Slides By: Carl Kingsford

.aé\“‘ T&qc\
AR
Department of Computer Science
University of Maryland, College Park

Based on Sections 6.1&6.2 of Algorithm Design by Kleinberg & Tardos.

Dynamic Programming

e Our 3rd major algorithm design technique

e Similar to divide & conquer

e Build up the answer from smaller subproblems
e More general than “simple” divide & conquer
e Also more powerfulcy

e Generally applies to algorithms where the brute force
algorithm would be exponential.

Recall the interval scheduling problem we've seen several times:
choose as many non-overlapping intervals as possible.

What if each interval had a value?

Problem (Weighted Interval Scheduling)

Given a set of n intervals (s;, f;), each with a value v;, choose a
subset S of non-overlapping intervals with 3¢ v; maximized.

s1 f1
1 | vi=1 I
2 F——vw2=3 ——
3 b——vVv3=1 ——+

\

Note that our simple greedy algorithm for the unweighted case
doesn't work.

This is becasue some interval can be made very important with a
high weight.

Greedy Algorithm For Unweighted Case:
@ Sort by increasing finishing time
® Repeat until no intervals left:

@ Choose next interval

® Remove all intervals it overlaps with

Suppose for now we're not interested in the actual set of intervals.

Only interested in the value of a solution
(aka it's cost, score, objective value).

This is typical of DP algorithms:

e You want to find a solution that optimizes some value.

e You first focus on just computing what that optimal value
would be. E.g. what's the highest value of a set of compatible
intervals?

 You then post-process your answer (and some tables you've
created along the way) to get the actual solution.

Another way to look at Weighted Interval Scheduling:

Assume that the intervals are sorted by finishing time and
represent each interval by its value.

Goal is to choose a subset of the values of maximum sum, so that
none of the chosen (/) intervals overlap:

Vi V2 V3 V4 e Vool

X v X v X

Definition
p(j) = the largest i < j such that interval i doesn't overlap with j.
1 F——pm=0
2 F—— r@=0
3 F—— p@ =1
4 I {p@)=0
5 F—— p(5)=3
6 F——— p6)=3

p(j) is the interval farthest to the right that is compatible with j.

Let OPT be an optimal solution.

Let n be the last interval.

Does OPT
contain
interval n?

OPT = n + Optimal OPT = optimal solution
solution on {1,...,p(n)} on{t, ..., n-1}

Definition
OPT(j) = the optimal solution considering only intervals 1,..., J

vj + OPT(p(j)) Jj in OPT solution
OPT(j) =max ¢ OPT(j — 1) J not in solution
0 j=0

This kind of recurrence relation is very typical of dynamic
programming.

Implementing the recurrence directly:

WeightedIntSched(j):
If j = O:
Return O
Else:
Return max(
v[j] + WeightedIntSched(p[jl),
WeightedIntSched (j-1)

Unfortunately, this is exponential time!

Consider this set of intervals:

—
— p(i)=j-2forallj=3
A
—
A

—
° e What's the shortest path
from the root to a leaf?
0 o Total # nodes is > 2"/2

e Each node does constant

@ work = Q(2")

Consider this set of intervals:

—
— p()=j-2forallj=3
—
—
—
—
° e What's the shortest path

from the root to a leaf?
n/2

0 e Total # nodes is > 2"/2

e Each node does constant
@ work = Q(2")

Problem: Repeatedly solving the same subproblem.
Solution: Save the answer for each subproblem as you compute it.

When you compute OPT (j), save the value in a global array M.

MemoizedIntSched(j):
If j = 0: Return O
Else If M[j] is not empty:
Return M[j]
Else
M[j] = max(
v[j] + MemoizedIntSched(p[jl),
MemoizedIntSched (j-1)
)
Return M[j]

e Fill in 1 array entry for every two calls to MemoizedIntSched.
= 0O(n)

When we compute M[j], we only need values for M[k] for k < j:

ForwardIntSched(j):
M[0] =0
for j =1, ..., n:

M[j] = max(v[j] + M[p(j)]1, M[j-11)

Main Idea of Dynamic Programming: solve the subproblems in
an order that makes sure when you need an answer, it's already
been computed.

mo—1—-—-
20t 2 i
5+ 3 —

v, + MIp()
M[-1]

101 —H

5+ 3 —
201 4
151 5

0 10

1 2 3 4 5

v+ MOl 10
M1l 0

10+—1——H

20t 2 i
53—
201 4
15+ 5
0 10 20
1 2 3 4 5

i+ MpOI 10 20
M1l 0 10

101 —-
20t 2

53—
201 4

0 10 | 20 20

1 2 3 4 5

vj + Mip()] 10 20 15
M[-1] 0 10 20

101 —-
20t 2

53—
201 4

0 10 | 20 20 30

1 2 3 4 5

vj + MIp()] 10 20 15 30
M[-1] 0 10 20 20

10 =1 ——r
201 2

5+ 3 —
20+ 4
151 5

0 10 | 20 20 30 | 35

1 2 3 4 5

vj + Mip()] 10 20 15 30 35
M[-1] 0 10 20 20 30

@ Optimal value of the original problem can be computed easily
from some subproblems.

® There are only a polynomial # of subproblems.

© There is a “natural” ordering of the subproblems from
smallest to largest such that you can obtain the solution for a
subproblem by only looking at smaller subproblems.

@ Optimal value of the original problem can be computed easily
from some subproblems. OPT(j) = max of two subproblems

@® There are only a polynomial # of subproblems. {1,..., } for
j=1...,n

© There is a “natural” ordering of the subproblems from
smallest to largest such that you can obtain the solution for a
subproblem by only looking at smaller subproblems. {1,2, 3}
is smaller than {1,2,3,4}

We now have an algorithm to find the value of OPT. How do we
get the actual choices of intervals?

Interval j is in the optimal solution for the subproblem on intervals
{1,...,j} only if

vi + OPT(p(j)) > OPT(j — 1)

So, interval n is in the optimal solution only if

vIn] + Mlp[al] > M[n - 1]

After deciding if n is in the solution, we can look at the relevant
subproblem: either {1,...,p(n)} or {1,...,n—1}.

10 —1—-
201 2

5+ 3 —
20+ 4
151 5

e~

0 10 | 20 20 30 | 35

1 2 3 4 5

vj + Mip()] 10 20 15 30 35
M[-1] 0 10 20 20 30

01—
20t 2

53—
201 4
15+ 5

0 10 | 20 20 30 | 35

1 2 3 4 5

vj + MIp()] 10 20 15 30
M[-1] 0 10 20 20 30

10+—1——H
20t 2

53—
201 4
15+ 5

e

0 10 | 20 20 30 | 35

1 2 3 4 5

y+MpOl 10 20 15 30
M1l 0 10 7207 20 30

10+—1——H
20t 2

53—
201 4
15+ 5

e

0 10 | 20 20 30 | 35

1 2 3 4 5

v+ Mp(] 10 15 30

M1 0 0 207 20 30

BacktrackForSolution(M, j):
If j > 0:

If v[j] + M[p[j1] > M[j-1]1: // find the winner
Output j // j is in the soln
BacktrackForSolution(M, p[jl)

Else:

BacktrackForSolution(M, j-1)

EndIf

EndIf

Time to sort by finishing time: O(nlog n)

Time to compute p(n): O(n?)

Time to fill in the M array: O(n)

Time to backtrack to find solution: O(n)

	Dynamic Programming
	Weighted Interval Scheduling Problem

