
Analyzing the Discipline of Preprocessor Annotations in
30 Million Lines of C Code

Jörg Liebig
University of Passau

joliebig@fim.uni-passau.de

Christian Kästner
Philipps-University Marburg

kaestner@informatik.uni-
marburg.de

Sven Apel
University of Passau

apel@fim.uni-passau.de

ABSTRACT

The C preprocessor cpp is a widely used tool for implement-
ing variable software. It enables programmers to express
variable code (which may even crosscut the entire imple-
mentation) with conditional compilation. The C preproces-
sor relies on simple text processing and is independent of
the host language (C, C++, Java, and so on). Language-
independent text processing is powerful and expressive—
programmers can make all kinds of annotations in the form
of #ifdefs—but can render unpreprocessed code difficult to
process automatically by tools, such as refactoring, concern
management, and variability-aware type checking. We dis-
tinguish between disciplined annotations, which align with
the underlying source-code structure, and undisciplined an-
notations, which do not align with the structure and hence
complicate tool development. This distinction raises the
question of how frequently programmers use undisciplined
annotations and whether it is feasible to change them to
disciplined annotations to simplify tool development and to
enable programmers to use a wide variety of tools in the
first place. By means of an analysis of 40 medium-sized
to large-sized C programs, we show empirically that pro-
grammers use cpp mostly in a disciplined way: about 84%
of all annotations respect the underlying source-code struc-
ture. Furthermore, we analyze the remaining undisciplined
annotations, identify patterns, and discuss how to transform
them into a disciplined form.

Categories and Subject Descriptors

D.2.3 [Software Engineering]: Coding Tools and Tech-
niques; D.2.8 [Software Engineering]: Metrics; D.3.4 [Pro-
gramming Languages]: Processors—Preprocessors

General Terms

Languages

Keywords

preprocessor, ifdef, conditional compilation, virtual separa-
tion of concerns, crosscutting concerns

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD’11, March 21–25, 2011, Pernambuco, Brazil.
Copyright 2011 ACM 978-1-4503-0605-8/11/03 ...$10.00.

1. INTRODUCTION
The preprocessor cpp is a text processing tool that ex-

tends the programming language C by lightweight metapro-
gramming facilities [24]. It was originally designed for the
programming language C and is nowadays also part of C++
and used with several other languages such as Fortran. The
preprocessor provides three capabilities: file inclusion, tex-
tual substitution (macro substitution), and conditional in-
clusion (a.k.a. conditional compilation). Here, we concen-
trate on conditional inclusion and problems related to this
capability [8, 26].

Conditional inclusion allows programmers to selectively
include source code. To this end, a programmer annotates
source code using the preprocessor directives #ifdef, #ifn-
def, and so on, which wrap lines of source code to make
them optional. Programmers influence the inclusion of an-
notated code with configuration files or compiler flags and,
to this end, generate different program variants, some of
which include certain code fragments and some not. The
application of conditional inclusion is not limited to a single
file. Programmers use it for the implementation of features
(end-user visible concerns) that often crosscuts the entire
code base [26].

In academia, contemporary textual preprocessors are heav-
ily criticized as error prone and as rendering code hard to
read and maintain [1, 11, 10, 27, 35]. Instead of separating
concerns, with preprocessors, developers often implement
concerns with many small annotated code fragments scat-
tered across the code base. There are two common sugges-
tions to deal with this situation: The first is to refactor
concerns and replace conditional compilation my means of
contemporary language concepts that support crosscutting
implementations, such as aspects, mixin layers, or feature
modules; for example, a large body of research addresses the
potential of refactoring #ifdef directives into aspects [1, 5, 6,
27, 32]. The second suggestion—called concern management
or virtual separation of concerns—is to keep but explicitly
manage scattered preprocessor implementations, often with
additional tool support, for example, in the form of views
on selected concerns, visualizations, and preprocessor-aware
type systems [11, 15, 16, 17, 21, 30, 34].

Both approaches, concern refactoring and concern man-
agement, rely on an integrated analysis of the source-code
structure and the effect of preprocessor directives. However,
parsing and analyzing the unprocessed representation of the
source code (pre-cpp) is known to be hard, because the pre-
processor cpp is token-based and as such oblivious to the
underlying source-code structure. Developers may annotate

