02-713 Homework #7: Dynamic Programming II
Due: Mar. 24 by 9:30am

You may discuss these problems with your current classmates, but you must write up your solutions
independently, without using common notes or worksheets. You must indicate at the top of your
homework who you worked with. Your write up should be clear and concise. You are trying to
convince a skeptical reader that your answers are correct. Your homework should be submitted
via Autolab (https://autolab.cs.cmu.edu/02713-s14/) as a typeset PDF. A LaTeX tutorial
and template are available on the class website if you choose to use that system to typeset. For
problems asking for an algorithm: describe the algorithm, an argument why it is correct, and an
estimation of how fast it will run. Use O notation for running times.

1. Suppose we extend the definition of “edit distance” to include the operation swap that allows
two adjacent characters to be swapped. We require that each character is involved in at most
one swap so that we can represent this new edit distance via an alignment such as:

tehs-icktoxin

IN/X T TIXT
thequickfox--

where the characters \/ indicate that the h and e where swapped. We are given as input
two strings a and b, and parameters gap, swap, and cost(z,y) that, respectively, give the cost
of inserting a ‘-’, swapping two characters, and aligning two characters. Give a dynamic
programming algorithm to compute the lowest cost alignment in this case.

2. Bitonic traveling salesman. You are given a set of cities py,...,p, in the plane. We assume
the distance between two cities is the standard Euclidean distance, and that no two cities
have exactly the same x or y coordinate. A bitonic traveling salesman tour is a tour that
starts at the most western city, and then proceeds strictly to the east until the most eastern
city, at which point it turns around and heads strictly to the west until it returns back to the
starting city.

Give an O(n?)-time algorithm for finding the optimum bitonic tour.

3. A context-free grammar over alphabet ¥ is given by a set of pairs called productions of one
of the following two forms:

A — BC
A—=a

where capital letters such as A, B and C represent non-terminals and lowercase letters repre-
sent symbols from your alphabet . There is always at least one production with the special
start symbol S on its lefthand side (before the —). More formally, a grammar G is a set of
4 things (N, X, P, S), where N is the set of non-terminals, 3 is the alphabet, P is the set of
productions, and S is the starting non-terminal. This is called the Chomsky normal form of a
grammar. The productions define replacement rules where the lefthand side can be replaced



by the righthand side. Using these rules, context free grammars can generate sets of strings.
For example, suppose we have the grammar:

S —= QA
S — RB
S —a
S—Db
Q— AS
R — BS
A—a
B—b

Then this grammar can generate the string ababababa via the productions:

S — QA — ASA — aSa— aRBa — aBSBa — abSba — abQAba — abASAba —
abaSaba — abaRBaba — abaBSBaba — ababSbaba — ababababa

In fact, the grammar above can generate exactly the set of all odd-length palindromes on the
alphabet {a,b}. The set of strings that a grammar G can generate is called its language and
denoted by L(G).

Given a grammar G over alphabet ¥ with a set of productions P, give an O(n?) algorithm
to determine whether a given string cico ... ¢, is in L(G).



