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Kernighan-Lin Graph Partitioning

Problem. Divide a weighted graph with 2n nodes into two 
parts, each of size n, to minimize the sum of the weights 
crossing the two parts.

You could just use minimum cut if you didn’t 
have the restriction to each part being of size n.

Idea (Kernighan-Lin, 1970): start with some partition that 
satisfies the size requirement and repeatedly swap nodes 
between the partitions.



Kernighan-Lin More Detail

Repeat until no more vertices are left:

Divide the network into 2 parts A, B of equal size arbitrarily. 

Select ai ∈ A, bi ∈ B, such that the reduction in cost is 
as large as possible and neither ai,  bi has been chosen 
before

Let Ci be the cost of the partition after swapping ai,bi

Swap ai and bi

Return (A’,B’) corresponding to the smallest Ci observed.

While cost continues to be reduced
Call   using the returned partition as the new starting point



Improving this Solution

A B

Find the optimal 
partitions in A 

and B separately

A’ B’ B’’A’’

Run KL 
procedure on all 3 
of these starting 
partitions



Three KL Extensions

(1) Divide into partitions of unequal (but known) sizes:
Start with a partition that satisfies the sizes you want.
Stop when all the nodes on the smaller side have been 
swapped.

(2) Divide into 2 partitions such that one has ≥ n1 nodes and 
the other has ≤ n2 (where n1 + n2 = n).

Left as an exercise or exam problem, or whatnot.

(3) What if you have node weights wu and want ∑wu for u ∈ 
A to equal some n1?

If wu are integers, replace u with a clique of wu nodes, 
connected by very high weight edges.



KL Into ≥ 3 partitions

Start with a partition that 
satisfies your k size 
requirements n1, n2, ..., nk

Apply the 2-part procedure 
between every pair of parts 
(n choose 2 times)

Repeat the above step until 
no improvement is 
obtained.



Getting a starting partition

Method 1. Suppose you want k partitions.
Let k = k1k2k3·…·km

Divide the graph into k1 parts (starting, say from an 
arbitrary split)
Divide each of those k1 parts into k2 parts

⠇

and so on.
If the ki are small (say k is a power of 2) then as long 
as we’re OK at getting a 2-split, we get a good k-split.

Method 2. Suppose you want k partitions in a graph of kn nodes. 
Use the 2-part algorithm to find a (n, k(n-1)) split. Let the n-sized 
set be one part, repeat.



Clustering Using Graph Distances



Distance Notions on Graphs

• Apply standard clustering algorithms, need to 
define d(u,v) as ``distance’’ between nodes u and v.

Czekanowski-Dice(u, v) :=
|N(u) ∆ N(v)|

|N(u) ∪N(v)| + |N(u) ∩N(v)|

u v

5 2

3

when u and v share 
no neighbors, they 
get distance 1.0

when they share all 
their neighbors, 
they get distance 0



Shortest Path Metric

• Let G be any undirected, unweighted graph

• Define dG(u,v) be the length of the shortest path between 
nodes u and v.

• dG(u,v) is a metric:

- dG(u, v) ≥ 0

- dG(u, v) = 0 iff u = v

- symmetric: dG(u, v) = dG(v, u)

- triangle inequality: dG(u, v) + dG(v, w) ≤ dG(u, w)

• Using the shortest path as a distance makes sense. 



Shortest path metric problems

• Define d(u,v) as the shortest path distance between u and v

- Use standard clustering algorithms

• Problem: there are many distance ties.

• Solution: Arnau et al, 2005:
1. Compute distance matrix D

2. Repeat for N trials:

2.1. Randomly sample D to get a subset S of proteins

2.2. Agglomeratively cluster S, stopping according to a 
distance threshold

3. real_d(i,j) := fraction of trials for which i and j were 
placed into different clusters.

4. Cluster using real_d



Comparing Shortest Path Metrics

• Rives & Galitski, 2003 propose:

- Similarity between proteins i, j:

- Represent each protein by the vector <si>: it’s “shortest path 
profile”

- Use hierarchical agglomerative clustering with the distance 
between i and j defined as:

• Idea: similar proteins will have similar relationships to the 
rest of the network.

sij = 1/shortest_path_dist(i,j)2

d(i,j) = correlation(<si>, <sj>)
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Proteinscorr(si, sj)

Clustering 
permutes 

rows/columns

P,R,H,M 
represent 
MIPS-
annotated 
pathways

(Rives & Galitsky, 2003)

64 signaling 
proteins



Girvan-Newman Algorithm

• Edge Betweenness:

- EB(u,v) := number of shortest paths between two nodes that 
run through edge {u,v}

- If there are n shortest paths between a pair of nodes, each is 
counted with weight 1/n.

• Girvan-Newman (2002):

- Repeat until there are no more edges:
• Remove the edge with the highest betweenness
• Recalculate the betweenness

- Clusters are the connected components at some point during 
the algorithm.



Zachary’s karate club

Girvan-Newman, 2002



Santa Fe Collaboration Network

Girvan-Newman, 2002



Chesapeake Bay Food Web

Girvan-Newman, 2002



Edge Clustering Coefficient

• Edge Clustering Coefficient = fraction of possible 
triangles in which an edge is involved:

u v
at most N(u)-1 

possible triangles
at most N(v)-1 

possible triangles

number of possible 
shared triangles: 

min{N(u)-1, N(v)-1}

ECC(u, v) :=
#tri(u, v) + 1

min{N(u)− 1, N(v)− 1}



Summary
• Module detection, aka community detection, aka graph 

clustering, aka graph partitioning is a useful technique for 
predicting protein function

- Also useful in other network analysis contexts, such as social 
networks

• Can define a distance on the network and use a standard 
clustering technique

- Shortest path (metric), Shortest path profiles, or % times nodes appear 
in separate clusters

• Can use edge centrality to define communities
• Modularity: a widely used measure of community quality

• Two algorithms for maximizing it: greedy and spectral 
partitioning-like.

• Kernighan-Lin was a very influential early heuristic, which is 
still popping up today.


