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ABSTRACT

Features in highly configurable systems can interact in undesired
ways which may result in faults. However, most interactions are
not easily detectable as specifications of feature interactions are
usually missing. In this paper, we aim to detect interactions and to
help create feature-interaction specifications. We use variational ex-
ecution to observe internal interactions on control and data flow of
highly configurable systems. The number of potential interactions
can be large and hard to understand, especially as many interac-
tions are benign. To help developers understand these interactions,
we propose feature-interaction graphs as a concise representation
of all pairwise interactions. We provide two analyses that provide
additional details about interactions, namely suppress and require
interactions. Finally, we propose a specification language that en-
ables developers to define different kinds of allowed and forbidden
interactions, which help to detect interaction faults. Our tool, VarX-
plorer, provides a visualization of feature-interaction graphs and
supports the creation of feature interaction specifications. VarX-
plorer also provides an iterative analysis of feature interactions
allowing developers to focus on suspicious cases.
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1 INTRODUCTION

Highly configurable systems provide significant reuse opportuni-
ties by tailoring system variants based on a set of features (aka.
configuration options) [25, 32]. Such systems may be composed of
thousands of features. For example, Eclipse has more than 1,600
plugins [25] and the Linux kernel has more than 15,000 config-
urable options [19, 27]. This large set of options may be combined
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Figure 1: Overview of our approach to iteratively and auto-
matically inspect feature interactions with VarXplorer

in different ways, and developers must guarantee that all valid com-
binations work properly. A common problem in highly configurable
systems is that a feature interaction between two or more features
may result in a surprising behavior that is not easily deduced from
the analysis of each feature separately [2]. Even if a system be-
haves as expected most of the time, it may exhibit unexpected and
unwanted interactions under specific feature combinations.

Determining the influence of feature interactions on a system’s
behavior is challenging. Features may interact in many ways, for
example by triggering events that enable other features, having con-
trol over the same variables, and enforcing conditions that suppress
other features [5]. Anticipating and specifying all likely conse-
quences of each possible feature interaction might be not possible,
mainly due to the fact that (i) the number of configurations and
feature interactions grows exponentially in relation to the number
of features [11]; (ii) the behavior of some interactions may be un-
known and unpredictable in advance [2]; and (iii) human effort is
required, but people usually do not like writing specifications.

Instead, recent analyses focus on detecting feature interaction
bugs from global specifications, i.e., specifications that all configura-
tions of a configurable system need to fulfill, such as requiring that
each configuration does not crash [30]. Usually, these approaches
are based on systematic sampling [14, 16, 28], combinatorial in-
teraction testing [10, 20, 24], model checking [3, 7, 9, 17, 31], or
variational execution [6, 15, 21, 23] to cover large spaces, but they
check global specifications for all configurations.

Since specifications at the feature level are usually missing, the
above approaches may not detect all incorrect system behavior,
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specially bugs not covered by global specifications and bugs that
do not result in a crash or other easily observable behavior. For
instance, in the simplified WordPress example of Figure 2, the op-
tions weather and smiley interact in an unintended way, although
they do not crash the system. When they are together in the same
system, the temperature is not showed and the system presents an
unexpected output: instead of replacing the "[:weather:]" tag to the
current temperature (e.g., 70°F), it is rewritten to "[:weather®" and
presented to the user in place of the temperature.

It is hard to reason about interactions without feature specifi-
cations. When statically detected in the source code, (i) predicted
interaction may never appear during system execution; (ii) many
feature interactions can be observed only at runtime; and (iii) it is
difficult to automatically determine if an unexpected interaction is
benign or represent a real problem. Although dynamic approaches
overcome drawbacks of static analysis by analyzing systems at run-
time, identifying problematic interactions still remains challenging,
especially when no feature specification is provided.

Instead of upfront specifications, we propose to inspect feature
interactions as they are detected and incrementally classify them
as benign or problematic. We present feature-interaction graphs to
facilitate the identification of unintended interactions. A feature-
interaction graph is a concise visualization that shows all pairwise
interactions observed in an execution, presenting the relationships
that a pair of features may hold. Hence, we provide an inspection
process that helps developers to distinguish intended interactions
from interactions that may lead to bugs.

To detect feature interactions in a test execution (without know-
ing whether they are benign), we use the variational interpreter
Varex] [21, 23]. It performs variational execution to simultaneously
execute all system configurations. Varex]J reveals the differences
among configurations on both control and data flow [21], and rep-
resents them as a variational trace. An interaction is represented
as a control-flow or state difference in the system that depends on
two or more options.

In this work-in-progress paper, we propose VarXplorer, an it-
erative and interactive analysis that inspects feature interactions
from the variational traces generated by Varex]J. Figure 1 shows
an overview of our approach: given a configurable system and a
set of test cases, we detect interactions and provide an incremental
analysis of the relationship between features, illustrated through
a feature-interaction graph.

To further support developers in understanding the detected in-
teractions, we analyze control and data flow interactions to present
additional indicators, such as the suppression of one feature by
another. We also mark each interaction with additional helpful
information, as for example the affected program variables. We
present this feature-interaction graph to developers for manual
inspection. Based on this inspection, they may indicate intended be-
havior and also select interactions as forbidden through the feature
interaction specification language (create spec.). For unintended
interactions, developers may go back and fix the problem in the
code. The graph is then refined as more test cases are run, while
also taking into account the documented interaction specifications
(apply on next test case). Unlike global and feature-based specifi-
cations, interaction specifications do not specify the behavior of
the system or feature. Instead, they help developers focus only on
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boolean STATISTICS, SMILEY, WEATHER, FAHRENHEIT, SECURE_LOGIN;
void createHtml () {
String c = wpGetContent();
if (SMILEY)
c = c.replace(":]"
if (WEATHER) {
String weather = getWeather();

c = c.replace("[:weather:]", weather);

, getSmiley(":1"));

}
String head = initHeader();
print("<html><head>" + head + "</head><body>");
if (STATISTICS) {
int time = getCurrentTime();
printStatistics(time);

print("<div>" + ¢ + "</div>");

String foot = wpGenFooter();

print("<hr/>" + foot + "</body></html>");
¥

String getWeather () {
float temparature = 30
if (FAHRENHEIT)
return (temperature x 1.8 + 32) + "OF";
return temperature + "°C";

3

Figure 2: Feature interactions modeled after World-

Press [21].

potential bugs by automatically removing benign interactions from
the graph. In summary, we make the following contributions:

o We detect interactions based on both control and data flow;

o We determine the relationships between features and present
two classes of interactions, namely suppress and require in-
teractions. Those classes provide details how features inter-
act to support users in identify unintended interactions;

o We implemented feature-interaction graphs, a concise visual
representation of feature interactions identified at runtime;

o We propose an interaction specification language to allow
and forbid interactions on data and control flow;

e We present an iterative and interactive approach to refine
the feature-interaction graph and remove interactions that
do not represent a bug, allowing the developer to focus only
on suspicious cases.

2 ON DETECTING FEATURE INTERACTIONS:
STATE OF THE ART

A feature describes a unit of functionality of a software system that
satisfies a requirement [1]. Products of highly configurable systems
(resp. software product lines) can be composed by selecting a set of
features. Henceforth, we use the term feature to refer to any con-
figuration option, module, or component in a configurable system.

Feature interactions. Often, the development team needs to deal
with unexpected system behavior due to interactions between fea-
tures. Features developed and tested separately may present a dif-
ferent behavior when combined in a system. A feature interaction
is observed when the combined behavior of two or more features
differs from the individual behaviors of both features [8, 12, 33].
For example, one feature can interfere with, enable, or overwrite
the effects of another feature.

Features are frequently combined to cooperate to an intended
behavior (expected interactions). However, most interactions can-
not be predicted upfront. Unexpected interactions can be classified
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as either benign or problematic to a system. Problematic are un-
desired interactions that may cause faulty or damaging system
behavior, such as crashes. However, most interactions, although
unexpected, may result in a benign behavior that does not cause
any problem to the system or might even be essential to coordinatre
the functionalities of multiple features. Detecting and classifying
feature interactions is challenging as they only appear in certain
test cases and configurations (variants of a system composed of
different feature combinations).

In Figure 2, we show an example illustrating both benign and
problematic behavior. In the code excerpt modeled after WordPress,
an extendable content management system, the features weather
and fahrenheit interact intentionally to display the weather infor-
mation in desired format. However, the feature smiley interacts
with weather in an undesired way in some executions: As smiley
replaces a part of the weather tag, the option weather has no effect
if smiley is selected.

Global and feature-based specifications. Detecting all feature
interactions requires having specifications for all system configu-
rations. However, this usually does not scale to the large number
of possible configurations. Another strategy is to specify features
in isolation; a feature-based specification describes the behavior of
a feature in isolation without any explicit reference to other fea-
tures [30]. Such behavior is supposed to be preserved independent
of other features in the system. For example, in a product line of
electronic messages, a feature-based specification for the feature
Encrypt is that the encryption key must be valid independent of
what other features might do [4, 13]:

AG outgoing(email e) = (e.isEncrypted = validaga,(e.encryptionKey))

Several approaches work with feature-based specifications to detect
interactions. Li et. al [17] present a model checking approach to
detect interactions automatically given a group of feature specifica-
tions. The approach tests CTL (computation tree logic) properties of
features to identify cases in which the specification is violated. Apel
et. al [3] also propose a technique to verify whether specifications
hold across system configurations. To perform this verification,
specifications for intended interactions may be needed, and each
feature requires a formal specification of its behavior.

With feature-based specifications, interaction faults can be de-
tected when a feature specification is violated in a configuration. In
practice, nevertheless, it is uncommon to create specifications for
all features. In general, approaches based on feature specifications
present two main drawbacks: (1) from the whole set of features, it
is not clear which combinations of features need to be verified and
(2) verification tools need precise specifications to check against,
information that developers are often reluctant to prepare.

Conversely, global specifications represent a widespread strat-
egy to reduce the effort of creating specifications for individual
features, since they cover all configurations using general require-
ments [30]. Typical global specifications are requirements that the
system should not crash and that it fulfills certain functional re-
quirements in all configurations (e.g., passes all test cases). In the
previously mentioned product line example, a global specification
is that an outgoing e-mail message must have valid sender and
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Figure 3: Variational trace of the WordPress example show-

ing interactions among features. S: Smiley, W: Weather, F:
Fahrenheit, T: Statistics.

receiver addresses independent of what any features might do [4]:
AG outgoing(email e) = validgqqr(e.from) A validaqar(e.to)

Global specifications only describe properties for all configura-
tion systems, and can thus not describe nuances of intended and
unintended interactions to recognize if they affect feature behavior.
Generally, it is difficult to find bugs caused by unintended interac-
tions without any specification. Thus, despite their disadvantages,
global specifications provide a convenient way of detecting inter-
actions. For that reason, many studies base their approaches on
that kind of specifications and focus on exploring the configura-
tion space, such as systematic sampling [14, 16, 28], combinatorial
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interaction testing [10, 20, 24], model checking [3, 7, 9, 17, 31], and
variational execution [6, 15, 21, 23].

There exists a lot of work to detect faults caused by feature inter-
actions, as well as techniques to resolve them. However, detecting
unexpected feature interactions that do not lead to a crash (at least
not for the given test cases), but that cause faulty behavior, remains
an open challenge. In our work, we approach the challenge of iden-
tifying feature interactions without upfront existing specifications.
We aim to help developers to dynamically identify potentially faulty
feature interactions and to automatically create feature interaction
specifications based on an iterative and interactive approach.

Dynamic Detection of Feature Interactions. In our work, we
consider any state difference in a system that depends on more
than one feature as an interaction, even if it does not cause a crash
or any observable behavior differences. Such interactions describe
fine grained internals of the system which may often be benign.
Still, some of them can indicate faulty or unexpected behavior, such
as an interaction among features that overwrite the same variables.

Feature interactions can be detected by comparing the execu-
tions of all system configurations. Feature interactions are then
manifested in the differences in data and in the control flow that
depend on multiple features. We use variational execution [21] to
efficiently compare the executions of all configurations. Variational
execution is able to scale to large configuration spaces due to its
aggressive sharing abilities of redundancies among the executions
of all configurations. As data and control flow is shared, we are able
to observe feature interactions in the differences of the execution
and assignments of data [21].

A variational trace is a concise representation of the differences,
and the conditions to trigger those differences, among the execu-
tions of all configurations. It shows all interactions on data and
control flow for a single test case in all configurations. Specifically,
we use the variational interpreter VarexJ [21] and its extension
(VarViz!) to create the variational trace. In Figure 3, we show the
variational trace for our WordPress example, corresponding to the
code in Figure 2. The trace shows the presence conditions identified
by Varex] that add or change any functionality during the execution.

Presence conditions, presented by VarViz, are propositional ex-
pressions over options that determine when a specific code artifact
is executed [22]. We identify two main types of presence conditions:
(i) control-flow conditions, expressions that define each path condi-
tion in a trace (arrows); and (ii) data-flow conditions, expressions
responsible for changing the value of a given variable (rounded
rectangles). In addition, diamonds in the trace represents decisions
that affect the control flow. For example, the first decision (Line 5)
separates the control flow to execute line 6 depending on the selec-
tion of option SMILEY (indicated with S and —S on the arrows). The
trace shows further the causes of differences in data. For example,
in Line 6 the value of c is replaced if SMILEY is selected.

3 ITERATIVE ANALYSIS OF FEATURE
INTERACTIONS

In Figure 1, we present an overview of our process to incremen-
tally analyze feature interactions. Given a configurable system, we

!https://github.com/meinicke/varviz
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execute test cases (system inputs) looking for feature interactions.
The developer then explores which interactions are problematic.
We support them in the process with a feature interaction graph, a
concise representation of all (pairwise) interactions among features.
Based on the variational trace of a system, the graph provides a
visualization of which features interact, in addition to presenting
their relationships and data context.

Only indicating which features interact (raw interactions) does
not provide sufficient insights for the developer to identify whether
a certain interaction is benign or represents a bug. For example,
two features A and B may collaborate together to deliver some
correct system behavior. However, under specific system inputs,
the functionality provided by B may be suppressed by A in an
unintended way. To understand the relationship between features,
we propose to investigate the relation that a feature may have over
others, such as suppressing or requiring another feature. Interaction
relationships may additionally be associated with the data context of
the interaction, as for example the variables involved in the relation.
The different values that a given variable may assume can be a
signal that something wrong occurred. Highlighting the variables
involved might help developers in identify problematic interactions.

Our interaction detection process is incremental in the sense
that, based on user inspection, the graph is automatically refined
by removing benign interactions. This refinement is supported
through a feature interaction specification language and ensures:
(i) that the user does not see benign interactions again in future
iterations (i.e., when executing other test cases); and (ii) that any
newly detected unintended interactions are flagged in the future.
The goal is to incrementally remove intended interactions in order
to focus on unintended interactions.

Unlike global and feature-based specifications, that (respectively)
represent the behavior of configurations and features, interaction
specifications aim to point out that there exists an interaction be-
tween two features, without the need to formally specify its be-
havior. To make specifications easy to create, developers can mark
interactions as either allowed or forbidden through a right click on
the line that connects two features in the graph.

3.1 Interaction detection

In the interaction detection process, we identify and analyze all
pairs of features that interact in a system. The input of the detection
is a variational trace created from executing a test case, and the
output is the interaction graph presenting all the interactions.

The creation process of the interaction graph has two major steps:
pairwise detection and relationship analysis. First, we identify the
pairs of features that interact and create a basic interaction graph.
Then, we perform the relationship analysis and refine the basic
graph with additional information about the relationship between
features, including the underlying variables they affect, to produce
the complete interaction graph. This complete graph provides more
details about how the features interact, which goal is to support
developers to understand problematic interactions.

3.1.1 Pairwise Detection

For pairwise detection, we collect a set PC with all the presence
conditions in data and control flow present in the variational trace,
which represents all the features that interact in the system. Control
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flow conditions are path conditions of the trace, and data flow
conditions are formed by the conditions on each system variable.
From PC, we identify all pairs of features that interact together by
finding feature pairs that occur together in the same condition.

Given all conditions in PC, the set of features of a system (F),
and the set of all possible pairs of features in a system, relation I
represents only the pairs that interact:

ICF x F 1)

Given a pair of features (f1, f2), we assume that there is an inter-
action between f1 and f2 if there is at least one presence condition
p € PC in which f1 and f2 occur simultaneously as literals in p:

f»p := foccurs as literal in p (2)
I={(fi.f2) [p€PC A (fi»p) A (f2>p)} ®)

From Equation 2 and 3, we are able to collect all pairwise interac-
tions. We use them to create the basic feature interaction graph, a
simple visualization of all interactions identified in the trace. Based
on Equation 2, we can also determine the set of active features (A)
in a system, all the features that appear in presence conditions and
are responsible for the functionalities executed in the system, by:

A={f|pePCn(fw»p)} (4)

For example, our running example has five features (S, T, W, F, and
L). Based on the above equations, we identified four active features
A,yp and three pairs of interactions I,,, in the entire set of presence
conditions PCyyp, as follows:

PCWP = {S, "S, W, "Wv T7 “T,W A F’
W A—=F,WAFA=SWA—=FA=S-5A—-W}
Lwp = {(F,W),(S.F), (S, W)}
Awp = {S,W,F, T}

Figure 4a shows the basic graph for our running example, illus-
trating the interactions in I,,,. Although the program of Figure 2
contains five features, only three of them interact with each other, as
shown by the edges in Figure 4a. The other two are non-interacting
features; they either do not interact with any other feature during
system execution (they are activated but do not interact) or are not
executed in any configuration related to the current test case (they
are not activated). In general, some features do not interact, because
they cannot be simultaneously selected due to constraints in the
variability model, or their implementations are orthogonal [21].

The basic graph (Figure 4a) may support developers in the de-
tection of incorrect interactions. From the visualization, they can
identify features that should not been interacting, or even missing
interactions. Although the basic graph shows which features in-
teract with each other, it does not provide enough insight on how
features interact. We further investigate pairs of features from the
graph to determine relationships that further describe the interac-
tion. To support users in identifying problematic interactions, we
also analyze the variables involved.

3.1.2 Relationships Analysis

In the relationship analysis, we investigate each pair to determine
the effect one feature has on the other. In this step, we provide
two complementary analysis: PC-based analysis and data-based
analysis. In the former, we explore presence conditions on control
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and data flow to identify which relation a feature may have over the
other (i.e., either suppress or require other features). The latter is
responsible for investigating variables that are controlled by more
than one feature. Thus, we identify features relationships exclusive
to variables. For example, a feature fI may not present an overall
suppression on the feature f2, but fI may suppress f2 in relation to
a given variable.

A feature effect specifies under which condition does a given
feature have an effect on the trace. If a feature fI has no effect
on the trace, then the selection of fI never adds or changes any
functionality that was not present before [22]. In the basic graph
of Figure 4a, the dashed feature L is not active and, therefore, L has
no effect in the WordPress trace. Inactive features never have an
effect, but beyond this we can analyze the effect of features on each
other: suppress and require relationships. Let f; and f; be the two
features of an interaction pair. We say that fi suppresses f> when
the suppressed feature f> has no effect if the feature f; is selected.
In turn, a feature f; requires feature f, when f has an effect only
if the feature f5 is selected.

Relationship based on PC. We investigate each presence condi-
tion (on control and data flow) to detect feature effects in interac-
tions. The feature effect is given by analyzing the effect of a given
feature on the set of presence conditions. Formally, the effect of f
on a condition p is given as the function U(f, p), as follows:

U(f.p) = (f < True) ® (f « False) ()

A feature f has no effect on p if enabling (f as True) or disabling
(f as False), does not affect the value of p, then f does not have
an effect on selecting the corresponding code fragment under the
condition p. Otherwise, a feature f has an effect on p when enabling
and disabling the feature in p, it presents a different result at least
for one configuration, which means that different code fragments
are executed. This method of verifying whether a feature is enabled
or not is known as unique existential quantification [22].

Similarly, we can determine the overall effect of a feature f
taking in account all conditions in PC. In this way, we need to
consider the disjunction of all feature effects of f on each presence
condition p € PC:

U(f,PC) = \/ U(f.p) (6)

pePC

The result of Equation 6 corresponds to the condition under which
a feature f has an effect on the whole system’s presence conditions.
We can use the Equation 6 to identify the suppress and require
relationships. We say fi suppresses f> in a trace with presence
conditions PC iff:

U(f2,PC) = —~fi ™)
Otherwise, we say fi requires f3 in a trace iff:
U(f1,PC) = f> (8)

For example, the effect of the feature FAHRENHEIT (F) on the Word-
Press execution results in U(F, PC,yp) = W, that is, feature F only
has an effect iff W is selected. Thus, F requires W in order to have
an effect on the system. This behavior can be observed in Figure 2:
Line 25 is only executed when the decision in Line 7 is true, which
calls the method getWeather() in Line 8. Then, we see that F is
a sub-feature of W, From the domain knowledge, we know that
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Figure 4: Creation process of the WordPress feature interaction graph, generated by VarXplorer. Solid black line: interaction.
Dashed line: data flow interaction. Red arrow: suppress relationship. Green arrow: require relationship.

this is an example of an intended cooperation in terms of a require
relationship between those two features.

In contrast, if F would only have an effect iff =W, then W would
suppress F (i.e., F would be blocked by W, which would be a bug).
We perform the same analysis for each pair of interaction to deter-
mine the effects of features in a pair. This analysis identify all cases
of suppress and require relationships between features, which may
support the user to find faulty behaviors, relationships between
features that should not be allowed.

Figure 4b shows the result of the relationship analysis based on
PC for our running example. It presents the feature effect analysis
for all pairs in PC,,,. In this case, we only found an explicit feature
effect in the interaction (F, W), a require relationship. The other
two interactions, (S, F) and (S, W), did not expose any explicit
flow relation. Although S interact with F and W interact, they do
not present any flow relationship in terms of require or suppress
interactions. To further explore additional relationships between
features, we complement the flow analysis with a data analysis.

Relationship based on data. In a highly configurable system, the
same variable can assume different values under different configu-
rations. Features that do not directly interact on the system flow
may still interact by controlling the same variables. Conditional
variables are variables in which the values depend on more than one
feature. Unexpected data values may reveal bugs from unintended
interactions on variables. Conditional variables can help developers
understand if a feature changes a variable value incorrectly under
certain configurations, leading to a bug.

In the data analysis step, we perform two main tasks: (i) we
present the data context of interactions, based on the variables
they interact on; and (ii) we analyze feature effects on data to
find feature relationships related to variables (e.g., a feature may
suppress another related to a given variable).

Context Collection. To analyze the context of data interactions,
we investigate each conditional variable and its context. A variable
context is the set of conditions that affect the value of one variable,
as the rounded rectangles of Figure 3 shows. From the variable
context analysis, we can identify all pairs of features that interact
on the variable’s value. To identify feature interactions in variables
(data interaction), we consider the same Equation 3, but replace the
set of presence conditions PC per the context of a given variable.

The WordPress example has three variables (c, weather, and
time), but just two (c and weather) are considered as conditional
variables. Since the variable time only depends on feature T (as
Figure 3 shows), it is not part of any data interaction. In contrast,
the context of variable c, for example, is composed of five different
presence conditions, presenting combinations among F, S, and W.
The graph in Figure 4c shows all variables involved in WordPress’
interactions, (S, F), (S, W), and (F, W). Figure 4c is the same graph
of Figure 4b, but now additionally shows the variables.

Analyzing Data Relations. From Figure 4c, the developer is able
to inspect variables that should be overwritten in an interaction,
for instance. However, that graph does not provide any information
on how the features behave in relation to variables. For example,
we may identify cases where a feature is suppressed by another
related to a given variable. To help developers understand what is
happening in each variable, we detect relationships on variables and
present them in the graph. Thus, we again investigate the feature
effect of each feature pair, but now only related to the presence
conditions of the variable being analyzed. Feature effect on data
can be used to inspect each conditional variable and identify the
effect it causes in the relationship between two features.

The analysis of feature effect per variable is analogous to the
effect analysis for the entire set of presence conditions PC in Equa-
tion 6. The only difference is that in place of PC, we use the context
of a variable. For example, we can use the feature effect on data
to investigate the variables of Figure 4c: interaction (F, W) related
to variables ¢ and weather; and interactions (S, F) and (S, W) re-
lated to variable c. To investigate (S, W) according to ¢, we need
to analyze the effect of both S and W. First, we check the effect
of feature W. Given ctx, as the set of conditions of variable ¢, we
analyze the effect of W according to c creating a disjunction among
all W effects of each condition in ctx,:

U (W, ctxe) =U(W,S) v Uc(W,=S) v UW,W A F A —=S)v
Ue(W, W A —F A =S) v Ue(W, =S A =W)
— =S
As aresult of the disjunction U. (W, ctx. ), W has effect on variable
ciff S is not selected. In other words, we may say that SMILEY (S)

suppresses WEATHER (W) in relation to variable c. Second, we check
the effect of the other feature S on each presence condition of c:
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<system name="WordPress">
<specification type="allow">
<require from="Fahrenheit" to="Weather">
<var name="weather"/>
<var name="c"/>
</require>
</specification>
</system>

Figure 5: Example of interaction specification to WordPress.

U¢(S, ctxc). The second analysis results in true, which means that
S does not interact with another feature to affect the value of c.

Similarly, we can analyze the effect of feature FAHRENHEIT (F)
on the interaction pair (S, F) related to the variable ¢. SMILEY also
suppresses FAHRENHEIT (W) in relation to c. According to the trace
in Figure 3, the variable c only gets the temperature (either 89.6°F
or 32°C) when SMILEY is not selected. Therefore, SMILEY suppresses
both WEATHER and FAHRENHEIT. Figure 4d shows the complete fea-
ture interaction graph for our WordPress example, for both rela-
tionship analyses provided by our approach. Figure 4d is an update
of the graph in Figure 4c, now also presenting the relationships per
variable (dashed directed arrows).

In summary, from the relationship analysis of WordPress based
on both PC and data, we found that F requires W in PC, which
means that F is only executed when S is also selected. Based on
the domain knowledge, that case represents a benign interaction
between F and W. Besides, S suppresses F in data (variable c): when
both F and S are selected, the variable c is not overwritten by F. This
last case may be an example of a bug because wrong information
is displayed to the user. Instead of seeing the current temperature,
users see the tag "[:weather®". Finally, we found that S also sup-
presses W in variable c. Then, in the presence of S, W also does not
overwrite ¢, which presents the same wrong tag to the user.

3.2 Interaction specification language

The feature-interaction graph shows all the data and control flow
interactions based on a variational trace. The trace shows the differ-
ences among all configurations for a given test case (specific system
input). To better inspect all the possible interactions in a system, the
feature interaction detection should be applied over different inputs
to achieve a high system coverage. However, when applied over real
systems, the graphs may present a large amount of interactions and
conditional variables. In addition, different graphs from different
test cases may share the same interactions. Although the input may
be different, some pairs of feature may interact in the same way, as
for example, overwriting the same variables with the same values.

Hence, we propose the feature interaction specification language.
It helps developers to either allow or forbid interactions in a config-
urable system. When allowing, they may remove interactions from
features that are intended to interact and present a benign behavior,
which "clean” the graph and can facilitate finding interactions that
represent a bug. Otherwise, an interaction flagged as forbidden in a
graph can be tracked throughout all test cases executions to point
out the cases when it may occur.

The interaction language is a lightweight strategy to indicate
that there is an interaction among features. It does not require a
formal description of the behavior of systems or features, as global
and feature-based specifications do. Furthermore, those behavior
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specifications are usually missing. Our language is then an alter-
native to automatically support developers in detecting bugs. For
example, they can right click on the graph to specify that an in-
teraction is intended, which is then automatically added to the
specification. In particular, specifications can be created according
to three parameters: type, relationship, and target, as follows:

Type = {Allow, Forbid}
Relationship = {Require, Suppress, Any}
Target = {Variable, Method, Class, Any}

The Type defines whether the specification either allows the interac-
tion to occur or forbids it. The former can be used to approve benign
interactions that may be repeated in most test cases of a system;
and the latter can be used to flag features that should not interact.
Relationship and Target correspond to refinements of specifica-
tions. The relationship is used to refine the specification in terms of
suppress and require, and combined with a Target, it is possible to
allow or block interactions under the scope of a method, class, or
variable. Allowing any interaction between two features may be
dangerous. Then, the refinements are used to specify under which
conditions two features present a benign or faulty interaction.

User Inspection. Our tool, VarXplorer, investigates interactions
among features and helps users inspect unexpected interactions.
From the feature interaction graph, a user can view how features
interact and specify interactions. In the WordPress example, the
developer can use the specification language to specify benign be-
haviors (allow). Guided by the visualization provided by the graph,
the user can automatically allow the benign data interaction be-
tween FAHRENHEIT and WEATHER, for the variables ¢ and weather.
Figure 5 shows the allow interaction specification to this example.
In this way, our interaction detection approach receives the speci-
fication and guarantees that the intended interaction will not be
shown again in the analysis of future test cases. The interaction be-
tween FAHRENHEIT and WEATHER is only shown again in subsequent
test cases if they interact in a different way, such as on different
variables or through a different relationship.

Conversely, in the other two interactions of the WordPress exam-
ple (SMILEY-WEATHER and SMILEY-FAHRENHEIT), one of the features
in each interaction is being suppressed by the other, which may rep-
resent a bug. In case of bugs, the user may want to fix the problem
directly in the code and also mark those interactions as suspicious
in the graph, by means of the forbid specification. Thus, if the same
interactions reappear in other test cases, our tool will point them
out as potential problematic interactions.

4 DISCUSSION AND DIRECTIONS FOR
FUTURE WORK

Interaction detection. When using our approach, the user may
spend less effort in finding problematic interactions. VarXplorer
provides a visualization of all interactions in a configurable system
and highlights feature relationships that may help users to find bugs.
Although we cover all feature combinations in an execution, we use
test cases to detect interactions, and, then, we may miss interactions
present in uncovered inputs. We can use test-case generation in
combination with our approach to cover the most representative
inputs of a given system. We have applied VarXplorer on small
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SPLs, such as elevator and email [13], where we were able to collect
a set of interactions. In future work, we plan to investigate those
systems and also real-world systems as case studies.

VarXplorer uses the variability-aware interpreter, Varex]J, to gen-
erate variational traces [21]. Thus, our approach inherits Varex]’s
technical limitations. For example, it can only execute Java pro-
grams, and analyzing large systems may be computationally ex-
pensive. However, VarXplorer does not depend on Varex]. The set
of presence conditions seen during runtime can be obtained from
other variability-aware execution approaches. Furthermore, we may
also obtain information about feature interactions from symbolic
execution [26], static analysis [18], or execution comparison [29].

Technical aspects. Our current approach focuses on pair-wise fea-
ture interactions. While higher-order interactions are less common
in practice [21], they do still sometimes lead to unexpected behavior.
In the future, we aim to consider such interactions, which however
come with challenges for scalability and appropriate visualization
that need to be solved. In general, we plan to improve our current
preliminary feature interaction graph to enable easier visualization
of systems with a large set of features.

Feature interaction specification language. The specification
of interactions has two main benefits. Besides helping create the
specifications of the system, it contributes to "clean” the graph by
iteratively removing interactions that the user recognizes as desired
or benign. Thus, in a graph with many interactions, the user can
focus only on suspicious interactions that may represent a problem
for the correct operation of the system. To make the first graph
less cluttered and thus easier for the user to interpret, we could
additionally consider already documented global specifications and
feature specifications to filter the interactions accordingly.

5 CONCLUSIONS

In highly configurable systems, features may interact unexpectedly,
producing faulty behavior. We propose VarXplorer, an incremental
and interactive lightweight process to detect problematic interac-
tions dynamically. From a variational execution, we gather all the
variability context (control-flow paths and shared data) in which
each instruction is executed to create a feature interaction graph.
VarXplorer uses this information as input to identify how the fea-
tures are related to each other and helps users to inspect unintended
interactions. While analyzing the graph, users may indicate inter-
actions that present a benign behavior and also mark others as
forbidden, through the feature interaction specification language.
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