Trees

CMSC 420: Lecture 5

Hierarchies

Many ways to represent tree-like information:

Definition - Rooted Tree

- Λ is a tree
- If $T_{1}, T_{2}, \ldots, T_{k}$ are trees with roots $r_{1}, r_{2}, \ldots, r_{k}$ and r is a node \notin any T_{i}, then the structure that consists of the T_{i}, node r, and edges $\left(r, r_{i}\right)$ is also a tree.

Terminology

- r is the parent of its children $r_{1}, r_{2}, \ldots, r_{k}$.
- $r_{1}, r_{2}, \ldots, r_{k}$ are siblings.
- $\underline{r o o t}=$ distinguished node, usually drawn at top. Has no parent.
- If all children of a node are Λ, the node is a leaf. Otherwise, the node is a internal node.
- A path in the tree is a sequence of nodes $u_{1}, u_{2}, \ldots, u_{m}$ such that each of the edges (u, u_{i+1}) exists.

- A node u is an ancestor of v if there is a path from u to v.
- A node u is a descendant of v if there is a path from v to u.

Height \& Depth

- The height of node u is the length of the longest path from u to a leaf.
- The depth of node u is the length of the path from the root to u.
- Height of the tree $=$ maximum depth of its nodes.
- A level is the set of all nodes at the same depth.

Subtrees, forests, and graphs

- A subtree rooted at u is the tree formed from u and all its descendants.
- A forest is a (possibly empty) set of trees.

The set of subtrees rooted at the children of r form a forest.

- As we've defined them, trees are not a special case of graphs:
- Our trees are oriented (there is a root which implicitly defines directions on the edges).
- A free tree is a connected graph with no cycles.

Alternative Definition - Rooted Tree

- A tree is a finite set T such that:
- one element $r \in T$ is designated the root.
- the remaining nodes are partitioned into $k \geq 0$ disjoint sets $T_{1}, T_{2}, \ldots, T_{k}$, each of which is a tree.

This definition emphasizes the partitioning aspect of trees:

As we move down the we're dividing the set of elements into more and more parts.

Each part has a distinguished element (that can represent it).

Basic Properties

- Every node except the root has exactly one parent.
- A tree with n nodes has $n-1$ edges (every node except the root has an edge to its parent).
- There is exactly one path from the root to each node. (Suppose there were 2 paths, then some node along the 2 paths would have 2 parents.)

Binary Trees - Definition

- An ordered tree is a tree for which the order of the children of each node is considered important.

- A binary tree is an ordered tree such that each node has ≤ 2 children.
- Call these two children the left and right children.

Example Binary Trees

The edge cases:

Only left
child

Only right child

Λ

Empty
Binary
Tree

Small binary tree:

Extended Binary Trees

Binary tree

Replace each missing child with external node

Do you need a special flag to tell which nodes are external?

Every internal node has exactly 2 children.
Every leaf (external node) has exactly 0 children.

Each external node corresponds to one Λ in the original tree let's us distinguish different instances of Λ.

\# of External Nodes in Extended Binary Trees

Thm. An extended binary tree with n internal nodes has $\mathrm{n}+1$ external nodes.

Proof. By induction on n.
$\mathrm{X}(\mathrm{n}):=$ number of external nodes in binary tree with n internal nodes.

Base case: $X(0)=1=n+1$.
Induction step: Suppose theorem is true for all $i<n$. Because $n \geq 1$, we have:

Extended binary tree

Alternative Proof

Thm. An extended binary tree with n internal nodes has $\mathrm{n}+1$ external nodes.

Proof. Every node has 2 children pointers, for a total of $2 n$ pointers.
Every node except the root has a parent, for a total of $n-1$ nodes with parents.
These n-1 parented nodes are all children, and each takes up 1 child pointer.

$$
\begin{gathered}
(\text { pointers })-(\text { used child pointers })=(\text { unused child pointers }) \\
2 n-(n-1)=n+1
\end{gathered}
$$

Thus, there are $n+1$ null pointers.
Every null pointer corresponds to one external node by construction.

Full and Complete Binary Trees

- If every node has either 0 or 2 children, a binary tree is called full.
- If the lowest d-1 levels of a binary tree of height d are filled and level d is partially filled from left to right, the tree is called complete.
- If all d levels of a height- d binary tree are filled, the tree is called perfect.

full

complete

perfect

\# Nodes in a Perfect Tree of Height h

Thm. A perfect tree of height h has $2^{\mathrm{h}+1}-1$ nodes.
Proof. By induction on h.
Let $N(h)$ be number of nodes in a perfect tree of height h.
Base case: when $h=0$, tree is a single node. $N(0)=1=2^{0+1}-1$.
Induction step: Assume $\mathrm{N}(i)=2^{i+1}-1$ for $0 \leq i<h$.
A perfect binary tree of height h consists of 2 perfect binary trees of height $h-1$ plus the root:

$$
\begin{aligned}
\mathrm{N}(h) & =2 \times \mathrm{N}(h-1)+1 \\
& =2 \times\left(2^{h-1+1}-1\right)+1 \\
& =2 \times 2^{h}-2+1 \\
& =2^{h+1}-1
\end{aligned}
$$

2^{h} are leaves

Full Binary Tree Theorem

Thm. In a non-empty, full binary tree, the number of internal nodes is always 1 less than the number of leaves.

Proof. By induction on n.
$\mathrm{L}(n):=$ number of leaves in a non-empty, full tree of n internal nodes.
Base case: $\mathrm{L}(0)=1=n+1$.
Induction step: Assume $\mathrm{L}(i)=i+1$ for $i<\mathrm{n}$.

Given T with n internal nodes, remove two sibling leaves.
T^{\prime} has $n-1$ internal nodes, and by induction hypothesis, $\mathrm{L}(n-1)=n$ leaves.
Replace removed leaves to return to tree T.
Turns a leaf into an internal node, adds two new leaves.

Thus: $\mathrm{L}(n)=n+2-1=n+1$.

Array Implementation for Complete Binary Trees

A	B	C	D	E	F	G	H	I	J	K	L	M		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

left $(i): 2 i$ if $2 i \leq n$ otherwise 0 right(i): $(2 i+1)$ if $2 i+1 \leq n$ otherwise 0 parent(i): $\lfloor i / 2\rfloor$ if $\mathrm{i} \geq 2$ otherwise 0

Binary Tree ADT

A tree can be represented as a linked collection of its nodes:

```
template <class ValType>
class BinaryTree {
    public:
    virtual ValType & value() = 0;
    virtual void set_value(const ValType &) = 0;
    virtual BinaryTree * left() const = 0;
    virtual void set_left(BinNode *) = 0;
    virtual BinaryTree * right() const = 0;
    virtual void set_right(BinNode *) = 0;
    virtual bool is_leaf() = 0;
};
```

virtual \Rightarrow this function can be overridden by subclassing.
$"=0 " \Rightarrow$ a pure function with no implementation. Must subclass to get implementation.

Linked Binary Tree Implementation

```
template <class ValType>
class BinNode : public BinaryTree<ValType>
{
    public:
    BinNode(ValType * v);
    ~BinNode();
    ValType & value();
    void set_value(const ValType&);
    BinNode * left() const;
```



```
    void set_left(BinNode *);
    BinNode * right() const;
    void set_right(BinNode *);
    bool is_leaf();
    private:
    ValType * _data;
    BinNode<ValType> * _left_child;
    BinNode<ValType> * _right_child;
};
```


Binary Tree Representation

List Representation of General Trees

Representing General Trees with Binary Trees

General K-ary Tree

Representation as
Binary Tree

How would you implement an ordered general tree using a binary tree?

