
02-713 Homework #6: Dynamic Programming
Due: Mar. 7 by 11:59pm (note the unusual time)

You may discuss these problems with your current classmates, but you must write up your solutions in-
dependently, without using common notes or worksheets. You must indicate at the top of your homework
who you worked with. Your write up should be clear and concise. You are trying to convince a skep-
tical reader that your answers are correct. Your homework should be submitted via Autolab (https:
//autolab.cs.cmu.edu/02713-s14/) as a typeset PDF. A LaTeX tutorial and template are available on
the class website if you choose to use that system to typeset. For problems asking for an algorithm: describe
the algorithm, an argument why it is correct, and an estimation of how fast it will run. Use O notation for
running times.

1. You’re driving from Los Angeles, CA to Pittsburgh, PA. There are gas stations along the way at
distance x1, x2, . . . , xn from Los Angeles. Because of different wait times and pump speeds, filling up
at gas station xi takes ci minutes (the gas costs the same everywhere, so we ignore its cost). Your car
can hold enough gas to go 100 miles, and you start with a full tank of gas. If you decide to stop at a
gas station, you have to fill your entire tank up. Give a dynamic programming algorithm that finds
where you should stop to spend the minimum amount of time at gas stations during your trip.

LA PGHx1 x2 x3 x4 x5 x6 x7

c1 c2 c3 c4 c5 c6 c7

Hint: you know you’ll have to stop at a gas station within 100 miles of Pittsburgh, for example.

2. Let’s change the problem above slightly: suppose if you stop, you don’t need to fill up the entire tank.
Instead, if you put in m miles worth of gas, it will take you ci + mgi minutes at station xi. For
simplicity, assume that you start out with an empty tank but you start at a station x1 in LA, and that
xn is your destination in Pittsburgh. Give a dynamic programming algorithm to solve this problem.

3. In some languages, such as Chinese, words are sometimes not separated by spaces. For another
example, in German, numbers are sometimes written together “Dreihundertfünfzigfünftousand” and
compound words are often created: “Glückszahl” means “lucky (Glück) number (zahl).” We would
like to decompose such strings into the component words that were used to form them. Assume you
have a function word(s) that takes a string s and returns a score indicating how likely it is that s is a
indivisible word. For example, in German, “zahl” would receive a high score, but “kszahl” would not.

Give a dynamic programming algorithm to break a given string a = a1a2 . . . , an into words w1, . . . , wk

to maximize
∑

i word(wi). (Note that you are not given k as input.)

1


