Kernighan-Lin, Graph Distance Metrics

858L

Kernighan-Lin Graph Partitioning

Kernighan-Lin Graph Partitioning

Problem. Divide a weighted graph with 2n nodes into two parts, each of size n, to minimize the sum of the weights crossing the two parts.

You could just use minimum cut if you didn't have the restriction to each part being of size n.

Idea (Kernighan-Lin, 1970): start with some partition that satisfies the size requirement and repeatedly swap nodes between the partitions.

Kernighan-Lin More Detail

Divide the network into 2 parts A, B of equal size arbitrarily.

Repeat until no more vertices are left:

Select $a_i \in A$, $b_i \in B$, such that the reduction in cost is as large as possible and neither a_i , b_i has been chosen before

Swap a_i and b_i

Let C_i be the cost of the partition after swapping a_i, b_i

Return (A',B') corresponding to the smallest C_i observed.

While cost continues to be reduced Call using the returned partition as the new starting point

Improving this Solution

Three KL Extensions

(1) Divide into partitions of unequal (but known) sizes: Start with a partition that satisfies the sizes you want. Stop when all the nodes on the smaller side have been swapped.

(2) Divide into 2 partitions such that one has $\ge n_1$ nodes and the other has $\le n_2$ (where $n_1 + n_2 = n$).

Left as an exercise or exam problem, or whatnot.

(3) What if you have node weights w_u and want $\sum w_u$ for $u \in A$ to equal some n_1 ?

If w_u are integers, replace u with a clique of w_u nodes, connected by very high weight edges.

KL Into ≥ 3 partitions

Start with a partition that satisfies your *k* size requirements $n_1, n_2, ..., n_k$

Apply the 2-part procedure between every pair of parts (n choose 2 times)

Repeat the above step until no improvement is obtained.

Getting a starting partition

Method 1. Suppose you want k partitions. Let $k = k_1 k_2 k_3 \cdot \ldots \cdot k_m$

Divide the graph into *k*₁ parts (starting, say from an arbitrary split) Divide each of those *k*₁ parts into *k*₂ parts

and so on.

If the *k_i* are small (say *k* is a power of 2) then as long as we're OK at getting a 2-split, we get a good *k*-split.

• 0 • 0 • 0

Method 2. Suppose you want k partitions in a graph of kn nodes. Use the 2-part algorithm to find a (n, k(n-1)) split. Let the n-sized set be one part, repeat.

Clustering Using Graph Distances

Distance Notions on Graphs

• Apply standard clustering algorithms, need to define d(u,v) as ``distance'' between nodes u and v.

Czekanowski-Dice
$$(u, v) := \frac{|N(u) \Delta N(v)|}{|N(u) \cup N(v)| + |N(u) \cap N(v)|}$$

when u and v share
no neighbors, they
get distance 1.0
when they share all
their neighbors,
they get distance 0

Shortest Path Metric

- Let G be any undirected, unweighted graph
- Define $d_G(u,v)$ be the length of the shortest path between nodes u and v.
- $d_G(u,v)$ is a metric:
 - $d_G(u, v) \ge 0$
 - $d_G(u, v) = 0$ iff u = v
 - symmetric: $d_G(u, v) = d_G(v, u)$
 - triangle inequality: $d_G(u, v) + d_G(v, w) \le d_G(u, w)$
- Using the shortest path as a distance makes sense.

Shortest path metric problems

- Define d(u,v) as the shortest path distance between u and v
 - Use standard clustering algorithms
- **Problem**: there are many distance ties.
- **Solution**: Arnau et al, 2005:
 - 1. Compute distance matrix D
 - 2. Repeat for N trials:
 - 2.1. Randomly sample D to get a subset S of proteins
 - 2.2. Agglomeratively cluster S, stopping according to a distance threshold
 - 3. real_d(i,j) := fraction of trials for which i and j were
 placed into different clusters.
 - 4. Cluster using real_d

Comparing Shortest Path Metrics

- Rives & Galitski, 2003 propose:
 - Similarity between proteins i, j:

 $s_{ij} = 1 / \text{shortest_path_dist}(i,j)^2$

- Represent each protein by the vector <s_i>: it's "shortest path profile"
- Use hierarchical agglomerative clustering with the distance between i and j defined as:

```
d(i,j) = correlation(\langle s_i \rangle, \langle s_j \rangle)
```

• **Idea**: similar proteins will have similar relationships to the rest of the network.

(Rives & Galitsky, 2003)

Girvan-Newman Algorithm

- Edge Betweenness:
 - EB(u,v) := number of shortest paths between two nodes that run through edge {u,v}
 - If there are n shortest paths between a pair of nodes, each is counted with weight 1/n.
- Girvan-Newman (2002):
 - Repeat until there are no more edges:
 - Remove the edge with the highest betweenness
 - Recalculate the betweenness
 - Clusters are the connected components at some point during the algorithm.

Zachary's karate club

Santa Fe Collaboration Network

Chesapeake Bay Food Web

Girvan-Newman, 2002

Edge Clustering Coefficient

• <u>Edge Clustering Coefficient</u> = fraction of possible triangles in which an edge is involved:

Summary

- Module detection, aka community detection, aka graph clustering, aka graph partitioning is a useful technique for predicting protein function
 - Also useful in other network analysis contexts, such as social networks
- Can define a distance on the network and use a standard clustering technique
 - Shortest path (metric), Shortest path profiles, or % times nodes appear in separate clusters
- Can use edge centrality to define communities
- **Modularity**: a widely used measure of community quality
- Two algorithms for maximizing it: greedy and spectral partitioning-like.
- Kernighan-Lin was a very influential early heuristic, which is still popping up today.