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Kernighan-Lin Graph Partitioning



Kernighan-Lin Graph Partitioning

Problem. Divide a weighted graph with 2n nodes into two
parts, each of size n, to minimize the sum of the weights
crossing the two parts.

You could just use minimum cut if you didn’t
have the restriction to each part being of size n.

Idea (Kernighan-Lin, 1970): start with some partition that
satisfies the size requirement and repeatedly swap nodes
between the partitions.



Kernighan-Lin More Detail

Divide the network into 2 parts A, B of equal size arbitrarily.

Repeat until no more vertices are left:

Select a4; € A, b; € B, such that the reduction in cost is
as large as possible and neither a;, b;has been chosen
before

Swap 4; and b;

Let C; be the cost of the partition after swapping a;,b;

Return (A’,B’) corresponding to the smallest C; observed.

While cost continues to be reduced
Call [using the returned partition as the new starting point



Improving this Solution
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Three KL Extensions

(1) Divide into partitions of unequal (but known) sizes:
Start with a partition that satisfies the sizes you want.
Stop when all the nodes on the smaller side have been
swapped.

(2) Divide into 2 partitions such that one has > n; nodes and
the other has < n> (where n1 + n» = n).
Left as an exercise or exam problem, or whatnot.

(3) What if you have node weights w, and want Y w, for u &
A to equal some n;?
If w, are integers, replace u with a clique of w, nodes,

connected by very high weight edges.



KL Into = 3 partitions

Start with a partition that
satisfies your k size
requirements ni, 1y, ..., Nk

Apply the 2-part procedure
between every pair of parts
(n choose 2 times)

Repeat the above step until
no improvement 1s
obtained.
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Getting a starting partition

Method 1. Suppose you want k partitions.
Let k = kikoks - ... - ki,

Divide the graph into k; parts (starting, say from an
arbitrary split)
Divide each of those k; parts into k; parts

and so on.
If the k; are small (say k is a power of 2) then as long
as we're OK at getting a 2-split, we get a good k-split.

Method 2. Suppose you want k partitions in a graph of kn nodes.
Use the 2-part algorithm to find a (n, k(n-1)) split. Let the n-sized
set be one part, repeat.



Clustering Using Graph Distances



Distance Notions on Graphs

e Apply standard clustering algorithms, need to
define d(u,v) as ““distance” between nodes u and v.

3
[N (u) AN ()

Czekanowski-Dice(u, v) := IN(u)UN(@)|+ |N(u) NN

when u and v share
no neighbors, they
get distance 1.0

when they share all
their neighbors,
they get distance 0




Shortest Path Metric

e [et G be any undirected, unweighted graph

e Define dg(u,v) be the length of the shortest path between
nodes u and v.

e dg(u,v)is a metric:
- dg(u,v)=0
- da(u, v)=0iffu=v
- symmetric: dg(u, v) = dg(v, u)

- triangle inequality: dg(u, v) + dg(v, w) < dc(u, w)

e Using the shortest path as a distance makes sense.



Shortest path metric problems

e Define d(u,v) as the shortest path distance between u and v

- Use standard clustering algorithms

e Problem: there are many distance ties.

® Solution: Arnau et al, 2005:

1. Compute distance matrix D
2. Repeat for N trials:
2.1. Randomly sample D to get a subset S of proteins

2.2. Agglomeratively cluster S, stopping according to a
distance threshold

3. real d(i,]J) := fraction of trials for which 1 and j were
placed into different clusters.

4. Cluster using real d



Comparing Shortest Path Metrics

® Rives & Galitski, 2003 propose:
- Similarity between proteins i, j:
sij = 1/shortest_path_dist(i,/)?

- Represent each protein by the vector <si>: it’s “shortest path
profile”

- Use hierarchical agglomerative clustering with the distance
between i and j defined as:

d(i,j) = correlation(<s;>, <s;i>)

e Idea: similar proteins will have similar relationships to the
rest of the network.



corr(si, Sj) Proteins
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Girvan-Newman Algorithm

e Edge Betweenness:

- EB(u,v) := number of shortest paths between two nodes that
run through edge {u,v}

- If there are n shortest paths between a pair of nodes, each is
counted with weight 1/n.

e Girvan-Newman (2002):

- Repeat until there are no more edges:
e Remove the edge with the highest betweenness

e Recalculate the betweenness

— (Clusters are the connected components at some point during
the algorithm.
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Chesapeake Bay Food Web

Heterotrophic microflagellates
Free bacteria in water column/DOC*

Fish larvae

American shad

) Striped bassy
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Blue crab
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Ctenophores
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Zooplankton

Bacteria attached to suspended poct
Other suspension feeders
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Bay anchovy
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Sea catfish
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Spot

Nereis (Rag worm)

Atlantic croaker
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Benthic diatoms
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Edge Clustering Coefficient

e FEdge Clustering Coetficient = fraction of possible
triangles in which an edge is involved:

A

at most N(u)-1 - at most N(v)-1
possible triangles possible triangles

number of possible
shared triangles:

min{N(u)-1, N(v)-1}

H#Htri(u,v) + 1

ECC(u,v) := min{N(u) — 1, N(v) — 1}




Summary

e Module detection, aka community detection, aka graph
clustering, aka graph partitioning is a useful technique for
predicting protein function

- Also useful in other network analysis contexts, such as social
networks

e C(Can define a distance on the network and use a standard
clustering technique

-  Shortest path (metric), Shortest path profiles, or % times nodes appear
in separate clusters

e (Can use edge centrality to define communities
® Modularity: a widely used measure of community quality

e Two algorithms for maximizing it: greedy and spectral
partitioning-like.

e Kernighan-Lin was a very influential early heuristic, which is

still popping up today.



