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Abstract

There has been a considerable growth in research
and development of service robots in recent years.
For deployment in diverse environment conditions
for a wide range of service tasks, novel features and
algorithms are developed and existing ones undergo
change. However, developing and evolving the robot
software requires making and revising many design
decisions that can affect the quality of performance
of the robots and that are non-trivial to reason about
intuitively because of interactions among them. We
propose to use sensitivity analysis to build models
of the quality of performance to the different design
decisions to ease design and evolution. Moreover,
we envision these models to be used for run-time
adaptation in response to changing goals or environ-
ment conditions. Constructing these models is chal-
lenging due to the exponential size of the decision
space. We build on previous work on performance
influence models of highly-configurable software
systems using a machine-learning-based approach
to construct influence models for robotic software.

1 Introduction
Designing robotic software requires making many design de-
cisions. These software-level design decisions (or options)
can impact the quality of performance of the robots. Decision
making in practice is often guided by a mix of intuition, ex-
perience, and some experimentation. However, such informal
techniques may not be reliable and can lead to suboptimal
quality of performance. This can be a serious issue for service
robots, as they can often work in close proximity to humans
and thus need to operate under stringent requirements on per-
formance such as safety and reliability. For instance, poor
decisions may cause service robots to run out of battery power
while delivering tours to visitors.

Therefore, a (formal) technique to guide good software-
level design choices that can ensure high quality of perfor-
mance in robots is desirable. Such a technique can also speed
up evolution of robotic software by helping revisions and
decision making involved in the integration of new features
and algorithms with the existing platforms, thereby allowing

researchers to devote more time to the creative process of de-
signing new algorithms than on fine-tuning robotic algorithms.

Software-level design choices are not the only factors that
affect the quality of performance of a robot. Changes in the
robot’s environment or in its high-level intents may also sig-
nificantly affect the robot’s quality of performance. However,
negative effects can possibly be mitigated by reconfiguring
the robot’s software at run-time (by reconsidering its design
choices) in response to the external changes. Such adaptation
techniques are important to service robots, as they are increas-
ingly deployed in dynamic environments to perform tasks with
diverse performance requirements.

All these use cases, from initial decision making to evolu-
tion and runtime adaptation require making ‘good’ design deci-
sions at the software level. However, searching for good design
choices (or a good software configuration) is not straightfor-
ward. The brute-force technique of iterating over all possible
configurations to select the best performing one is infeasible in
practice, because the search space of possible configurations is
exponential in the number of design decisions. Multiple design
decisions can interact with each other to determine the quality
of performance, such that their combined effect is different
from the effect of changing them one at a time.

This size of the search space motivates a machine-learning
strategy for sensitivity analysis [Saltelli et al., 2000] of robotic
software, sampling a few configurations from the search space
to predict the quality attributes for the remaining configura-
tions. A function learned in the process describes the sen-
sitivity or influence of different design decisions on quality
attributes, which can be used to guide optimization, evolu-
tion, and runtime adaptation, as well as, for understanding and
debugging the software implementation of robotic algorithms.

We build on previous work on using machine learning
for building influence models of highly-configurable soft-
ware systems [Siegmund et al., 2015]. We demonstrate fea-
sibility by applying this approach to the robotics domain
with a preliminary analysis of decisions in the simulator of
the CoBot robotic platform [Veloso et al., 2015]. Specifi-
cally, we focus our preliminary analysis on a subset of de-
sign choices in the particle-filter based autonomous localiza-
tion component of the CoBot software [Biswas et al., 2011;
Biswas and Veloso, 2013]. We demonstrate the possibility of
building evolving and adaptive robotic software by discussing
tradeoffs in the quality requirements for the localization mod-



ule and the possibility of countering changes in the external
environment by reconfiguring the module; the necessity for
machine learning due to the exponential configuration space
of the module; and a simple linear-regression based influence
model for the localization module.

2 Motivation
A robot’s performance requirements for completing a task are
defined by its high-level goals and intents. The robot’s fidelity
to its high-level goals can be measured using appropriately de-
fined quality attributes. For instance, the high-level goals of an
autonomous robot while performing a navigation task would
be to complete the task as fast as possible while using minimal
processing power (corresponding to longer battery life). The
robot’s quality of performing the navigation task can thus be
measured in terms of the total time to complete the task, its to-
tal power consumption, and the accuracy of its localization dur-
ing the task. Optimizing these quality measures would thus en-
able the robot to more effectively achieve its high-level goals.

The software of a robot implements algorithms that enable
the robot to achieve its goals, such as state estimation and plan-
ning. The quality of the algorithms and their implementation
is thus responsible for determining the quality of performance
of the robot. Designing this software involves many choices,
which can manifest as constants or variables in the source
code and can range in granularity, from selecting between
different types of algorithms for a task to selecting values
for some algorithm’s parameters. Consider the particle filter
based localization algorithm of CoBots [Biswas et al., 2011;
Biswas and Veloso, 2013]: Implementing this algorithm re-
quires making a choice for the number of particle estimates
and the number of gradient descent refinement steps applied to
each of these particles on sensor updates. Different values for
these options can impact the quality of performance of a robot.
For example, in Figure 1a and Figure 1b, we show that differ-
ent decisions for these two parameters can have a significant
effect on the average localization error (the euclidean distance
between the true location and the estimated location) and aver-
age CPU utilization of the robot in a sample navigation task.

An influence model that describes the effects (or sensitivity)
of different decisions on the quality of performance can be
useful in various stages of software development:

• Evolving Functions and Goals. Developing software is
an iterative process. Novel features are developed over
time and added to the software. Evolution is common
in rapidly evolving fields such as service robots. For
example, new sensors might be added, or newly devel-
oped algorithms might be integrated with the existing
software. Implementing new features involves revising
prior decisions at the software level as well as making
new ones. Influence model based optimization can help
to accurately bootstrap new features by using empirical
evidence to make appropriate design decisions.
The high-level goals and intents of the robot may also be
updated as the robot is deployed in new environments.
Changes in the high-level goals can lead to conflicting
optimization problems for different performance require-
ments of the robot. It is also possible that adding new

features or algorithms introduces tradeoffs in the perfor-
mance requirements of the robot, which can cause the
previously selected design choices to not be suitable for
the new performance requirements. For example, Fig-
ure 1a and Figure 1b illustrate how the configuration
space defined by the number of particles and number of
refinements in the localization module exposes a tradeoff
between localization error and CPU utilization: Increas-
ing the number of particles (resp. refinements) reduces
the localization error (up to a threshold), but it comes at
the expense of higher CPU utilization. To handle tradeoffs
between different performance requirements, different
influence models can be learned for each corresponding
quality attributes and then used together to guide the
(re)configuration of the robotic software.

• Runtime Adapting to Change. Influence models can
also be used to build robotic software that can purpose-
fully adapt to changes at runtime. Both environment
conditions and performance requirements can vary at run-
time depending on the task assigned to the robot. For
adaptation, the robot can use a learned influence model
to tweak its software configuration options and move
to a more optimal point in the configuration space. For
instance, our experiments in Figure 2 indicate that an
increase in the number of refinements can lead to lower
localization error in the face of higher odometry noise and
miscalibration, at the expense of higher CPU utilization.
At a more coarse granularity, the robot could adapt by
switching between different types of robotic localization
algorithms altogether, each designed for slightly different
optimization problems and potentially better suited for
some environments than others. Rather than implement-
ing a single localization algorithm in the robot’s software,
multiple algorithms can be implemented and the choice
between them be left open depending on the environment
conditions. Such choice can be incorporated in influence
models as a single variable. Quality measures are likely
to be more sensitive to coarser configuration options than
fine-grained ones, thereby implementing coarser config-
urations can open up avenues for greater adaptability
and larger gains in optimization. However, these gains
could come at the expense of higher development costs
for implementing coarser configuration choices.
It is also worth noting that software design choices can
control some aspects of hardware design as well, since the
software implements the interface of a robot’s algorithms
to its sensors and actuators. For instance, a robot’s hard-
ware may contain multiple (possibly redundant) sensors
that are used for localization (such as Kinect, Lidar etc.).
Under different environment conditions, such as changing
sensor noise, the robot can increase or decrease the num-
ber of its active sensors to ensure high localization accu-
racy, while simultaneously trying to minimize the power
consumption by the sensors. This kind of adaptation can
be made possible by including the (boolean) choice of
activating a sensor in the robot’s influence model.

• Understanding and Debugging Software. The influ-
ence model for different performance requirements can



(a) Varying number of refinements and
constant number of particles (20).

(b) Varying number of particles and con-
stant number of refinements (3).

Figure 1: Performance tradeoffs in the localization algorithm. The two y-axis measure
the average localization error (in meters) and average CPU time consumed by the robot’s
software (in % for a quad-core machine) for a sample navigation task of the CoBot in a
simulator. A noise model is applied to the odometry for the purpose of these experiments
(uniform distribution with 20% standard deviation around mean corresponding to 20%
miscalibration). Results averaged over 5 iterations.

(a) Average localization error for com-
binations of odometry noise models and
number of refinements.

(b) Average CPU utilization for combi-
nations of odometry noise models and
number of refinements.

Figure 2: Effect of number of refinements on localization error due to odometry noise.
The heatmaps measure the average CPU utilization and average localization error for
a sample navigation task in the CoBot simulator, with darker shades corresponding to
higher values. y-axis represents different odometry noise models with equal values for
noise and miscalibration for visualization purposes. Results averaged over 5 iterations.

also be used by the robot software developer to test the
implementation of algorithms in the software by compar-
ing the expected (analytical) model, if it is known, to the
observed (empirical) model. For instance, an analytical
model to adapt the number of particles in response to
localization uncertainty has been developed [Fox, 2002].
The implementation of this adaptation strategy in soft-
ware can be tested in practice by comparing it with the
observed adaptation using the empirically learned influ-
ence model. In addition, influence models are useful to
discover and understand interactions among choices.

3 Challenges
Sensitivity analysis of software configuration options on qual-
ity of performance of robots can be used to build influence
models that are useful for offline optimization, online adapta-
tion, and debugging software. However, building these influ-
ence models is challenging due to the following two reasons:

• Costly Measurements. Measuring the performance of
the robot for some task with some software configuration
and environment conditions requires running the robot
physically or in a simulator. Even parallelizing measure-
ments, the long running times can limit the number of
measurements that are feasible in practice.

• Large Configuration Space. In practice, there are likely
to be several hundreds of configuration options in robotic
software systems. Many of these configurations options,
including the number of particles and refinements, can

(a) Average localization error for com-
binations of number of refinements and
number of particles.

(b) Average CPU utilization for combi-
nations of number of refinements and
number of particles.

Figure 3: Interactions between parameters of localization algorithm. The heatmaps
measure the average CPU utilization and average localization error for a sample navi-
gation task in the CoBot simulator, with darker shades corresponding to higher values.
Same noise model as in Figure 1. Results averaged over 5 iterations.

have large numeric ranges. In addition, the options can
interact, resulting in an exponentially growing configura-
tion space. Two options interact if the effect of changing
both options together is different from the expected ef-
fect of changing both options individually. This means
that effects of changes in combinations of configuration
options need to be measured and modeled just as effects
of changes in individual configuration options.
For instance, the number of particles and number of re-
finements interact in the localization algorithm. As visi-
ble in Figure 3b and Figure 3a, there are combinations of
decisions regarding the number of particles and number
of refinements that outperform the individual decisions
observed in Figure 1a and Figure 1b. Understanding this
interaction can lead to better overall decisions, but it
requires exploring an exponential search space.

4 Approach & Preliminary Results
To overcome the challenge of time-consuming and large-scale
measurements, we suggest to use sensitivity analysis, based
on supervised machine learning, to learn influence models.

We learn influence models using iterative linear regres-
sion, following a method originally developed for highly-
configurable software systems [Siegmund et al., 2015]. It uses
feature selection, starting with the base set of configuration
options, iteratively adding interactions of configurations in
successive steps in order to learn interactions and non-linear
effects on the quality metrics. For details regarding the learn-
ing procedure, we refer the interested reader to the original
publication [Siegmund et al., 2015]. We use linear regression
for our preliminary experiments, because linear models are
easy to understand and can intuitively explain the effects of
individual configuration options and interactions on quality
metrics, which aids debugging. A linear regression model is
also useful as it can easily incorporate domain knowledge
(such as from known analytical models) during learning.

To illustrate feasibility, we learned influence models after
measuring 3000 different configurations of the CoBot’s local-
ization algorithm, varying 9 numeric parameters, including
odometry noise and miscalibration, laser noise and miscalibra-
tion, odometry and laser update frequency, number of particles
and refinements, and maximum robot velocity. We learned
models for 5 quality attributes, including CPU utilization, wall



clock time to completion, laser and odometry update process-
ing time, and localization error. The following is an excerpt
from a learned influence model that describes part of the vari-
ation seen regarding CPU utilization:

cpu utilization = 19.20 + 9.051 ∗ odometry noise

+ 12.034 ∗ odometry miscalibration

+ 0.026 ∗ num particles

− 7.32 ∗ 10−5 ∗ num particles2

+ 0.063 ∗ num refinements

− 0.061 ∗ odometry noise ∗ num ref.

(1)

The above model can be read as follows: By plugging in
different values for the variables on the right hand side of the
equation, we can compute the expected CPU utilization for a
given configuration. As expected, we see that CPU utilization
increases with an increase in odometry noise and miscalibra-
tion and with the number of particles and refinements. The
negative factors indicate that this increase is not strictly lin-
ear. The above model also indicates an interaction between
odometry noise and number of refinements (last term).

Discussion & Future Work. We have not conduct a rigor-
ous analysis of the obtained models yet. We plan to follow
up this preliminary analysis with additional validation, dis-
cussions with domain experts, more accurate and larger scale
measurements, and more refined machine learning techniques.

Our current approach uses linear regression in order to gen-
erate a model that can intuitively explain the expected effect
of different configuration options on the robot’s quality of
performance. Machine learning can be combined with search-
based strategies for learning potentially more accurate models
with fewer measurements. Active machine learning can also
be a viable option in this direction. All the preliminary results
presented in this paper are based on measurements conducted
offline on a simulator. Eventually, we hope to integrate online
measurements on the physical robot.

Once we obtain an accurate influence model based on these
large-scale measurements, we plan to integrate it with opti-
mization strategies to obtain high performing configurations
for the software. This optimization strategy can also be moved
online to enable reasoning about runtime adaptation in re-
sponse to environment changes.

5 Related Work
Our work directly builds on the approach of using machine
learning for sensitivity analysis of software configurations,
specifically using the tool SPLConqueror [Siegmund et al.,
2015]. While their approach uses linear regression to learn
the influence models, other machine learning models such
as Classification and Regression Trees have also been used
in this context [Guo et al., 2013]. We decided to use the for-
mer approach for our preliminary analysis since linear models
are easy to understand and the learning can incorporate do-
main knowledge about expected relationships. However, we
note that the approach we describe for building evolving and
adaptive robotic software is agnostic the exact choice of ma-
chine learning model used. Learning performance models of

software configuration options on different non-functional
properties of the software has been applied on various real-
world applications [Thereska et al., 2010; Kwon et al., 2013;
Hoffmann et al., 2011; Siegmund et al., 2015].

For the more specific goal of optimization, both optimizing
only for performance and multi-objective optimization, several
approaches have been explored, typically using search-based
techniques to find good parameter combinations. Approaches
include combining seeding with evolutionary learning [Sayyad
et al., 2013] and combining that with constraint satisfaction
solving [Henard et al., 2015], hill-climbing [Gratch and De-
jong, 1992], and genetic algorithms [Terashima-Marn and
Ross, 1999]. A general discussion on the merits of optimizing
software using configuration options is also available [Hoos,
2012]. While optimization techniques are suitable to (and po-
tentially more effective at) find good settings, they are less
suitable for facilitating understanding and adaptation, as they
do not actually attempt to identify the influence of individual
decisions or their interactions.

Similar to optimization, several researchers have explored
approaches to automatically calibrate vision sensors [Li and
Chen, 2003] and odometry [Roy and Thrun, 1999]. Our work
is more generic, but potentially also less precise than such
more specialized solutions. Considerable amount of effort
has been devoted to building resource-efficient localization
algorithms, by reducing the number of particles [Biswas et
al., 2011; Fox, 2002]. Also analytical performance models are
available for some parameters [Fox, 2002]. In contrast, our
approach is agnostic to the implementation and applicable to
a large range of options and measurable quality attributes.

Self-adaptive systems have received significant attention
in the software engineering community. These approaches
usually involve adaptation at the software architecture level
[Garlan et al., 2004; Salehie and Tahvildari, 2009]. Architec-
ture based techniques have also been applied to the domain
of robotics [Ingls-Romero et al., 2011]. Approaches to learn-
ing based self-adaptation using configuration options has also
received attention in literature [Elkhodary et al., 2010]. The
influence models that we learn can be used to guide the adap-
tation strategy using the different approaches above.

6 Conclusion
We proposed to build influence models that explain how de-
sign decisions and their interactions affect the quality of per-
formance of robotic software based on sensitivity analysis. We
motivated how such influence models can guide optimization
of the software, help debugging and testing during the devel-
opment, and support adapting the robots to external changes
at runtime. We presented preliminary results of applying a
machine learning based approach in the context of the CoBot
robotic platform and discuss future directions.
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