

I Is this the fastest possible algorithm?
(Complexity theory)



Correctness of Prim’s MST
Algorithm



Trees

Theorem (Characterization of Trees). The following
statements are equivalent:

1. T is a tree.

2. T contains no cycles and n − 1 edges.

3. T is connected and has n − 1 edges.

4. T is connected and removing any edge disconnects it.

5. Any two nodes in T are connected by exactly 1 path.

6. T is acyclic, and adding any new edge creates exactly one
cycle.



Assumption

We assume no two edges in G have the same edge cost.

If this doesn’t hold true, we can add a very small value εe to the
weight of every edge e.



Cut Property

Theorem (MST Cut Property). Let S be a subset of nodes,
with |S | ≥ 1 and |S | < |V |. Every MST contains the edge
e = {v ,w} with v ∈ S and w ∈ V − S that has minimum weight.

V

S V - S

v we

A pair (S, V-S) is a 
cut of the graph



Cut Property, Proof

Suppose T doesn’t contain e. Because T is connected, it must
contain a path P between v and w . P must contain some edge f
that “crosses the cut.”

The subgraph T ′ = T − f ∪ e has lower weight than T . T ′ is
acyclic because the only cycle in T ′∪ f is eliminated by removing f .

V

S V-S

v w
e

f

g



Correctness

Theorem (Prim’s correctness). At termination, Prim’s
algorithm returns a subgraph T that is a minimum spanning tree.

Proof. At any point, T = (VT ,ET ) is a subgraph that is a tree.

T grows by 1 vertex and 1 edge after each iteration, so it will stop
after |VG | − 1 iterations and at that point T will be a spanning
tree.

The pair (VT ,VG − VT ) is a cut of G .

By the cut property, the MST contains the lowest cost edge
crossing this cut.

This is exactly the edge Prim’s adds to T . So, Prim’s only adds
edges that are in the MST.


