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Dynamic Programming

e Our 3rd major algorithm design technique

e Similar to divide & conquer

e Build up the answer from smaller subproblems
e More general than “simple” divide & conquer
e Also more powerfulcy

e Generally applies to algorithms where the brute force
algorithm would be exponential.



Recall the interval scheduling problem we've seen several times:
choose as many non-overlapping intervals as possible.

What if each interval had a value?

Problem (Weighted Interval Scheduling)

Given a set of n intervals (s;, f;), each with a value v;, choose a
subset S of non-overlapping intervals with 3¢ v; maximized.
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Note that our simple greedy algorithm for the unweighted case
doesn't work.

This is becasue some interval can be made very important with a
high weight.



Greedy Algorithm For Unweighted Case:
@ Sort by increasing finishing time
® Repeat until no intervals left:

@ Choose next interval

® Remove all intervals it overlaps with



Suppose for now we're not interested in the actual set of intervals.

Only interested in the value of a solution
(aka it's cost, score, objective value).

This is typical of DP algorithms:

e You want to find a solution that optimizes some value.

e You first focus on just computing what that optimal value
would be. E.g. what's the highest value of a set of compatible
intervals?

 You then post-process your answer (and some tables you've
created along the way) to get the actual solution.



Another way to look at Weighted Interval Scheduling:

Assume that the intervals are sorted by finishing time and
represent each interval by its value.

Goal is to choose a subset of the values of maximum sum, so that
none of the chosen (/) intervals overlap:

Vi V2 V3 V4 e Vool

X v X v X



Definition
p(j) = the largest i < j such that interval i doesn't overlap with j.
1 F——pm=0
2 F—— r@=0
3 F—— p@ =1
4 I {p@)=0
5 F—— p(5)=3
6 F——— p6)=3

p(j) is the interval farthest to the right that is compatible with j.



Let OPT be an optimal solution.

Let n be the last interval.

Does OPT
contain
interval n?

OPT = n + Optimal OPT = optimal solution
solution on {1,...,p(n)} on{t, ..., n-1}




Definition
OPT(j) = the optimal solution considering only intervals 1,..., J

vj + OPT(p(j)) Jj in OPT solution
OPT(j) =max ¢ OPT(j — 1) J not in solution
0 j=0

This kind of recurrence relation is very typical of dynamic
programming.



Implementing the recurrence directly:

WeightedIntSched(j):
If j = O:
Return O
Else:
Return max(
v[j] + WeightedIntSched(p[jl),
WeightedIntSched (j-1)

Unfortunately, this is exponential time!



Consider this set of intervals:
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Consider this set of intervals:
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Problem: Repeatedly solving the same subproblem.
Solution: Save the answer for each subproblem as you compute it.

When you compute OPT (j), save the value in a global array M.



MemoizedIntSched(j):
If j = 0: Return O
Else If M[j] is not empty:
Return M[j]
Else
M[j] = max(
v[j] + MemoizedIntSched(p[jl),
MemoizedIntSched (j-1)
)
Return M[j]

e Fill in 1 array entry for every two calls to MemoizedIntSched.
= 0O(n)



When we compute M[j], we only need values for M[k] for k < j:

ForwardIntSched(j):
M[0] =0
for j =1, ..., n:

M[j] = max(v[j] + M[p(j)]1, M[j-11)

Main Idea of Dynamic Programming: solve the subproblems in
an order that makes sure when you need an answer, it's already
been computed.
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@ Optimal value of the original problem can be computed easily
from some subproblems.

® There are only a polynomial # of subproblems.

© There is a “natural” ordering of the subproblems from
smallest to largest such that you can obtain the solution for a
subproblem by only looking at smaller subproblems.



@ Optimal value of the original problem can be computed easily
from some subproblems. OPT(j) = max of two subproblems

@® There are only a polynomial # of subproblems. {1,..., } for
j=1...,n

© There is a “natural” ordering of the subproblems from
smallest to largest such that you can obtain the solution for a
subproblem by only looking at smaller subproblems. {1,2, 3}
is smaller than {1,2,3,4}



We now have an algorithm to find the value of OPT. How do we
get the actual choices of intervals?

Interval j is in the optimal solution for the subproblem on intervals
{1,...,j} only if

vi + OPT(p(j)) > OPT(j — 1)

So, interval n is in the optimal solution only if

vIn] + Mlp[al] > M[n - 1]

After deciding if n is in the solution, we can look at the relevant
subproblem: either {1,...,p(n)} or {1,...,n—1}.
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BacktrackForSolution(M, j):
If j > 0:

If v[j] + M[p[j1] > M[j-1]1: // find the winner
Output j // j is in the soln
BacktrackForSolution(M, p[jl)

Else:

BacktrackForSolution(M, j-1)

EndIf

EndIf



Time to sort by finishing time: O(nlog n)

Time to compute p(n): O(n?)

Time to fill in the M array: O(n)

Time to backtrack to find solution: O(n)
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