Otto-von-Guericke Universitat Magdeburg
Fakultét fiir Informatik

OTTO VON GUERICKE

UNIVERSITAT

MAGDEBURG

Master “s Thesis

Entwicklung eines nativen Compilers fiir
Feature-orientierte Programmierung

Verfasser:

Christian Becker

24. Mai, 2010

Betreuer:

Prof. Dr. rer. nat. habil. Gunter Saake

Institut fiir Technische und Betriebliche Informationssysteme

Dipl.-Wirt.-Inform. Christian Késtner

Institut fiir Technische und Betriebliche Informationssysteme

Becker, Christian:
Entwicklung eines nativen Compilers fiir Feature-orientierte Programmierung
Master “s Thesis, Otto-von-Guericke Universitiat Magdeburg, 2010.

Danksagung

An dieser Stelle mochte ich mich bei Christian Késtner fiir die Betreuung dieser Arbeit
bedanken. Danke fiir die vielen niitzlichen Ratschldge und Diskussionen, die mir bei der
Erstellung dieser Arbeit sehr geholfen haben.

Mein Dank gilt Constanze Adler. Ohne sie wére das Studium sicherlich nicht so span-
nend, lustig und erfolgreich gewesen. Danke fiir das Korrekturlesen der Arbeit und die

Hilfe bei BTEX.

Thomas Thiim danke ich fiir die EKTEX-Vorlage dieser Arbeit und fiir die Hilfe bei der
Verwendung.

Danke auch an Jutta Becker, die mir beim Korrekturlesen der Arbeit sehr geholfen hat.

Bei meinen Schwiegereltern mochte ich fiir die Gastfreundschaft in Leitzkau wihrend
des Studiums bedanken.

Zuletzt mochte ich mich bei meiner Frau Dorothee Becker bedanken, die mir dieses
Studium erst ermdglicht und mich die ganze Zeit liebevoll unterstiitzt hat.

Acknowledgements

vi

Inhaltsverzeichnis

Abbildungsverzeichnis
Tabellenverzeichnis
Quelltextverzeichnis
Abkiirzungsverzeichnis
1 Einleitung

2 Grundlagen
2.1 Software-Produktlinien 0oL
2.1.1 Implementierungstechniken fiir Software-Produktlinien
2.2 Feature-orientierte Programmierung
22.1 AHEAD
2.2.2 FeatureHouse o
2.2.3 Reihenfolge der Featurekomposition
2.3 Compiler
2.4 Compiler-Frameworks
24.1 JastAdd

3 FOP Fehlererkennung und Erweiterungsmoglichkeiten
3.1 FOP spezifische Fehler,
3.2 Fehlererkennung bei den bestehende Konzepte
3.2.1 AHEAD
3.2.2 FeatureHouse L
3.3 Abbildung von Fehlermeldungen auf den Quelltext
3.3.1 Fehlermeldung in FeatureIDE
3.4 Zusammenfassung der Ergebnisse 0oL
3.5 Nativer FOP-Compiler

4 Implementierung
4.1 Sprachkonstrukte fiir die FOP
4.1.1 Klassen- und Interfaceverfeinerung
4.1.2 Konstruktorverfeinerung L.
4.1.3 Originaler Methodenaufruf

ix

xi

xXiv

XV

12
13
16
19
19
23
24

29
29
34
35
37
40
41
42
44

viii Inhaltsverzeichnis

4.1.4 Layer-Anweisung 56

4.2 Auswahl der Features 57

4.3 Transformation des AST 58

4.4 Uberpritfung o 61
4.4.1 Erkennung falsch platzierter Konstruktorverfeinerungen und ori-

ginaler Methodenaufrufe 62

4.4.2 Positionsangaben der Fehlermeldungen 62

4.4.3 Fehlermeldungen fiir zwei Dateien 63

5 Evaluation 65

5.1 Verwendete Programme zur Evaluierung 65

5.1.1 Chat-SPL 65

5.1.2 Graph-Produktlinie 65

5.1.3 TankWar o 66

5.1.4 myViolett 66

51.5 GUIDSLo 66

5.1.6 BerkleyDB.o 66

5.1.7 Ubersicht der verschiedenen Programme 66

5.1.8 Beschreibung der Testplattform 67

5.2 Ergebnisse und Auswertung 67

5.2.1 Laufzeituntersuchung 67

5.2.2 FOP-spezifische Fehler 68

5.2.3 Vergleich mit den bisherigen Ansédtzen 70

6 Zusammenfassung 73

7 Ausblick 75

A Anhang A 77

B Anhang B 79

Literaturverzeichnis 85

Abbildungsverzeichnis

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10

3.1
3.2
3.3
3.4

4.1
4.2
4.3

4.4

Feature-Modell einer Chat Software-Produktlinie
Entwicklungsschritte einer SPL, adaptiert von [Kasl0]
Entwicklungsumgebung CIDE [KAKO8]
Abbildung der Features auf Implementierungseinheiten [KS09]
Kollaborationsdiagramm der Chat-SPL
Umsetzung der FOP mit AHEAD
Uberlagerung von Feature structured Tree
Aufbau eines Compilers
Transformation von Quelltext in eine Baumstruktur

Vereinfachte Hierarchie des Java-ASTs

Abbildungen der Fehlermeldungen auf die Quelltextdateien
Zwei Auschnitte von FeatureIDE
FeatureIDE: Problem bei der richtigen Anzeige der Fehlermeldung . . .

Schematischer und konzeptionellen Aufbau des nativen FOP-Compilers

Schematischer Aufbau des nativen FOP-Compilers
Position der Klassen- und Interfaceverfeinerung im AST

Position der originalen Methodenaufrufe und Konstruktorverfeinerungen
im AST e

Beispiel zur Auswahl und Reihenfolge bei der Komposition von Features

11
12
13
14
17
21
22
26

41
42
43
45

49
o1

95
o8

Abbildungsverzeichnis

Tabellenverzeichnis

3.1

0.1
5.2
2.3

Vergleich der Erkennung FOP spezifischer Fehler mit AHEAD, Feature-
House und FeaturelDE

Ubersicht iiber die verwendeteten Programme
Ubersetzungszeit der verschiedenen Projekte

Vergleich Erkennung FOP spezifischer Fehler mit bisherigen Ansétzen
und einem nativen FOP-Compiler

43

67
67

x11

Tabellenverzeichnis

Quelltextverzeichnis

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
4.1
4.2
4.3

4.4
4.5
4.6

4.7
4.8
Al

Auszug aus der Klasse Nachricht der ChatSPL
Implementierung des Features Verlauf mit Annotationen
Basisimplementierung mit AHEAD
Klassenverfeinerung der Klasse Nachricht mit AHEAD
Kompositions beider Klassen mit AHEAD
Basisimplementierung mit FeatureHouse
Klassenverfeinerung der Klasse Nachricht mit
Komposition beider Klassen mit FeatureHouse
Beispiel fiir die Reihenfolge der Features
Grammatik fiir eine Teilmenge von Java-Anweisungen
Produktionsregel fiir eine leere Anweisung
Imperativer Aspekt zum Einfiigen neuer Methoden und Felder
Klassenverfeinerung ohne originale Klasse
Mehrfaches Einfiigen von Klassen
Beispiel zur Komposition von zwei Feldern
Beispiel fiir einen Typfehler bei der FOP
Typsicherheit bei drei Features
Beispiel zur Methodenverfeinerung
Ergebnis des mehrfachen Einfiigens von Klassen mit AHEAD
Komposition von zwei Felder mit AHEAD
Ergebnis der Methodenverfeinerung und originalen Methodenaufrufe . .
Ergebnis des mehrfachen Einfiigens von Klassen mit FeatureHouse . . .
Komposition von zwei Felder mit FeatureHouse
Kompositionsproblem von Feldern bei FeatureHouse
Anderungen am Parser fiir die Klassen- und Interfaceverfeinerung
Beschreibung der Knoten fiir die Klassen und Interfaceverfeinerung
Imperativer Aspekt zum Einfiigen der Konstruktoren fiir die Klassen und
Interfaceverfeinerung oo
Erweiterungen des Parser fiir die Konstruktorverfeinerung
Unterschiedliche Positionen fiir einen originalen Methodenaufruf
Produktionsregeln fiir die originalen Methodenaufrufe fir AHEAD und
FeatureHouse
Beschreibung der Knoten fiir die originalen Methodenaufrufe
Anderung am Parser fiir die Layer-Anweisung
ANT-Skript fiir die Featurekomposition mit AHEAD

10
15
15
16
18
19
19
20
21
24
27
30
31
32
32
33
34
35
36
37
38
38
39
52
93

93
o4
95

xiv Quelltextverzeichnis
A.2 ANT-Skript fiir die Featurekomposition mit FeatureHouse 78
B.1 Auszug aus der PicoJava.parser Datei 82
B.2 Beispiel fiir ein giiltiges PicoJava-Programm 83
B.3 Beschreibung der AST-Knoten fiir PicoJava 83
B.4 Von JastAdd generierte Klasse Block 84

Abkiirzungsverzeichnis

AHEAD
AST

FOP
FST

IDE

JastAddJ

loc

OOP

SPL

Algebraic Hierarchical Equations for Application Design
Abstract Syntax Tree

Feature-orientierte Programmierung
Feature Structure Tree

Integrated Development Environment
JastAdd Extensible Java Compiler
lines of code

Objekt-orientierte Programmierung

Software-Produktlinie

xVvi Abkiirzungsverzeichnis

1. Einleitung

Anwendungssoftware, Computerspiele oder andere Softwareprodukte werden von An-
bietern auf den unterschiedlichsten Plattformen veroffentlicht. Dabei werden, je nach
verwendeter Plattform, an die Software unterschiedliche Anforderungen gestellt. Bei ei-
nem PC steht reichlich Hauptspeicher zur Verfiigung und es konnen hohe Auflésungen
verwendet werden. Soll die gleiche Software fiir ein Smartphone veroffentlicht werden,
stehen viel weniger Hardwareressourcen zur Verfiigung. Fiir die Smartphone-Variante
miissen eventuell Funktionalitdten entfernt werden, damit die Software verniinftig ver-
wendet werden kann. Fiir eine andere Plattform kénnen andere Funktionalitdten hinzu-
gefiigt werden, wenn beispielsweise andere Eingabegerite, wie ein Touchpad, zur Ver-
fiigung stehen.

Dies fithrt dazu, dass ein Softwarehersteller fiir jede Plattform eine mafigeschneider-
te Softwareldsung entwickeln muss. So eine mafigeschneiderte Software enthélt nur die
Funktionalitéiten, die fiir die entsprechende Plattform benétigt wird. Aus betriebswirt-
schaftlichen Griinden soll der Aufwand fiir die Anpassung der Software an eine andere
Plattform moglichst gering sein. Der Nachteil bei mafigeschneiderter Software ist, dass
bestehender Quelltext bei der Portierung fiir andere Systeme nicht im vollen Umfang
wieder verwendet werden kann. Dies liegt beispielsweise daran, dass eine Funktionalitéat
oder ein Belang nicht modular in einer Softwareeinheit implementiert ist und somit
nicht ohne weiteres durch eine andere Funktionalitédt ausgetauscht werden kann.

Eine Software-Produktlinie (SPL) ermoglicht verschiedene Varianten aus einer Quell-
textbasis zu erzeugen [BCKO05, PBL05]. Mit einer SPL kann ein Hersteller mafige-
schneiderte Software mit unterschiedlichen Funktionalititen anbieten und gleichzeitig
bestehenden Quelltext effizient wiederverwenden. Fiir die Entwicklung einer SPL sind
Implementierungstechniken notwendig, die es erlauben, Funktionalitdten optional zu
gestalten.

Bei der Feature-orientierte Programmierung (FOP) handelt es sich um ein Program-
mierparadigma, das sich fiir die Implementierung von SPL eignet [Pre97, BSR03].
Der Quelltext wird anhand von Belangen (Features) modularisiert. Aus einer Menge

2 1. Einleitung

von ausgewihlten Features kann dann eine Variante generiert werden. Querschneiden-
de Featureimplementierungen konnen mittels Klassenverfeinerung realisiert werden. Die
FOP setzt auf bestehende Programmiersprachen und erweitert diese um die Moglichkeit
der Klassenverfeinerung.

AHEAD [BSRO03] und FeatureHouse [AKLO09] stellen zwei Umsetzungen der FOP
dar. Diese erweitern unter anderem die Programmiersprache Java um die Moglichkeit
der Klassenverfeinerung. Ein Kompositionsprogramm wandelt den feature-orientierten
Quelltext in nativen Java-Quelltext um, der anschlieBend von einem Standardcompiler
in Bytecode iibersetzt wird.

Diese zweistufigen Ansétze, aus Kompositionsprogramm und Compiler, stellen heute
die gebrauchlichste Form bei der FOP dar. Sie fithren aber zu Nachteilen, die in dieser
Arbeit ndher untersucht werden sollen. Erzeugt der Java-Compiler einen Fehler, be-
zieht dieser sich auf die Zwischendarstellung. Der Entwickler muss den Fehler auf den
feature-orientierten Quelltext abbilden um dort den Fehler zu beheben. Die Moglichkeit
der Klassenverfeinerung und die Komposition von Features konnen zu zusétzlichen Feh-
lern fiithren, die erkannt werden miissen. Diese Fehler kénnen nicht nur auf fehlerhafte
Implementierungen einzelner Features deuten, sondern auf Fehler, die die SPL betreffen
[TBKCO07].

Ein nativer FOP-Compiler, der keine Zwischendarstellung, in Form von nativen Quell-
text benotigt und der wahrend der Komposition der Features auf Funktionen des Com-
pilers (zum Beispiels das Typsystem) zugreifen kann, kann bessere Ergebnisse liefern, als
die zweistufigen Ansétze. Dazu soll im Rahmen dieser Arbeit ein nativer FOP-Compiler
prototypisch implementiert werden. Anhand dieses Prototypen wird untersucht, an wel-
chen Stellen der Compiler bessere Ergebnisse liefern kann. Dieser Prototyp kann fiir
zukiinftige Forschungen im Bereich der FOP als Basis fiir Erweiterungen dienen.

Aufbau der Arbeit
Diese Arbeit gliedert sich wie folgt:

In dem Kapitel 2 werden zunédchst SPL als effiziente M6glichkeit fiir die Wiederverwen-
dung von Quelltext und zur schnellen Generierung von Varianten einer Produktfami-
lien, vorgestellt. Fiir die Implementierung von SPL bieten sich verschiedene Techniken
an, die in dem Abschnitt 2.1.1 gezeigt werden. Die FOP eignet sich besonders fiir die
Implementierung und wird in dem Abschnitt 2.2 gesondert vorgestellt. Mit AHEAD
und FeatureHouse werden in diesem Abschnitt zwei prominente Umsetzungen der FOP
prasentiert.

Des Weiteren werden im Kapitel 2 Konzepte zu Compilern und Compilerbau gezeigt.
Mit JastAddJ wird in Abschnitt 2.4.1 ein Compiler-Framework vorgestellt, dass Ande-
rungen an der Programmiersprache Java ermdoglicht. Mit diesem Framework wird ein
Prototyp eines nativen FOP-Compiler erstellt.

Im Kapitel 3 werden an Hand einiger FOP-spezifischen Fehler die Leistungsfidhigkeit der
zweistufigen Ansétze untersucht. Im Anschluss wird diskutiert, welche Vorteile durch
Verwendung eines nativen FOP-Compiler entstehen.

In dem Kapitel 4 wird die Implementierung des Prototypen eines nativen FOP-
Compilers mit Hilfe des JastAddJ Frameworks gezeigt.

Das Kapitel 5 beschéftigt sich mit der Evaluation des Prototypen eines nativen
FOP-Compilers. Dazu wurden einige Programme ausgewéhlt, die nach dem feature-
orientierten Paradigma mit AHEAD oder FeatureHouse programmiert wurden. Diese
Programme wurden dann von dem nativen FOP-Compiler iibersetzt und die Laufzeit
mit den zweistufigen Ansétzen verglichen.

In dem Kapitel 6 werden die Ergebnisse dieser Arbeit nochmal zusammengefasst.

Das Kapitel 7 gibt einen Ausblick auf die Moglichkeiten und die Chancen, die durch
die Verwendung eines nativen FOP-Compiler entstehen.

1. Einleitung

2. Grundlagen

In diesem Kapitel werden die Grundlagen beschrieben, die fiir die Implementierung
und Evaluation eines nativen feature-orientierten Compiler benttigt werden. Zunéchst
werden im Abschnitt 2.1 Software-Produktlinien als effektives Mittel dargestellt, um
bestehenden Quelltext wieder zu verwenden und schnell angepasste Varianten zu gene-
rieren. Neben weiteren Implementierungstechniken fiir Software-Produktlinien, die im
Abschnitt 2.1.1 gezeigt werden, eignet sich besonders die FOP, die in Abschnitt 2.2
beschrieben wird. Im Abschnitt 2.3 werden einige Grundlagen iiber den Aufbau und die
Funktionsweise eines Compiler vorgestellt. Diese werden fiir Techniken benotigt, die vom
Compiler-Framework JastAdd verwendet werden, um neue Programmiersprachen zu er-
stellen oder bestehende Sprache zu erweitern. Das Framework wird in Abschnitt 2.4.1
vorgestellt.

2.1 Software-Produktlinien

Die Zeit, die fiir eine Produkteinfithrung benotigt wird (engl. Time-to-Market), spiegelt
sich direkt in den Unternehmensgewinnen wieder [Sys06]. Aus diesem Grund mdochten
Hersteller schnell auf Verdnderungen am Markt reagieren und ihren Kunden zeitnah an-
gepasste Losungen fiir ihr Problem bieten. Im Bereich der Softwareentwicklung kénnen
daher wiederholte Anderungen oder Anpassungen an bestehenden Programmen oder
sogar die Neuprogrammierung nicht fiir jeden Kunden zielfithrend sein.

Softwareprodukte kénnen iiber Konfigurationsdateien oder Meniis benutzerdefinierte
Einstellungen und Funktionen bereitstellen. In vielen Fiéllen ist damit eine Anpassung
an die Anforderungen des Kunden moglich. In diesem Fall befindet sich der volle Funkti-
onsumfang in dem Programm. Ein Softwarehersteller mdchte aber eventuell eine verein-
fachte Variante der Software anbieten und zusétzliche Funktionen separat vermarkten.
Hierbei sollten die zusétzlichen Funktionen in separaten Softwareeinheiten vorhanden
sein. Aus Sicht des Anwenders der Software kann zusétzlich das Problem auftreten,
dass das Softwareprodukt, durch zu viele Funktionen grofler wird, und dem entspre-
chend auch mehr Ressourcen benotigt. Es sind viele Anwendungsszenarien denkbar, in

6 2. Grundlagen

denen eine schlanke Software notwendig ist. Der Einsatz auf Netbooks, Smartphones
und eingebetteten Systemen sind nur einige Beispiele, bei denen Hardwareressourcen
auch heute noch begrenzt sind.

Eine SPL bietet eine effektive Moglichkeit bestehenden Quelltext wieder zu verwen-
den und unterschiedliche Varianten, mit der jeweils gewiinschten Funktionalitéit einer
Produktfamilie schnell zu generieren. Aus den oben genannten Griinden hat daher
die Bedeutung von Software Produktlinien in den letzten Jahren stark zugenommen
[BCK05, PBLO5]. Die Entwicklung einer SPL gliedert sich hierbei in zwei Bereiche:
die Problemebene und die Losungsebene [CE00]. Die Problemebene beschéaftigt sich
mit der Analyse des Einsatzgebietes der SPL und der Umsetzung von Kundenanfor-
derungen durch die Wahl von passenden Merkmalen. In der Losungsebene findet die
Implementierung und die Generierung der Varianten statt.

In der Problemebene wird zunéchst der Einsatzbereich der SPL festgelegt und analy-
siert. Zur Analyse ist doménenspezifisches Wissen notwendig, um passende Features
(dt. Merkmale) zu finden. Ein Feature ist hierbei eine Funktion oder Eigenschaft eines
Softwaresystems, die fiir den Nutzer sichtbar ist. In der Literatur werden viele, teils
unterschiedliche, Definitionen fiir den Begriff Feature verwendet. Beispielsweise liefern
Kang et al. [KCH'90] folgende Definition:

a prominent or distinctive user-visible aspect, quality, or characteristic of a
software system or systems

(ein bedeutender oder kennzeichnender, fiir den Benutzer sichtbarer Aspekt
oder charakteristische Eigenschaft eines Softwaresystems)

Eine Ubersicht iiber weitere Definitionen des Begriffes Feature findet sich in [AK09].
In dieser Arbeit wird das gebriuchliche englische Wort Feature anstelle von Merkmal
verwendet.

Eine SPL wird fiir einen Anwendungsbereich (eine Doméne) entwickelt. Fiir diese Do-
méne werden Features gesucht und die Abhéngigkeit, in welcher sie zueinander ste-
hen. Eine verbreitete Darstellungsform sind Feature-Modelle [KCH*90, CE00, Bat05].
Ein Feature-Modell ordnet die Features in einer Baumstruktur an. Je nach Verfasser
unterscheiden sich teilweise die Darstellungen. Fiir diese Arbeit wird eine abgeénder-
te Darstellung von Batory [Bat05] verwendet, die beispielsweise auch in FeatureIDE
[KTST09] verwendet wird. Die Abbildung 2.1 zeigt ein Beispiel fiir ein Feature-Modell
einer Chat-SPL. Das Feature BasisChat muss immer ausgew#hlt werden. Als Benut-
zerinterface kann entweder eine GUI oder eine Konsole gewahlt werden. Die Textnach-
richten konnen mittels des Features Farbe farbig gestaltet werden und zusétzlich kann
die Nachricht mit zwei unterschiedlichen Algorithmen verschliisselt werden. Beide Algo-
rithmen kénnen auch gleichzeitig verwendet werden. Das Feature Verlauf ist optional.
Da es zusétzliche Abhéngigkeiten gibt, die schlecht in der Baumform dargestellt werden
konnen, besteht die Moglichkeit, diese durch zusétzliche boolesche Ausdriicke darstellen
zu konnen. In diesem Beispiel wird fiir farbige Textnachrichten eine grafische Oberflache
voraus gesetzt (Farbe impliziert (=>) GUI). Hierbei handelt es sich um ein sehr klei-
nes und konstruiertes Beispiel. Aber selbst aus dieser kleinen SPL mit 6 auswéhlbaren
Features konnen 20 unterschiedliche Varianten erzeugt werden!

2.1. Software-Produktlinien 7

ChatSPL

Benutzerinterface Nachrichten

Verschlusselung

(- N\
§ Optional

Pflicht

Farbe => GUI

Abbildung 2.1: Feature-Modell einer Chat Software-Produktlinie

Neben den grafischen Darstellungsformen lassen sich Feature-Modelle in logische For-
meln oder in eine Grammatik (z.B. die GUIDSL Grammatik [Bat05]) iibersetzen, was
die weitere Verarbeitung und eventuelle Optimierungen erleichtert.

Fiir die Erzeugung einer Variante muss eine Auswahl an Features getroffen werden.
Grundlage hierfiir bilden Feature-Modelle, die es beispielsweise dem Kunden ermogli-
chen passende Features zu wéhlen. Sollte keines der vorliegenden Features den Kun-
denwiinschen entsprechen, konnen auch neue Features in das Feature-Modell eingefiigt
werden.

In der Lésungsebene miissen die einzelnen Features implementiert werden. Hierfiir bie-
ten sich unterschiedlichste Vorgehensweisen an, die im Abschnitt 2.1.1 ndher erlautert
werden.

Mit der Auswahl der Features aus der Problemebene und den implementierten Featu-
res soll nun moglichst ohne viel Aufwand ein lauffahiges Programm, beziehungsweise
eine Variante der SPL erstellt werden. Im Anschluss daran muss die Variante getes-
tet werden. Der ideale Fall wére eine vollsténdige automatische Generierung und das
automatisierte Testen der Variante.

In der Abbildung 2.2 werden die Entwicklungsschritte einer SPL nochmal grafisch zu-
sammengefasst dargestellt. Eine SPL wird fiir eine Domé&ne entwickelt. Diese Doméne
muss analysiert werden um passende Features zu finden. Als grafische Darstellung bie-
ten sich die zuvor gezeigten Feature-Modelle an. Die einzelnen Features werden dann,
mit denen im Abschnitt 2.1.1 vorgestellten Techniken, implementiert. Die Analyse der
Doméne und die Implementierung wird unter dem Begriff Doménenentwicklung zusam-
mengefasst. Soll eine Variante erzeugt werden, miissen zundchst die Anforderungen des

2

. Grundlagen

Problem-Ebene

Lésungs-Ebene

Domanen Analyse I flmplementierungs-\
| einheiten der Features
Domanen rL . e — -
Wissen BasisChat Nacmionten | (Varai| mplerhentierung
R (=-roovce) (e) (Y} TPETOTTONY,
|
! S)
K Farbe => GUI j |
I
_Auswahlbare | || Newe _ _ _ _ _j_ _ _ _ _ _ _ _| Feature _ _ _
Features| Features | Module
|
(Auswahl der Featur@ | f Erzeugung und \
¢ Chat-Variante.equation 3 = ¢ | Tests der Variante
Kunden [N
Anfo,-(-jerunggQ FeatureIAuswahI . 3 - -
o ¥ ¢ — | o)
| 2
- 3 o
| e ” : AL
2 -
« .
Rl Variante
\ Generator)

Abbildung 2.2: Entwicklungsschritte einer SPL, adaptiert von [Kés10]

Kunden analysiert werden. Aus dem Feature-Modell kann der Kunde eine Auswahl an
Features treffen. Je nach Anforderung des Kunden, miissen zusétzliche neue Features in
das Feature-Modell aufgenommen werden. Wurde eine Auswahl an Features getroffen,
erzeugt ein Generator aus den zuvor implementierten Feature-Modulen eine Varian-
te der SPL. Bevor die Variante ausgeliefert werden kann, muss sie getestet werden.
Die Auswahl der Features, Erzeugung und Tests der Variante kann unter dem Begriff
Anwendungsentwicklung zusammengefasst werden. Die Auswahl einer giiltigen Kombi-
nation [AK09] und das Testen der Variante [NTJ06, CDS06, UGKBOS] bilden weitere
Forschungsgebiete. Auf diese Gebiete wird in dieser Arbeit nicht néher eingegangen und
es sei auf die entsprechende Literatur verwiesen.

2.1.1 Implementierungstechniken fiir Software-Produktlinien

Eine grundsétzliche Vorgehensweise bei der Entwicklung von umfangreicher Software ist
es, Probleme in kleinere handhabbare Einheiten zu zerteilen. Kleine modulare Einheiten
erleichtern die Implementierung und die Wartbarkeit und erhohen somit die Qualitét
des Quelltextes. In der Literatur wird hierfiir der Begriff Seperation of Concern (dt.
Aufteilung nach Belangen) verwendet, dieser geht auf die Arbeiten von Parnas [Par72]
und Dijkstra [Dij82, Dij97] zuriick.

Die Objekt-orientierte Programmierung (OOP) bietet mit Techniken wie Klassen und
Vererbung Moglichkeiten modulare Software zu schreiben [LR09]. Nicht immer kon-
nen alle Belange gleichzeitig modularisiert werden. In [KLM™97, TOHS99] werden die
Grenzen des Seperation of Concern gezeigt. Belange, die eine Kernfunktionalitit betref-
fen, konnen in vielen Féllen nicht modularisiert werden. Belange, die an vielen Stellen

—_ =

— O © 0O Utk W

2.1. Software-Produktlinien 9

im Quelltext auftreten, werden auch Cross-Cutting Concern [KKLM™97] (dt. querschnei-
dende Belange) genannt. Klassische Beispiele sind, Fehlerbehebung oder Logging. Solche
Belange konnen ebenfalls selten modularisiert werden.

public class Nachricht{

String inhalt;

ArraylList verlauf = new ArrayList();

VerschliisselungsAlgorithmusA algorithmusA;

//Viele weitere Zeilen

public void sendeNachricht () {
verlauf.add (inhalt);
inhalt = algorithmusA.verschluesselNachricht (inhalt);
sendelInhalt (inhalt);

Quelltext 2.1: Auszug aus der Klasse Nachricht der ChatSPL

Der Quelltext 2.1 zeigt die Klasse Nachricht mit einer Methode sendeNachricht aus der
Chat-SPL. Die Methode sendeNachricht implementiert nicht nur die Basisfunktionali-
téit des Chats, sondern auch die Features Verlauf und Verschliisselung. Das eine Klasse
vermischten Quelltext mehrerer Features enthélt wird als Code Tangling [KLMT'97]
bezeichnet. Des Weiteren wird der Verschliisselungsalgorithmus wahrscheinlich auch an
anderen Stellen in der Chat-Software verwendet. Dies wird als verstreuter Quelltext
(Code Scattering) bezeichnet. In diesem kleinen Beispiel, mag dies noch nicht als Pro-
blem auftreten, werden aber umfangreichere Programme betrachtet, kann eine Klasse
sehr viele Features implementieren und der Quelltext eines Features kann iiber sehr
viele Klassen verteilt sein (Beispielsweise das Feature Transaktion in einer Datenbank).
Hier kann das Lokalisieren eines Quelltextes, der zu einem Feature gehort, zu einer sehr
aufwindigen Arbeit werden.

Fiir die Implementierung von einer SPL sind Techniken notwendig, die es erlauben,
Features optional zu gestalten. Dafiir muss der Quelltext der zu einem Feature gehort
identifizierbar sein. Das Problem des vermischten und verstreuten Quelltextes erschwert
dies. Daher sind fiir die Implementierung von SPL Techniken von Vorteil, die diese
Probleme minimieren.

In [KAKO8] werden fiir die Implementierung von SPL zwei grundlegende Vorgehens-
weisen genannt: Annotations- und Kompositionsansitze. Annotationsanséitze markieren
Quelltext und entfernen diesen vor der eigentlichen Kompilierung. Kompositionsansét-
ze kapseln den Featurequelltext in Einheiten und komponieren diese Einheiten zu einer
Variante.

Annotationsansitze konnen beispielsweise mit einem Praprozessor realisiert werden.
In der Programmiersprache C / C++ ist es moglich, mit Hilfe der Préaprozessoran-
weisungen #ifdef #endif Teile des Programms bedingt zu kompilieren [KR90]. Der
nachfolgende Quelltext 2.2 zeigt ein entsprechendes Beispiel. Hierbei handelt es sich
um das Feature Verlauf aus der zuvor gezeigten Chat-SPL. Dieses Feature konnte bei-
spielsweise so implementiert werden, dass eine Log-Methode aufgerufen wird, die den

0 O Ui Wi =

10 2. Grundlagen

Inhalt der Nachricht speichert, bevor diese versendet wird. Wird das Feature Verlauf
nicht ausgewihlt, entfernt der Praprozessor die entsprechenden Programmzeilen (Zeile
5 und Zeile 10) und somit auch das Feature.

public class Nachricht{
String inhalt;
#ifdef VERLAUF
ArrayList verlauf = new ArrayList();
fendif
//Viele weitere Zeilen
public void sendeNachricht () {
#ifdef VERLAUF
verlauf.add(inhalt);
#endif
sendelInhalt (inhalt);
}

Quelltext 2.2: Implementierung des Features Verlauf mit Annotationen

Dieser Ansatz setzt auf bekannte Techniken und findet daher unter Entwicklern eine
hohe Akzeptanz. Einfache Praprozessoren sind fiir fast alle géngigen Programmierspra-
chen zusétzlich verfiigbar. Ein weiterer Vorteil ist, dass ein bestehendes Programm durch
Hinzufiigen von Annotationen in eine SPL umgewandelt werden kann. In der Forschung
wird der Einsatz von Préprozessoren eher als kritisch eingeschitzt [Spe92, KS94].
Schwierigkeiten treten bei quer schneidenden Features auf, da Annotationen fiir ein
Feature in sehr vielen Klassen notwendig sind (Problem des vermischten und verteilten
Quelltextes). Des Weiteren kann der Einsatz von Annotationen sehr Fehler anfillig sein.
Viele #ifdef-Anweisungen machen den Quelltext schwerer lesbar, welches die Wartung
der Software erschwert. Beispielsweise konnen Praprozessor-Anweisungen verschachtelt
werden und fein Granulare #ifdef-Anweisungen erlauben es sogar einzelnen Worter
(Token) optional zu gestalten.

Abhilfe kann hier mittels so genannter disziplinierter Annotationen geschaffen werden
[KA09, KAS10]. Diese schrinken die Moglichkeiten der Annotationen ein, schwéchen
aber die Nachteile entscheidend ab.

Ein weiteres Beispiel fiir Annotative-Ansétze stellt CIDE [KAKO08] dar. Hierbei han-
delt es sich um eine Entwicklungsumgebung, bei der Quelltext, der zu einem Feature
gehort, mittels verschiedener Farben markiert werden. Die Farbmarkierungen verén-
dern (verschmutzen) die eigentliche Quelltextbasis nicht. Mit CIDE koénnen zusitzlich
Feature-Modelle erstellt werden und iiber ein Auswahlmenii konnen Features gewéhlt
und Varianten erzeugt werden. Abbildung 2.3 zeigt einen Bildschirmausschnit von CIDE
und wie Quelltext mittels Farben markiert wurden.

Zu den Kompositionsansitzen zéhlen Ansitze, die Komponententechnologie [SGMO02]
verwenden. Hierbei wird versucht, dass jedes Feature in einer Komponente gekapselt

2.1. Software-Produktlinien 11

& ColoredIDE - Stack.java - Eclipse SDK 10 x|
File Edit Source Refactor Mavigate Search Project Colors Run Window Help
-G8 #-0-Q- | |G-]800 0 I | @ coloredine -

AR, - O)

= = Y
Stack.java 8 Lack.java | = O t= astview 22 7

Shack = mport java.io. PrintStvrean; Hdd C d = =
public class Stack { / 3 v X i
=8} (defaulk package)

D ek s puslic Scackiint nersize, || INESRGINSSERGTREGRE) | &

[elementData = mew Object [maxSize]; --SingleVariahleDeclara -
| -[J] StatisticObject , iable binding: |
-2 JRE System Library et I

private int size = 0; Feature COde

private Object[] elementData;

public boolean pushiObject o) {

- EXTRA_DIMENSIONS: ‘0" J

/ Feat ures - THROWN_EXCEPTIONS (0)

= BoDyY

hd - Block [128, 73] -
. E B J
- ™
Problems Preview\fiew!q Feature Interactions &3 s =0

- Allinter actions (1)
B Interactions by Feature (2)
4| | _,I - All derivatives (3)

| B Stack.java - Stack || smofzm @ |

Abbildung 2.3: Entwicklungsumgebung CIDE [KAKO8]

wird. Diese Komponenten werden dann zu einer Variante zusammengesetzt. Fiir das Zu-
sammenspiel mehrerer Komponenten ist zusétzlicher Programmquelltext (Glue-Code)
notwendig, der von einem Entwickler an die Auswahl der Features angepasst werden
muss. Ein automatisches Generieren der Variante ist damit schwer umzusetzen.

Ebenfalls sind Frameworks [JF88] moglich, um eine SPL zu implementieren. Das Fra-
mework bietet Basisfunktionalitdten und wird mittels Plug-ins erweitert. Im Falle einer
SPL miissen dann Features in Plug-ins gekapselt werden. Zu den Nachteilen der Fra-
meworks gehort, dass bei der Entwicklung des Frameworks festgelegt wird, an welchen
Stellen ein Plug-in Erweiterungen einfiihren kann (sogenannte Hot-Spots). Miissen neue
Hot-Spots eingefithrt werden, kann dies dazu fithren, dass Anderungen an allen Plug-ins
notwendig sind. Des Weiteren konnen Frameworks sehr umfangreich werden, was die
Entwicklung von Plug-ins erschwert. Bei Komponenten und Frameworks besteht auch
weiterhin das Problem, dass es unter Umstédnden nicht immer mdoglich ist, ein Feature
in genau einer Komponente oder Plug-in zu modularisieren.

Die Aspekt-orientierte Programmierung [KLM*97, KHH'01] geht genau dieses Pro-
blem an und bietet sich daher fiir die Implementierung von SPL an. Hierbei beschreiben
Aspekte an welcher Stelle im Quelltext zusétzlicher Programmcode ausgefiithrt werden
soll. Aspekte sind sehr méchtig und bieten viele Sprachkonstrukte und Ausdrucksméog-
lichkeiten an. Dies wird teilweise aber auch als kritisch betrachtet, da dadurch die
Syntax komplizierter wird, was in der Praxis zu einer erhthten Fehleranfélligkeit fiih-
ren kann [Ste06]. Fir SPL kann ein Aspekt den Quelltext eines Features enthalten.

12 2. Grundlagen

Dies kann im Umkehrschluss dazu fithren, dass Aspekte sehr gro3 und uniibersichtlich
werden.

Ebenfalls zu den Kompositionsansétzen gehort die Feature-orientiere Programmierung.
Aufgrund dessen, dass im Rahmen dieser Arbeit ein nativer feature-orientierter Com-
piler entwickelt werden soll, wird auf die FOP im n#chsten Abschnitt gesondert einge-
gangen.

2.2 Feature-orientierte Programmierung

Die Feature-orientierte Programmierung (FOP) [Pre97, BSR03] ist ein Programmier-
paradigma, eignet sich fiir die Implementierung von SPL und zéhlt zu den Kompositi-
onsansitzen. Bei der FOP wird der Quelltext, der zu einem Feature gehort, in einem
Modul modularisiert. Dies fithrt dazu, dass die Abbildung von einem Feature auf die
entsprechende Implementierungseinheiten eine 1:1 Abbildung ist, siehe Abbildung 2.4.
Dies stellt fiir die Implementierung einen Vorteil dar. Quelltext, der zu einem Feature
gehort, kann so leicht gefunden, modifiziert und gewartet werden. Damit wird das Pro-
blem des vermischten und des verstreuten Quelltextes minimiert.

ChatSPL

Implementierungseinheiten

[BasisChat } [Benutzerinterface } Nachrichten

L L] L]
/:DD]
L]

O
/ 7

N
[Konsole} [GUI }[Verschlﬂsselung} [Farbe }

R

L]
[AIgorithmus_A} [AIgorithmus_B } |:|
N

. —

]
]

]

s

Abbildung 2.4: Abbildung der Features auf Implementierungseinheiten [KXS09]

Bei der OOP und der Aufteilung in Klassen handelt es sich um ein bekanntes und
etabliertes Konzept. FOP nutzt das objektorientierte Paradigma als Grundstruktur um
auch hier eine hohere Akzeptanz zu schaffen und die Vorteile der OOP zu nutzen. Zuvor
wurde aber gezeigt, dass mit OOP eine 1:1 Abbildung von Features auf Implementie-
rungseinheiten nicht moglich ist, da Features héufig von mehr als einer Klasse imple-
mentiert werden, oder dass eine Klasse mehr als ein Feature implementiert. Aus diesem

2.2. Feature-orientierte Programmierung 13

Grund erweitert die FOP die OOP um die Moglichkeit Klassen aufzuteilen, damit eine
1:1 Abbildung moglich wird. Wird ein Feature von mehreren Klassen implementiert,
nennt sich die Menge der Klassen Kollaboration. Der Teil einer Klasse, der ein Feature
implementiert, nennt sich Rolle. Eine Klasse kann mehrere Rollen in unterschiedlichen
Kollaborationen spielen. In Abbildung 2.5 wird dieser Zusammenhang grafisch darge-
stellt. Die Klasse Server spielt Rollen in den Features BasisChat und Verlauf. Das
Features GUI besteht aus der Kollaboration der Klassen Client und UserInterface.

Klassen
Server Client Nachricht Userlnterface
-
BasisChat |
L

| .
Kollaborationen

GUI
Konsole

Algorithmus_A

Features

Algorithmus_B

Farbe

I | | e | e | I Y I |

Verlauf |

Abbildung 2.5: Kollaborationsdiagramm der Chat-SPL

In den nachfolgenden Abschnitten werden mit AHEAD und FeatureHouse zwei Ver-
treter der FOP vorgestellt. Diese beiden Vertreter sind recht weit verbreitet und es
existieren einige Beispielprojekte. Als Teil dieser Arbeit soll ein nativer FOP-Compiler
erstellt werden, der kompatibel zu AHEAD und FeatureHouse sein soll. Aus diesem
Grund wird in den néchsten beiden Abschnitten recht detailliert auf die beiden Um-
setzungen eingegangen. Daneben gibt es noch weitere Vertreter der FOP, auf die in
dieser Arbeit nicht néher eingegangen wird. Fiir die Programmiersprache C++ gibt es
beispielsweise FeatureC++ [ALRS05] und fir XML existiert mit Xak [ADTO07] eine
entsprechende Umsetzung.

2.2.1 AHEAD

Algebraic Hierarchical Equations for Application Design (AHEAD) wird von Batory
et al. entwickelt. Dabei handelt es sich um ein Paket von Programmen fiir die FOP.
AHEAD verwendet eine schrittweise Verfeinerung (Step-wise Refinement) [BSRO3] zur
Umsetzung der FOP. Eine Basis-Implementierung wird dabei schrittweise um weitere
Funktionen erweitert. Ubertragen auf SPL wird eine Basisimplementierung schrittweise

14 2. Grundlagen

um weitere Features erweitert. AHEAD verwendet dabei modulare Blocke, die jeweils
die Quelltexte eines Features enthalten. Das Kompositionsprogramm (engl. Compo-
ser) von AHEAD erzeugt aus diesen Blocken eine Variante der SPL. AHEAD kann
als Basis-Sprache Java verwenden und erweitert diese um neue Schliisselworter und
Sprachkonstrukte.

—|

Client jak =
— N —
Feature 1 - Client.java Client.class
Nachricht.jak "
.
— Nachricht.java Nachricht.class
N
Client.
L
Feature 2
N Equation-Datei
Nachricht.jak (Auswahl der Features)

Abbildung 2.6: Umsetzung der FOP mit AHEAD

Abbildung 2.6 zeigt den grundsétzlichen Ablauf vom Feature-orientierten Quelltext zum
Bytecode. AHEAD verwendet fiir jedes Feature einen Ordner. In diesem Ordner befin-
den sich die Quellen, die das Feature implementieren. Die Dateien verwenden als Endung
Jak. In der Equation-Datei wird die Auswahl der Features und die Reihenfolge, in der
die Features komponiert werden, festgelegt. Die Bedeutung der Reihenfolge der Featu-
rekomposition wird in Abschnitt 2.2.3 erlautert. Nach der Komposition gibt AHEAD
nativen Java-Quelltext aus. Dieser kann von einem Standard Java-Compiler iibersetzt
werden. Wie zuvor beschrieben, baut AHEAD auf Java auf und erweitert diese um
neue Sprachkonstrukte und Schliisselworter. Diese erweiterte Java-Sprache heifit Jak,
was die Kurzform von Jakarta ist. Die zusétzlichen Schliisselworter sind: refines, layer
und Super. Die Verwendung der neuen Sprachkonstrukte wird anhand eines Beispiels
im Quelltext 2.3, Quelltext 2.4 und Quelltext 2.5 gezeigt. Das Beispiel besteht aus zwei
Features, die von AHEAD eingelesen und zu einer Klasse komponiert werden.

Die Komposition erfolgt mit Hilfe eines sogenannten Mixin-Ansatzes [SB02, KALO7].
Bei diesem Ansatz wird die schrittweise Verfeinerung mit Hilfe einer Klassenhierarchie
umgesetzt. Das Ergebnis der Featurekomposition mit dem Mixin-Ansatzes befindet sich
im Quelltext 2.5.

AHEAD unterstiitzt zusétzlich einen Jampack-Ansatz, der im Rahmen dieser Arbeit
nicht n#éher betrachtet wird. Die Standardeinstellung bei AHEAD stellt der Mixin-
Ansatz dar und Publikation zu AHEAD beziehen sich hauptséchlich auf die Umsetzung
durch den Mixin-Ansatz. Des Weiteren wird mit FeatureHouse ein Vertreter vorgestellt,
der einen Jampack-Ahnlichen Ansatz verwendet. In [KALO7] werden beide Ansitze
verglichen.

—_ =

—_ =

— O © 00O Uk W

— O © 00O Utk W

2.2. Feature-orientierte Programmierung 15

layer Basis;

public class Nachricht({
Client client;

public void sendeNachricht (String inhalt) {
//Einige Zeilen der Implementierung
sendelInhalt (inhalt);

}

//Viele weitere Zeilen

Quelltext 2.3: Basisimplementierung mit AHEAD

layer Verlauf;
import java.util.x;

public refines class Nachricht{
ArraylList verlauf = new ArrayList();

public void sendeNachricht (String inhalt) {
verlauf.add (inhalt) ;
Super (String) .sendeNachricht (inhalt);

Quelltext 2.4: Klassenverfeinerung der Klasse Nachricht mit AHEAD

Anhand dieses Beispiels konnen die neuen Sprachkonstrukte diskutiert werden. Das
Schliisselwort layer verwendet AHEAD, um eine Datei einem Feature zuordnen zu
kénnen und wird aus implementierungstechnischen Griinden benétigt.

Die Klassenverfeinerung erlaubt es, in bestehende Klassen neue Methoden und Felder
einzufiigen oder bestehende Methoden zu verdndern. Mit dem Schliisselwort refines
wird eine solche Klassenverfeinerung beschrieben. Hinter dem Schliisselwort steht dann
der Name der Klasse, die verfeinert werden soll. Der Rest der Verfeinerung verhélt
sich dann wie eine normale Java-Klasse und kann entsprechend Felder, Methoden und
Konstruktoren enthalten. Wie in dem Beispiel zuvor gezeigt wurde, wird bei der Kom-
position der Inhalt der originalen Klasse zu einer abstrakten Klasse umgewandelt. Der
Inhalt der verfeinerten Klasse wird in eine Klasse verschoben, die von der abstrakten
Klasse erbt. Gibt es nun in beiden Klassen eine Methode, die die gleiche Signatur hat,
wird beim Aufruf der Methode jeweils die letzte Verfeinerung ausgefithrt. Um nun auf
die Methoden der original Klasse zugreifen zu konnen wird das Schliisselwort Super
verwendet. Hinter dem Schliisselwort wird zunéchst eine Liste der Typen der Parame-
ter angegeben (hierbei handelt es sich ebenfalls um eine implementierungstechnische
Notwendigkeit). Hinter dieser Liste steht dann die Methode, die aufgerufen werden soll.
Aus dem Ergebnis wird deutlich, dass AHEAD das Super durch ein super ersetzt und
sich somit die Klassenhierarchie zu nutzen macht.

00 O Ui Wi

©

16 2. Grundlagen

package ChatSPL;
import java.util.x;

abstract class Nachricht$$Basis {
Client client;
public void sendeNachricht (String inhalt) {
//Einige Zeilen der Implementierung
sendelInhalt (inhalt);

}

public class Nachricht extends Nachricht$$Basis {
ArrayList verlauf = new ArrayList();

public void sendeNachricht (String inhalt) {
verlauf.add (inhalt);
super.sendeNachricht (inhalt);

Quelltext 2.5: Kompositions beider Klassen mit AHEAD

Neben Methodenverfeinerungen, bietet AHEAD zusétzlich noch eine Konstruktorver-
feinerung an. Hierfiir wird wieder das Schliisselwort refines verwendet. Innerhalb einer
Klassenverfeinerung kann ein refines Kontruktor () stehen. Der Inhalt dieser Kon-
struktorverfeinerung wird dann an das Ende des originalen Kontruktors gehangen.

Neben Klassen kénnen auch Interfaces verfeinert werden. Die Verfeinerungen verhalten
sich genauso wie Klassenverfeinerungen, natiirlich mit den Einschrénkungen, die ein
Interface mit sich bringt.

Neben diesen Erweiterungen, die die FOP moglich machen, bringt die aktuelle Version
der AHEAD Implementierung einige Einschrankungen mit sich.

e AHEAD unterstiitzt keine Packages. Besonders bei grofieren Projekten fehlt somit
ein wichtiges Werkzeug zur Modularisierung.

e AHEAD unterstiitzt nur Java 1.4. Somit sind neue Sprachkonstrukte, wie die neue
For-Schleife und Generics nicht moglich.

Neben Java als objektorientierte Programmiersprache unterstiitzt AHEAD weitere
Sprachen, wie zum Beispiel die Bali-Grammatik [Sar03] und XML-Dateien. Diese sind
fiir die Arbeiten nicht weiter von Bedeutung und es wird auf die Internetseite von
AHEAD ! verwiesen.

2.2.2 FeatureHouse

FeatureHouse [AKL09] verwendet, im Gegensatz zu AHEAD, keine neuen Schliissel-
worter sondern setzt auf eine Formalisierung, die von Apel et al. [ALMKO8] entwickelt

Thttp:/ /userweb.cs.utexas.edu/ schwartz/ATS.html

http://userweb.cs.utexas.edu/~schwartz/ATS.html

2.2. Feature-orientierte Programmierung 17

wurde. Diese Formalisierung dient dazu, die Gemeinsamkeiten der unterschiedlichen
Techniken zur Implementierung von Rollen zu analysieren und zu diskutieren. Die For-
malisierung zeigt auch, dass das Feature-orientierte Paradigma nicht nur auf einzelne
Sprachen angewandt, sondern fiir viele Softwareartefakte genutzt werden kann (Prinzip
der Uniformitét). Zu einer SPL kénnen nicht nur Quelltexte gehoren, sondern auch Do-
kumentationen, in Form von Text- oder HTML-Dateien und Grammatiken, die ebenfalls
durch Features erweitert und verfeinert werden kénnen.

Der erste Schritt der Formalisierung ist, dass ein Feature mit einem anderen Feature
zu einem komplexeren Feature komponiert wird. Ein Programm besteht aus einer Men-
ge von komponierten Features. Den néchsten Schritt bilden die sogenannten Feature
Structure Trees (FSTs). Ein Feature besteht aus einem Quelltextartefakt, und kann in
eine Baumstruktur {iberfiihrt werden. Diese Baume weisen die wesentliche Struktur des
Artefaktes auf. Im Falle von Java konnen dies Pakete (Packages), Klassen, Felder und
Methoden sein. Auf Informationen wie beispielsweise Initialwerte wird verzichtet.

In der Abbildung 2.7 wird die Klasse Nachricht als FSTs gezeigt. Jeder Knoten hat
dabei einen Namen und einen Typ. Die Komposition stellt nun eine von der Wurzel be-
ginnende Uberlagerung (Superimpositions) von zwei FSTs dar (siehe Abbildung 2.7).
Bis zu diesem Punkt ist dieser Ansatz komplett sprachunabhéngig. Viele Programmier-
sprachen lassen sich in so eine Baumstruktur iiberfithren und Bidume kénnen rekursiv
iiberlagert werden. FeatureHouse unterstiitzt eine Vielzahl von Sprachen, hierzu z&h-
len: Java, C#, C, Haskell, JavaCC und XML. Dies zeigt, dass sich der FOP Ansatz bei
FeatureHouse nicht nur auf Objekt-orientierte Sprache anwenden lésst, sondern auch
auf imperative und funktionale Programmiersprachen und auf Auszeichnungsprachen
wie XML.

Kompositions-
operator

Methode

@ Methode @ @ Methode

Abbildung 2.7: Uberlagerung von Feature structured Tree

Haben zwei Knoten den gleichen Namen und Typ werden sie iiberlagert. Anschliefend
werden die Kinder rekursiv iiberlagert. Werden zwei Knoten auf Grund unterschied-
licher Typen oder Namen nicht iiberlagert so werden beide Knoten in den Zielbaum
eingefiigt. Fiir einige Knoten ist eine Uberlagerung nicht trivial und es sind Kompo-
sitionsregeln notwendig. Dies betrifft zum Beispiel Knoten vom Typ Methoden oder

N OO W N~

18 2. Grundlagen

Felder. In der Formalisierung werden solche Knoten als Terminalknoten bezeichnet. In
[AKLO09] werden fiir Java beispielsweise einige Kompositionsregeln gezeigt:

e Zwei Methoden kéonnen komponiert werden, in dem die Methode aus dem ersten
Baum von der Methode aus dem zweiten Baum iiberschrieben wird. Eine andere
Méglichkeit ist die Verwendung eines original ()-Aufrufes (dhnlich dem Super-
Aufruf in AHEAD), der die original Implementierung der Methode ausfiihrt. In
der momentanen Version von FeatureHouse wird dies mittels Umbenennen und
Aufrufen der alten Methode umgesetzt (siche Quelltext 2.8). Der eigentliche An-
satz von FeatureHouse setzt auf sogenanntes Inlining [DA99], dabei wird der
Inhalt der originalen Methode an die Stelle des original () eingefiigt.

e Zwei Felder werden komponiert, wenn nur ein Feld einen Initialwert besitzt.

e Implementierte Interfaces werden i{ibernommen und doppelte Eintrage werden
eliminiert.

e Fine Klasse, von der mittels extends geerbt wird, wird iibernommen, sollte die
andere Klasse von keiner anderen Klasse erben (keine Mehrfachvererbung)

e Die Liste der geworfenen Exception einer Methode wird iibernommen und dop-
pelte Eintrédge werden eliminiert.

e Die Liste der Import-Deklarationen wird {ibernommen und doppelte Eintrége wer-
den eliminiert.

Im Quelltext 2.6, Quelltext 2.7 und Quelltext 2.8 wird das gleiche Beispiel wie bei
AHEAD gezeigt, diesmal aber mit dem Ergebnis, das FeatureHouse liefert. Anstelle
einer Klassenhierarchie wird bei FeatureHouse ein Jampack-Ansatz [SB02, KALO7]
verwendet. Das Ergebnis ist eine Java-Klasse in der alle Methoden und Felder unter-
gebracht sind. Die Methode sendeNachricht () aus der ersten Klasse wird umbenannt
in sendeNachricht__ wrappee_ Basis () und der orignal()uﬁuﬂﬂﬁ wird in den Me-
thodenaufruf sendeNachricht__wrappee_ Basis (inhalt); unugﬂwandeh“[HEz%usgabe
kann dann mit einem Java-Compiler iibersetzt werden.

public class Nachricht {
String inhalt;
public void sendeNachricht () {
//Einige Zeilen der Implementierung
sendeInhalt (inhalt);

Quelltext 2.6: Basisimplementierung mit FeatureHouse

© 00 O U W

0O Ui Wi =

2.3. Compiler 19

import java.util.x;
public class Nachricht {
ArrayList verlauf = new ArrayList ();

public void sendeNachricht () {
verlauf.add(inhalt);
original (inhalt);

Quelltext 2.7: Klassenverfeinerung der Klasse Nachricht mit

import java.util.=x;
public class Nachricht {
String inhalt;

public void sendeNachricht__wrappee_ Basis () {
sendelInhalt (inhalt);
}

public void sendeNachricht () {
verlauf.add(inhalt);
sendeNachricht__wrappee_ Basis (inhalt);

}

ArrayList verlauf = new ArrayList();

Quelltext 2.8: Komposition beider Klassen mit FeatureHouse

2.2.3 Reihenfolge der Featurekomposition

Ein weiterer Punkt, der bei der Komposition der Features beriicksichtigt werden muss,
ist die Reihenfolge in der die Features komponiert werden. Dies gilt fiir AHEAD und
fiir FeatureHouse. Die Formalisierung, die im Abschnitt zuvor vorgestellt wurde, zeigt,
dass die Komposition nicht kommutativ ist [ALMKO8]. Ein Feature A komponiert mit
dem Feature B, muss somit nicht das gleiche Ergebnis liefern, wie die Komposition
von Feature B mit Feature A. Ein kleines Beispiel ldsst diesen Zusammenhang leicht
erkennen (vgl. Quelltext 2.9). Ein Feature Basis wird mit den beiden Features A und B
komponiert. Je nach Reihenfolge der Features A und B erhélt man als Ausgabe, ,,Rot
Blau Text* oder ,Blau Rot Text".

Damit eine eindeutige Reihenfolge festgelegt ist, verwendet AHEAD und FeatureHou-
se eine sogenannte Fzrpression- oder FEquation-Datei. In dieser Datei wird neben der
Auswahl der Features auch die Reihenfolge festgelegt.

2.3 Compiler

In dem Abschnitt zuvor wurden die Grundlagen der FOP diskutiert und mit AHEAD
und FeatureHouse wurden zwei mogliche Umsetzungen gezeigt. In diesem Abschnitt

00 O Ui Wi

©

20 2. Grundlagen

public class Farbe { //Feature Base
public void male () {
System.out .println ("Text");
}
}

public class Farbe { //Feature A
public void male () {
System.out.println ("Blau_");
original();

}

public class Farbe { // Feature B
public void male () {
System.out.println ("Rot_");
orignal () ;

Quelltext 2.9: Beispiel fiir die Reihenfolge der Features

werden Grundlagen iiber Compiler (dt. Ubersetzer) und Compilerbau vorgestellt, die
fiir die Implementierung eines nativen FOP-Compilers benttigt werden. Das Compiler-
Framework JastAdd, das im Abschnitt 2.4.1 prasentiert wird, baut auf diesen Grund-
lagen auf. In Abbildung 2.6 wurde schon einmal der Begriff Compiler verwendet. Der
Java-Compiler liest den Quelltext ein und wandelt ihn in eine andere Sprache um (in
diesem Fall in Bytecode). Fiir die Entwicklung oder die Erweiterung eines Compilers
ist nun ein detaillierter Blick auf die ,,Blackbox* Compiler notwendig.

Intern wird der Compiler in zwei Bereiche eingeteilt, dem sogenannten Front-End und
Back-End [SLAO8]. Der interne Aufbau wird in Abbildung 2.8 dargestellt. Im Front-
End findet die Analyse und eine Vorverarbeitung des eingelesenen Quelltextes statt.
Dabei wird der Quelltext in eine andere Darstellungsform (Syntax-Baume , Drei-Adress-
Befehle, usw. [GE99]) transformiert, die fiir die weitere Verarbeitung besser geeignet
ist. Im Back-End kann der Quelltext auf verschiedene Arten optimiert und am Ende
in die Zielsprache transformiert werden. In Abbildung 2.8 wird ein typischer Aufbau
eines Compilers dargestellt. Je nach Verfasser oder in konkreten Implementierungen
konnen einige Blocke zusammengefasst oder in dieser Form gar nicht vorhanden sein.
Beispielsweise gibt es scannerless parsing, wobei dann ein Scanner und ein Parser nicht
in separater Form vorhanden , sondern in einer Einheit zusammengefasst sind [Vis97].

Als erstes liest der Scanner (auch unter dem Begriff Lexer zu finden) den Quelltext ein.
Die Hauptaufgabe des Scanners ist es, dass Programm in logisch zusammengehorige
Einheiten (so genannte Tokens) zu zerteilen. Der Scanner erkennt hierbei Schliissel-
worter, Bezeichner, Operatoren und Konstanten, diese werden in die Symboltabelle
eingetragen. Zusétzlich werden Leerzeichen und Kommentare entfernt.

Die néchsten Schritte werden von einem Parser erledigt. Der Parser arbeitet mit den
vom Scanner erstellten Tokens. Aufgabe des Parsers ist, eine syntaktische Analyse des

0 O Ui Wi =

2.3. Compiler 21

Compiler

Front-End Back-End

y

Programm
als Zeichenstream
Maschinencode
|- .
> ' -

Abbildung 2.8: Aufbau eines Compilers

Programms und die Uberfithrung in eine Darstellungsform, die zur weiteren Analyse
besser geeignet ist. Grundlage hierfiir bilden kontextfreie Grammatiken, die die Sprache
beschreiben.

Im Quelltext 2.10 befindet sich eine Grammatik fiir eine Teilmenge von Java-
Anweisungen. Die Pfeile werden als ,kann die Form haben“ interpretiert. Eine solche
Regel wird als Produktion bezeichnet. Schliisselworter wie if, while und die Klammern
werden als Terminale bezeichnet. Die Variablen wie stmt oder expr stellen wiederum
Sequenzen von Terminalen dar und werden als Nichtterminale bezeichnet.

Die Grammatik im Quelltext 2.10 beschreibt, dass eine Anweisung (statement) entweder
die Form einer Zuweisung (Zeile 1), einer if-Anweisung (Zeile 2- 3), einer Schleife (do-
while, und while) (Zeile 4-5) oder weiteren Anweisungen haben kann (Zeile 6). Die
Zeilen 7 und 8 beschreiben, dass Anweisungen wiederum aus weiteren Anweisungen
bestehen kann, oder keine Anweisungen enthalten (das e steht fiir den leeren String).
Es existieren noch eine Vielzahl unterschiedlicher Grammatiken [GJ06], die fiir diese
Arbeit aber nicht von Bedeutung sind.

stmt —> id = expression ;
| if (expression) stmt
| if (expression) stmt else stmt
| while (expression) stmt
| do stmt while (expression) ;
| { stmts }
stmts —> stmts stmt
| e

Quelltext 2.10: Grammatik fiir eine Teilmenge von Java-Anweisungen

Wie zuvor beschrieben, eignet sich zur syntaktischen Analyse eine Zwischendarstellung
besser, als der eigentliche Quelltext. Abstrakte Syntaxbdume stellen eine solche Zwi-
schendarstellung dar. Fiir diese Arbeit wird der gebrauchliche englische Begrift Abstract
Syntax Tree (AST) verwendet. Ein Ausdruck wird in einen AST iiberfiihrt, dabei stellt

22 2. Grundlagen

jeder innere Knoten einen Operator und die Kinder die Operanden dar. Als Beispiel
kann der Ausdruck if (inhalt == ’Hallo’) counter = counter +1; in die Baumstruk-
tur iiberfithrt werden, die in Abbildung 2.9 dargestellt wird.

if (inhalt == '"Hallo'")
counter = counter +1;

4
o

Abbildung 2.9: Transformation von Quelltext in eine Baumstruktur

Stand der Technik und der Wissenschaft sind heute Generatoren fiir Parser und Scanner.
Diese werden mittels Konfigurationsdateien fiir die jeweilige Sprache konfiguriert und
erzeugen leistungsfihige Scanner und Parser. Aus diesem Grund wird auf den internen
Aufbau und die genaue Funktionsweise nicht ndher eingegangen. Fiir die Implemen-
tierung des nativen FOP-Compilers werden solche Generatoren fiir den Scanner und
Parser verwendet.

Im Anschluss wird eine semantische Analyse des eingelesenden Quelltextes durchge-
fithrt. Hierbei kann beispielsweise iiberpriift werden, ob eine Variable deklariert wurde,
bevor sie verwendet wurde. Zusétzlich kann bei einer Variablenzuweisung iiberpriift
werden, ob der Wert vom Typ kompatibel zu der Variablen ist, hierfiir werden Typ-
Systeme verwendet [Pie02]. Bei der FOP kann beispielsweise iiberpriift werden, ob zu
einer Klassenverfeinerung eine Klasse existiert, die verfeinert werden kann.

Zur Optimierung kann eine weitere Zwischendarstellung des Quelltextes besser geeignet
sein. Hierfiir kann der Quelltext beispielsweise in 3-Adress-Befehle umgewandelt werden

[GE99).

Im Back-End findet zunéchst eine maschinenunabhéngige Codeoptimierung statt. Hier-
bei wird iiberpriift, ob Variablen eventuell nicht benttigt werden, oder ob Methoden-
aufrufe durch Inlining ersetzt werden kénnen. Im Anschluss daran wird der eigentliche
Maschinencode fiir die Zielmaschine erzeugt und in einem weiteren Schritt optimiert.
Bei dieser Optimierung wird die Rechnerarchitektur des Zielsystems beriicksichtigt, zum
Beispiel den Einsatz der Register.

Damit ist ein moglicher Aufbau eines Compilers beschrieben. Soll ein bestehender Com-
piler erweitert werden, sind Anderungen an vielen Stellen des Compilers notwendig.

2.4. Compiler-Frameworks 23

Compiler-Frameworks, die im néchsten Abschnitt vorgestellt werden, helfen dem Ent-
wickler leichter Anderungen vorzunehmen. Da im Rahmen dieser Arbeit ein Compiler-
Framework verwendet wird, welches das Back-End bereitstellt, wurde dieses Thema nur
sehr oberflichlich behandelt.

2.4 Compiler-Frameworks

Ein Compiler besteht aus vielen komplexen Einheiten, die das eingelesende Programm
analysieren, optimieren und in eine andere Sprache iibersetzen. Soll ein bestehender
Compiler erweitert werden, stellt dies keine triviale Aufgabe dar, da Anderungen an
vielen Stellen im Compiler notwendig sind [HMO03]. Des Weiteren kénnen solche Ande-
rungen leicht zu Fehlern fiithren. Aus diesem Grund sind Compiler-Frameworks entwi-
ckelt worden, die dem Entwickler bei der Neuerstellung und Erweiterung bestehender
Compiler helfen sollen.

Im Rahmen dieser Arbeit soll, wie bereits erldautert, ein nativer FOP-Compiler ent-
wickelt werden, der kompatibel zu AHEAD und FeatureHouse ist. Da es sich hierbei
um eine erweiterte Java Sprache handelt, muss dem entsprechend auch ein Compiler-
Framework fiir Java ausgewihlt werden. Zu den bekannteren Vertretern gehoren die
folgenden Frameworks:

e JastAdd [Ekm06, EHO7D]
e Polyglot [NCMO3]

e Jaco [ZOO01]

Jaco schied aus, weil unter anderem auf der Internetseite keine ausfiihrliche Dokumen-
tation vorhanden ist und das Framework nur Java 1.4 unterstiitzt und somit nicht sehr
Zukunftsfihig ist.

Die Wahl fiel auf JastAdd, da die letzte Version von Polyglot von 14. August 2008
stammt und die Internetseite von JastAdd einen aktuellen Eindruck macht. Des Wei-
teren bietet JastAdd eine sehr ausfiihrliche Dokumentation und Beispielprojekte an.

Mit den Moglichkeiten des JastAdd Frameworks wurde ein Java 1.4 Compiler auf die
Java Version 1.5 erweitert. Dies zeigt eindrucksvoll die Erweiterungsmoglichkeiten. Das
Framework erlaubt es neue AST-Knoten zu erstellen und diese mittels Aspekten zu
erweitern.

Die Wahl auf JastAdd fiel in einem frithen Stadium dieser Arbeit, so dass die ande-
ren Frameworks nicht weiter betrachtet wurden. Im nachfolgenden Abschnitt wird die
Funktionsweise von JastAdd ndher betrachtet.

24 2. Grundlagen

2.4.1 JastAdd

Compiler-Frameworks sollen den Entwickler dabei unterstiitzen vorhandene Sprachen
zu erweitern oder Compiler fiir neue Sprachen zu erstellen. Mit JastAdd steht ein auf
Java-basiertes Framework zu Verfiigung, das fiir diese Zwecke genutzt werden kann. Im
Rahmen dieser Arbeit soll kein Compiler fiir eine neue Sprache entwickelt, sondern die
Sprache Java erweitert werden. Aus diesem Grund wird nicht JastAdd in seiner Grund-
form verwendet, sondern der JastAdd Extensible Java Compiler (JastAddJ)-Compiler
[EHO7a]. Hierbei handelt es sich um einen erweiterbaren Java 1.5 Compiler, der mit den
Moglichkeiten des Frameworks JastAdd erweitert werden kann. In diesem Abschnitt
wird ein Uberblick, iiber die Erweiterbarkeit des Frameworks gegeben. Eine detaillierte
Vorstellung des Frameworks anhand der Sprache PicoJava findet sich in Anhang B.
Die Erweiterungsmoglichkeiten des JastAddJ-Compilers lassen sich in vier Gruppen
einteilen.

Verwendung von java-basierten Scanner- und Parsergeneratoren

Hinzufiigen neuer AST-Knoten

Neue Methoden und Felder mittels Aspekt-Technologie in bestehende AST-
Knoten einfiigen

Vorhandene Knoten durch eine Rewritable Reference Attributed Grammar [EH04]
veréndern

Durch die Verwendung von Java-basierten Scanner- und Parsergeneratoren setzt Ja-
stAdd auf bestehende Generatoren. Im JastAddJ-Compiler wird als Scannergenerator
JFlex ? verwendet. In einer Konfigurationsdatei werden beispielsweise Schliisselworter
oder der Aufbau von Kommentaren der Programmiersprache Java beschrieben.

Als Parsergenerator wird Beaver ® verwendet. In einer entsprechenden Datei wird die
Java-Grammatik mit ihren Produktionsregeln beschrieben. Die Produktionsregeln ha-
ben einen dhnlichen Aufbau, wie die, die im Quelltext 2.10 gezeigten werden. Zusétzlich
enthalten sie Anweisungen zum Erzeugen der AST-Knoten. Im Quelltext 2.11 wird ein
Beispiel gezeigt, das die Produktionsregel fiir die leere Anweisung darstellt. Diese Pro-
duktionsregel beschreibt, dass die Anweisung nur aus einem Semikolon besteht. In den
geschwungenen Klammern befindet sich der Konstruktoraufruf fiir den entsprechenden

AST-Knoten.

EmptyStmt empty_statement =
SEMICOLON {: return new EmptyStmt (); :} ;

Quelltext 2.11: Produktionsregel fiir eine leere Anweisung

Sollen neuen Sprachkonstrukte hinzugefiigt werden, sind in vielen Féllen auch neue
Knoten im AST notwendig. JastAdd verwendet hier eine abstrakte Grammatik, die die

2http://iflex.de/
3http:/ /beaver.sourceforge.net/

http://jflex.de/
http://beaver.sourceforge.net/

2.4. Compiler-Frameworks 25

Knoten beschreibt. Die Beschreibung eines Knotens enthélt den Namen, von welchem
anderen Knoten geerbt wird und welche Knoten als Kinder existieren. Aus dieser Be-
schreibung erzeugt das Framework eine Java-Klasse, die den AST-Knoten reprisentiert.
Die Klasse enthélt die passenden Konstruktoren und Felder. Methoden zum Erreichen
der Felder oder Setzen neuer Kinder werden ebenfalls generiert. Die zuvor gezeigte lee-
re Anweisung wird durch folgenden Ausdruck beschrieben: Emptystmt : Stmt;. Der
Doppelpunkt driickt aus, dass die leere Anweisung von dem Knoten Stmt erbt.

Das Framework JastAdd bietet zwei weitere Werkzeuge an, die es erlauben, neue Funk-
tionalitdten in bestehende Knoten einzufiigen. Diese Funktionalitdten kénnen in Aspek-
ten imperativ und deklarativ beschrieben werden.

Deklarative Aspekte beschreiben den Zielzustand einer Variablen. Des Weiteren lassen
sich dadurch Werte im AST nach oben oder nach unten propagieren [Ekm06]. Ein gutes
Beispiel stellt die PrettyPrint-Methode dar, die aus dem AST wieder den Quelltext als
Zeichenkette erstellt. Der deklarative Aspekt beschreibt, dass es eine Zeichenkettenva-
riable gibt, und fiir die unterschiedlichen AST-Knoten wird angegeben, wie dieser Wert
zu berechnen ist. Im Rahmen dieser Arbeit wurde von deklarativen Aspekten wenig
Gebrauch gemacht und sie werden daher an dieser Stelle nicht tiefer behandelt. Fiir
weitere Informationen sei auf die Internetseite von JastAdd * verwiesen.

Ein imperativer Aspekt fiigt einem Knoten neue Methoden und Felder hinzu. Der
Aspekt besteht aus normalen Java-Quelltext, der in die entsprechenden Klassen hin-
zugefiigt wird. Zusétzlich besteht die Moglichkeit, Methoden aus anderen Aspekten zu
iiberschreiben. Hierfiir wird das Schliisselwort refine verwendet. Die originale Methode
kann durch einen speziellen Aufruf aufgerufen werden.

Die imperativen Aspekte wurden im Rahmen dieser Arbeit héufig verwendet und das
Beispiel in Quelltext 2.12 soll die Funktionsweise darstellen. Der Aspekt A fiigt der
Klasse Block ein Feld counter und eine Methode showDescription hinzu. Aspekt B nutzt
das Schliisselwort refine um die bestehende Methode aus Aspekt A zu iiberschreiben. In
Zeile 12 wird die originale Implementierung der Methode showDescription aufgerufen.

Mit der Rewritable Reference Attributed Grammar konnen bestehende Knoten durch
andere ersetzt werden. Beispielsweise erzeugt der Parser einen Knoten fiir einen all-
gemeinen Methodenaufruf. Durch passende Regeln kann dann entschieden werden, ob
es sich um einen statischen- oder virtuellen Methodenaufruf handelt. Das Framework
ersetzt den allgemeinen Knoten durch einen spezialisierten Knoten.

Fiir die FOP werden neue Sprachkonstrukte in die Sprache Java integriert. Fiir das Ver-
stdndnis, an welchen Stellen bei der Implementierung, die im Kapitel 4 gezeigt werden,
neue Knoten eingefiigt werden, ist ein schematischer Aufbau und Hierarchie des Java-
ASTs im JastAddJ-Framework notwendig. Die komplette Java-Grammatik besteht aus
fast tausend Zeilen mit Produktionen und dreihundert verschiedenen AST-Knoten. Ein
vollstandiger Uberblick wiirde den Rahmen dieser Arbeit sprengen und auch nicht dem
Verstéandnis dienen. Aus diesem Grund wird in Abbildung 2.10 eine stark vereinfach-
te Hierarchie gezeigt, die alle notwendigen Knoten enthélt, die fiir diese Arbeit von
Bedeutung sind.

4http:/ /jastadd.org/jastadd-reference-manual /

http://jastadd.org/jastadd-reference-manual/

26

2. Grundlagen

Constructor
Declaration

Declaration

Program

Compilation
Unit

Type
Declaration

Class
Declaration

Method
Declaration

Variable

Declaration

Method
Access

Compilation
Unit

Type
Declaration

Interface
Declaration

Abbildung 2.10: Vereinfachte Hierarchie des Java-ASTs

00 O Ui Wi

— = = e =
= w N = O o

2.4. Compiler-Frameworks 27

aspect A{
public int Block.counter;

public void Block.showDescription () {
System.out.println ("Block");
}
}

aspect B {
refine A void Block.showDescription () {
System.out.println ("Ein_verbesserter_");
A.Block.showDescription();

Quelltext 2.12: Imperativer Aspekt zum Einfiigen neuer Methoden und Felder

Der oberste Knoten stellt die Klasse Program dar. Darunter befinden sich Knoten vom
Typ CompilationUnit. Jeder CompilationUnit-Knoten représentiert eine eingelesende
Quelltext-Datei, beziehungsweise eine kompilierbare Einheit. Diese kann wiederum Kno-
ten enthalten, die als TypeDeclaration bezeichnet werden. Ein Knoten TypeDeclaration
besteht wiederum aus Klassendefinitionen oder Interfaces. Klassen und Interfaces haben
jeweils einen Klassen- oder Interfacekorper (Body), in dem dann Konstruktoren, Me-
thoden oder Felder enthalten sind. Methoden bestehen aus Anweisungen (Statements),
zum Beispiel if-Anweisungen, Schleifen oder Variablendeklarationen. Die néchst tiefere
Ebene bilden Ausdriicke (Expressions). Hierzu gehéren Vergleiche, Zuweisungen oder
Boolsche Ausdriicke. Damit ist die Hierarchie der Knoten in sehr vereinfachter Form
dargestellt. Im realen AST befinden sich noch viele weitere Knoten, die hier aus Griin-
den der Ubersichtlichkeit weg gelassen wurden. Hierzu zédhlen beispielsweise Knoten
vom Typ Liste, die aus implementierungstechnischen Griinden enthalten sind.

In diesem Abschnitt wurden die Moglichkeiten des Frameworks JastAddJ beschrieben.
Mit Hilfe von Scanner- und Parsergeneratoren kénnen neue Sprachkonstrukte eingefiigt
oder bestehende Sprachen erweitert werden. Der Parser erzeugt einen AST aus Klas-
sen, die mit dem JastAdd Framework erstellt wurden. Die Knoten werden mittels einer
abstrakten Grammatik beschrieben. Mit Hilfe von Aspekten kénnen die Knoten verfei-
nert werden und mit der Rewritable Reference Attributed Grammar konnen bestehende
Knoten durch andere oder spezialisierte Knoten ersetzt werden.

JastAdd zeichnet sich dadurch aus, dass die zuvor beschrieben Erweiterungsmog-
lichkeiten modular in einzelnen Dateien und diese in einem separaten Erweiterungs-
ordner gespeichert werden. Alle Erweiterungen, die beispielsweise fiir die AHEAD-
Sprachkonstrukte verwendet werden, kénnen so modular implementiert werden. Eine
Datei mit dem Namen AHEAD.parser beschreibt dann alle notwendigen Anderungen
am Parser. Gleiches gilt fiir neue AST-Knoten oder Aspekte. Durch diese Vorgehens-
weise bleibt auch der erweiterte Java-Compiler weiterhin gut erweiterbar.

Damit sind die Grundlagen des Frameworks beschrieben, damit im Kapitel 4 die Imple-
mentierung eines nativen FOP-Compilers vorgestellt werden kann. Zunéchst werden im

28 2. Grundlagen

néichsten Abschnitt die Vorteile diskutiert, die durch den Einsatz eines solchen Compi-
lers entstehen.

3. FOP Fehlererkennung und
Erweiterungsmaoglichkeiten

Die FOP kann bei der Programmiersprache Java Klassen- oder Interfaceverfeinerungen
verwenden, um bestehende Klassen oder Interfaces durch neue Methoden oder Felder
zu erweitern. Dazu verwendet AHEAD neue Sprachkonstrukte und FeatureHouse setzt
auf eine Formalisierung und Uberlagerung von Klassen oder Interfaces. Neben Program-
mierfehlern, die die Sprache Java betreffen, entstehen durch die Verfeinerungen neue
potentielle Fehlerquellen, die erkannt werden miissen. In dem ersten Abschnitt dieses
Kapitels werden einige spezifische Fehler gezeigt, die bei der FOP auftreten kénnen. Die-
se Fehler dienen im darauf folgenden Abschnitt 3.2 dazu, zu belegen, wo es bei AHEAD
und FeatureHouse Probleme und Verbesserungspotential gibt. Im Abschnitt 3.5 wird
gezeigt, wie ein nativer FOP-Compiler diese Probleme 16sen kann und welche weiteren
Vorteile entstehen konnen.

3.1 FOP spezifische Fehler

Durch die Erweiterung bestehender Programmiersprachen um die Moglichkeit der Klas-
senverfeinerung, entstehen neue potentielle Fehlerquellen, die zusitzliche Uberpriifun-
gen benotigen. Dabei muss es sich nicht unbedingt um direkte Fehler handeln, sondern
es kann auf ein problematisches oder fehleranfilliges Design hinweisen, das verbessert
werden sollte. Thaker et al. beschreiben dies mit dem Ausdruck design that ,smells
bad“ [TBKCO7, FBB'99]. Die nachfolgenden Abschnitte zeigen einige solcher Designs
und Fehler.

FOP Syntaxfehler

Verfeinerungen von Klassen kénnen durch neue Sprachkonstrukte beschrieben werden.
Dabei besteht die Moglichkeit, dass die neuen Sprachkonstrukte Syntaxfehler enthalten.

© 00 O Uik W

30 3. FOP Fehlererkennung und Erweiterungsmdoglichkeiten

Es muss tiiberpriift werden, ob eine Klassenverfeinerung richtig aufgebaut ist, beispiels-
weise refines class Client anstelle von class refines Client. Des Weiteren diir-
fen Methodenaufrufe zu verfeinerten Methoden (super ()-Aufrufe) nur innerhalb von
Methoden verwendet werden, die in Klassenverfeinerungen stehen. Neue Schliisselwor-
ter diirfen nur an den vorgesehenen Stellen verwendet werden.

Leerlaufende Klassenverfeinerungen

Bei einer Klassenverfeinerung kann der Fall auftreten, dass die verfeinerte Klasse gar
nicht existiert oder erst spéter, durch ein anderes Feature, eingefithrt wird. Die Klas-
senverfeinerung lauft entsprechend ins Leere. Dies deutet darauf hin, dass entweder das
Feature-Modell oder die Implementierung fehlerhaft ist.

Bei einem fehlerhaften Feature-Modell kann beispielsweise das Feature, das die Klasse
einfithren soll, nicht mit dem Feature der Klassenverfeinerung ausgewéhlt werden. Die
Implementierung kann fehlerhaft sein wenn ein falscher Klassenname verwendet wird.
In beiden Féllen sollte der Entwickler durch eine Fehlermeldung informiert werden
[TBKCO07].

In dem Quelltext 3.1 wird ein Beispiel zu den leerlaufenden Klassenverfeinerung gezeigt.
Die Klassenverfeinerung in Feature A lduft ins Leere, da die Klasse Nachricht erst mit
dem Feature B eingefiihrt wird.

layer A;

public refines class Nachricht{
Sre k)

}

layer B;
public class Nachricht{
VT 4

}

Quelltext 3.1: Klassenverfeinerung ohne originale Klasse

Mehrfaches Einfiigen von Klassen / Interfaces

Ein beliebiges Feature kann eine Klasse neu einfithren. Wurde eine Klasse mit dem
gleichen Namen zuvor durch ein anderes Feature eingefiihrt, wird je nach Komposi-
tionsverfahren die alte Klasse iiberschrieben. Hierbei handelt es sich nicht direkt um
einen Fehler und es kann vom Entwickler beabsichtigt sein. Thaker et al. beschreiben das
mehrfache Einfiithren als mogliche Fehlerquelle oder als schlechtes Design [TBKCO07].
Das Problem des mehrfachen Einfithrens von Klassen ist nicht nur FOP spezifisch son-
dern tritt beispielsweise auch bei der Aspekt-orientierten Programmierung [AGMOOG]
auf.

Zum Beispiel kann eine Klasse von mehreren Features verfeinert und dann anschlieSend
von einem Feature durch eine komplett andere Klasse ersetzt werden. Im Quelltext 3.2

0 O Ui Wi

3.1. FOP spezifische Fehler 31

wird ein entsprechendes Beispiel gezeigt. Die Klasse Nachricht wird von dem Feature
A eingefiihrt und von dem Feature B verfeinert. Feature C fithrt die Klasse Nachricht
neu ein und iiberschreibt die vorher gegangenen Ergebnisse. Da stellt sich die Frage,
ob die Features A und B {iberhaupt in Kombination mit Feature C ausgewéhlt werden
diirfen. In so einem Fall ist eine Anpassung des Featuremodells sinnvoller [TBKCO7].

layer A;

public class Nachricht({
int i;

}
layer B;

public refines class Nachricht{
String inhalt;

}

layer C;

public class Nachricht({
Client absender;

}

Quelltext 3.2: Mehrfaches Einfiigen von Klassen

Komposition von Feldern

Wird ein Feld in eine bestehende Klasse eingefiigt, in der ein solches Feld schon existiert,
konnen, in Abhéngigkeit der Initialwerte, Fehler bei der Featurekomposition entstehen.
Je nach Kompositionsalgorithmus konnen eventuell Initialwerte {ibernommen werden.
Besitzen beide Felder einen Initialwert, sollte ein Fehler erzeugt werden [AKLO09].

In Quelltext 3.3 wird ein Beispiel fiir die Komposition von Feldern gezeigt, bei dem
durch Feature A ein Feld i eingefithrt und in der Methode print auf den Wert 23
gesetzt wird. In dem Feature B wird ebenfalls ein Feld ¢ eingefiihrt und mit dem Wert
5 initialisiert. Zusétzlich wird die Methode print verfeinert, die die originale Methode
aufruft und davor und danach die Variable i ausgibt.

Typfehler

Typfehler entstehen beispielsweise wenn einem Feld ein Wert oder Objekt zugewiesen
wird, welches vom Datentyp nicht kompatibel ist.

Im Quelltext 3.4 wird ein Typfehler gezeigt, der durch die FOP entstehen kann. Das
Feature A fithrt die Klasse Nachricht mit der Methode empfangeNachricht ein. Diese
Methode hat als Riickgabewert eine Zeichenkette. Das Feature B verfeinert diese Me-
thode und ruft die originale Methode mit einem super () -Aufruf auf. Der Riickgabewert
der originalen Methode wird in dem Integerfeld status gespeichert werden. Dies fithrt zu
einem Typfehler, da der Riickgabewert vom Typ nicht kompatibel zu dem Integerfeld
ist. Aufgabe des Typsystems ist es solche Fehler zu erkennen.

00 O Ui Wi

©

0O Ui Wi =

32 3. FOP Fehlererkennung und Erweiterungsmdoglichkeiten

layer A;
public class Nachricht{
int i;

public void print () {

i = 23
}
}
layer B;
public refines class Nachricht{
int i = 5;

public void print () {
System.out.println(i);
Super () .print () ;
System.out.println(i);

Quelltext 3.3: Beispiel zur Komposition von zwei Feldern

layer A;
public class Nachricht({

public String empfangeNachricht () {
Va4
return "Foo";
}
}

layer B;
public refines class Nachricht{
int status;

public String empfangeNachricht () {
status = Super () .empfangeNachricht ();
}

Quelltext 3.4: Beispiel fiir einen Typfehler bei der FOP

Eine andere Art von Typfehler kann entstehen, wenn Methoden, Felder oder Objekte
verwendet werden, die durch ein anderes Feature eingefiihrt werden. Wird das entspre-
chende Feature nicht ausgewéhlt, treten Fehler auf.

Quelltext 3.5 zeigt ein Beispiel, bei der in Feature C ein Feld und eine Methode in die
Klasse Nachricht eingefiihrt werden. Feature B verwendet das Feld und die Methode.
Es wird deutlich, dass Feature B nur verwendet werden kann, wenn Feature C ebenfalls
ausgewdhlt ist. In diesem einfachen Beispiel ist dies noch sehr leicht zu erkennen. In Pro-

0 O Uik Wi

3.1. FOP spezifische Fehler 33

jekten, die aus vielen Features bestehen, kann ein Entwickler méglicherweise iibersehen,
dass die Implementierung der Features von einander Abhéngig ist.

Diese Art von Fehlern lésst sich vermeiden, in dem das Prinzip der schrittweisen Ver-
feinerung beachtet wird und Referenzen sich nur auf zuvor gemachten Verfeinerungen
beziehen [Wir71, LHBLO6]. Fiir die Typsicherheit von Feature Featherweight Java wird
ebenfalls vorgeschlagen, dass Felder und Methoden nur Referenzen zu Features haben
diirfen, die zuvor eingefiihrt worden sind [AKLOS].

In dem zuvor gezeigten Beispiel handelt es sich um einen Fehler, der das Prinzip der
schrittweisen Verfeinerung missachtet. Da diese Art von Fehlern vom Typsystem er-
kannt werden konnen, sollen sie im Rahmen dieser Betrachtung als Typfehler behandelt
werden.

//Featurel;
public class Nachricht({
}

//FeatureZ2
public class refines Nachricht
public void send{
i++;
log ()i

}

//Feature3;
public class refines Nachricht{
int i;
public void log () {
/S
}

Quelltext 3.5: Typsicherheit bei drei Features

Typfehler sollen nur fiir die erstellte Variante erkannt werden. Typsicherheit fiir die
gesamte Produktlinie stellt ein weites Forschungsgebiet dar, und soll hier nicht be-
handelt werden. Es wird auf die entsprechende Literatur verwiesen, zum Beispiel
[HZS05, CP06, TBKCO07, KA08, Thiil0, AKGL10].

Methodenverfeinerung

In AHEAD und FeatureHouse bestehen die Moglichkeiten, neue Methoden einzufithren
oder bestehende Methode zu verfeinern. Aus einer verfeinerten Methode kann auf die
originale Methode mittels eines originalen Methodenaufruf zugegriffen werden. Dieser
wird bei AHEAD mit super () und FeatureHouse mit original () realisiert und darf
nur innerhalb einer Methode stehen, die eine andere Methode verfeinert.

Durch eine fehlerhafte Reihenfolge bei der Featurekomposition kann es passieren, dass
eine Methodenverfeinerung ins Leere lduft, in dem beispielsweise die verfeinerte Me-

0O Ui Wi =

34 3. FOP Fehlererkennung und Erweiterungsmdoglichkeiten

thode erst mit einem spéteren Feature eingefiihrt wird. Oder die Implementierung ist
fehlerhaft, was durch eine falsch geschriebene Methodensignatur passieren kann.

Der nachfolgende Quelltext 3.6 zeigt ein entsprechendes Beispiel. Das Feature A fiihrt
eine Methode log ein. Feature B verfeinert die Methode print, die aber erst durch das
Feature C eingefiihrt wird. Der originale Methodenaufruf innerhalb der print-Methode
lauft ins Leere. In dem Feature C soll eigentlich die Methode log verfeinert werden,
doch durch einen Fehler bei der Implementierung wird die Methode logger verfeinert,
die nicht in der Klasse Nachricht vorhanden ist.

layer A;

public class Nachricht{
public void log(){... }

}

layer B;

public refines class Nachricht{
public void print () {
Super () .print () ;
}
}

layer C;
public refines class Nachricht{
public void print(){...}

public void logger () {
Super () .logger () ;
}

Quelltext 3.6: Beispiel zur Methodenverfeinerung

Damit sind einige der FOP spezifische Fehler beschrieben. Im néchsten Abschnitt wird
gezeigt, wie die bestehenden Ansidtze von AHEAD und FeatureHouse diese Fehler er-
kennen.

3.2 Fehlererkennung bei den bestehende Konzepte

Im Kapitel 2 wurden mit AHEAD und FeatureHouse zwei Ansétze fiir die FOP vor-
gestellt. Bei diesen Anséitzen wird der feature-orientierte Quelltext von den Komposi-
tionsprogrammen in eine nativen Sprache iibersetzt, die dann von dem entsprechenden
Compiler iibersetzt werden kann. In Falle von AHEAD besteht der feature-orientierte
Quelltext aus einer erweiterten Java-Sprache und wird in eine Zwischendarstellung,
die aus nativen Java-Quelltext besteht, umgewandelt (siche Abschnitt 2.2.1 und Ab-
schnitt 2.2.2). Dieser wird dann von einem Java-Compiler in Bytecode iibersetzt.

In diesem Abschnitt wird nun vorgestellt, wie AHEAD und FeatureHouse die spezi-
fischen FOP-Fehler erkennen. Damit wird gezeigt, wo es bei den bisherigen Ansitze
Probleme und Verbesserungspotential gibt.

[\

3.2. Fehlererkennung bei den bestehende Konzepte 35

Softwareprodukte unterliegen einem kontinuierlichen Prozess der Entwicklung. Die hier
gezeigten Ergebnisse beruhen auf der zurzeit aktuellen Version von FeatureHouse (Ver-
sion vom 27.04.2010) und AHEAD (Version vom 19.02.2010). Zukiinftige Versionen
kénnten andere Ergebnisse liefern.

3.2.1 AHEAD
FOP Syntaxfehler

AHEAD erkennt bei der Komposition Syntaxfehler und gibt eine Fehlermeldung aus, in
der der Name der Datei und die Zeilennummer enthalten ist. Die Fehlermeldung bietet
zusatzlich Informationen dariiber, ob an der Fehlerstelle ein Schliisselwort oder ein
Bezeichner erwartet wird. Wird ein super () -Aufruf innerhalb einer Methode verwendet,
die sich in einer normalen Klasse befindet, gibt AHEAD eine Warnung aus und 16scht
den entsprechenden Aufruf.

Leerlaufende Klassenverfeinerungen

Wird eine Klassenverfeinerung komponiert, ohne dass die entsprechende Klasse existiert,
gibt die aktuelle Version von AHEAD eine Fehlermeldung aus. In <eren Versionen
wurde aus der Klassenverfeinerung auf Grund des Mixin-Ansatzes eine normale Klasse
erzeugt.

Mehrfaches Einfiigen von Klassen / Interfaces

AHEAD verwendet einen Mixin-Ansatz zur Umsetzung der Klassenverfeinerung. Dieser
Mixin-Ansatz fithrt aber dazu, dass wenn eine Klasse mehrfach eingefithrt wird, nur
die letzte Definition der Klasse existiert. AHEAD erzeugt eine Warnung, wenn eine
bestehende Definition einer Klasse durch eine andere iiberschrieben wird.

public class Nachricht{
Client absender;

}

Quelltext 3.7: Ergebnis des mehrfachen Einfiigens von Klassen mit AHEAD

Aus dem Beispiel, dass im Quelltext 3.2 gezeigt wird, erzeugt AHEAD den Quelltext 3.7.
In der Ausgabe befindet sich nur noch die Klasse, die von Feature C beschrieben wird.
AHEAD gibt eine Warnung aus, das die Klasse Nachricht durch Feature C iiberschrie-
ben wird.

Komposition von Feldern

Wie in dem Abschnitt 2.2.1 gezeigt wurde, realisiert AHEAD die Klassenverfeinerung
durch einen Mixin-Ansatz, der eine Vererbungshierarchie verwendet. Enthélt die Verfei-
nerung ein Feld, das in der originalen Klassen ebenfalls enthalten ist, entstehen durch
die Komposition zwei Klassen, wobei die Verfeinerung von der originalen Klasse erbt.

0 O Ui Wi

== = = = e
UL W N~ OO

36 3. FOP Fehlererkennung und Erweiterungsmdoglichkeiten

In beiden Klassen gibt es das entsprechende Feld. Ein solcher Zusammenhang wird
als Variable Shadowing (siehe Abschnitt 6.3 in [GJSBO05]) bezeichnet, und stellt eine
potentielle Fehlerquelle dar.

AHEAD erzeugt aus dem Quelltext 3.3 die folgende Klassenhierarchie, die im Quell-
text 3.8 gezeigt wird. Es wird deutlich, dass die Variable 7 in beiden Klassen existiert
und somit auch unterschiedliche Werte haben kann. Wird die Methode print aufgerufen,
erfolgt als Ausgabe , 5 und ,,5¢. Nur innerhalb des Features A hat die Variable ¢ hat.

Dies muss dem Entwickler bei der Programmierung bekannt sein, da zwei Felder mit
dem gleichen Name existieren, die innerhalb der Features unterschiedliche Werte haben
konne.

abstract class Nachricht$$SA {
int i;

public void print () {
i = 23;
}
}

public class Nachricht extends Nachricht$$A {
int 1 = 5;
public void print () {
System.out.println(i);
super.print ();
System.out.println(i);

Quelltext 3.8: Komposition von zwei Felder mit AHEAD

Das Problem, dass unterschiedlichen Features Zugriff auf unterschiedliche Variablen
haben, wurde von Apel et al. fiir verschiedenen FOP-Ansétze untersucht [ALK'09]. Fiir
die FOP werden zusétzliche Zugriffsmodifikatoren vorgeschlagen, die die Sichtbarkeit
und den Zugriff auf Variablen zwischen unterschiedlichen Features regeln.

Typfehler

AHEAD priift die Variante nicht auf Typsicherheit. Aus diesem Grund kann das Kom-
positionsprogramm von AHEAD auch keine Warnungen / Fehler erzeugen, dass bei-
spielsweise ein Feld nicht deklariert und initialisiert wurde bevor es verwendet wird.
Diese Art von Fehlern wird vom Java-Compiler erkannt. Da der Java-Compiler keine
Kenntnisse von den zuvor durchgefithrten Transformationen hat, beziehen sich diese
Typfehlermeldungen auf die Zwischendarstellung, die vom Kompositionsprogramm er-
zeugt werden. Dieses Problem wird im Abschnitt 3.3 noch einmal nédher erldutert.

Methodenverfeinerung

Befindet sich ein originaler Methodenaufruf in einer Methode, die keine andere Metho-
de verfeinert, erzeugt das Kompositionsprogramm keine Fehlermeldung. Wie zuvor im

0O Ui Wi =

3.2. Fehlererkennung bei den bestehende Konzepte 37

Abschnitt 2.2.1 beschrieben, wird das grofle super () durch ein kleines super () ersetzt.
Der nachgeschaltete Java-Compiler erkennt dann, dass es in der originalen Klasse keine
entsprechende Methode gibt, die mit dem super-Aufruf erreicht werden kann.

Der Quelltext 3.9 zeigt die Ausgabe, die AHEAD aus dem Beispiel erzeugt, das in
Quelltext 3.6 vorgestellt wurde. Die super ()-Aufrufe wurden durch super ()-Aufrufe
ersetzt. Der Java-Compiler erzeugt entsprechende Fehlermeldungen, dass die Methoden
logger und print nicht aufgerufen werden koénnen.

abstract class Nachricht$SA({
public void log(){ /*...*/ '}
}

abstract class Nachricht$$B extends NachrichtSSA {
public void print () {
super.print ();
}
}

public class Nachricht extends Nachricht$$B {
public void print (){ /*...x/ }

public void logger () {
super.logger () ;
}
}

Quelltext 3.9: Ergebnis der Methodenverfeinerung und originalen Methodenaufrufe

Bei AHEAD wird der originale Methodenaufruf durch das Schliisselwort super und
dahinter durch den Methodenaufruf beschrieben. Der Methodenaufruf kann aber nicht
nur die verfeinerte Methode, sondern jede Methode in der originalen Klasse beschreiben.
Dies fiihrt nicht direkt zu einem Fehler, doch deutet dies eventuell auf einen ungewollten
Fehler hin. Méchte der Entwickler auf eine Methode in der originalen Klassen zugreifen
kann der Methodenaufruf direkt hin geschrieben werden.

3.2.2 FeatureHouse

In diesem Abschnitt wird gezeigt, wie FeatureHouse die FOP spezifischen Fehler er-
kennt. Es werden die gleichen Beispiele wie bei AHEAD verwendet, nur dass sie
fiir FeatureHouse entsprechend angepasst sind. Der super ()-Aufruf wird durch den
original ()-Aufruf ersetzt und das Schliisselwort refines wird nicht verwendet.

FOP Syntaxfehler

FeatureHouse erkennt bei der Komposition Syntaxfehler und erzeugt eine Fehlermel-
dung, die den Namen der Datei und die Zeilennummer enthélt, an der der Fehler auf-
getreten ist. Der original ()-Aufruf wird bei FeatureHouse nicht als Schliisselwort rea-
lisiert. FeatureHouse iiberpriift daher nicht, ob ein original ()-Aufruf nur innerhalb
einer Klassenverfeinerung verwendet wird.

T W N =

— O © 00O Uk W

—_ =

38 3. FOP Fehlererkennung und Erweiterungsmdoglichkeiten

Leerlaufende Klassenverfeinerungen

FeatureHouse iiberlagert F'STs fiir die Komposition von Features und verwendet keine
neuen Sprachkonstrukte. Eine Klassenverfeinerung unterscheidet sich nicht von einer
normalen Klasse. In dem Beispiel, aus dem Quelltext 3.1, kann ohne das Schliissel-
wort refines nicht entschieden werden, ob Feature A Feature B verfeinern sollte oder
umgekehrt. Dies ist insofern kritisch, da die Featurekomposition nicht kommutativ ist
[ALMKO8].

Mehrfaches Einfiigen von Klassen / Interfaces

In FeatureHouse ist es nicht moglich, eine bestehende Klassen oder Interface komplett
durch eine andere zu ersetzen. Bestehende Klassen werden durch weitere Klassen im-
mer verfeinert. Das Beispiel aus dem Quelltext 3.2 wird von FeatureHouse zu dem
Quelltext 3.10 komponiert.

public class Nachricht{
int i;
String inhalt;
Client absender;

}

Quelltext 3.10: Ergebnis des mehrfachen Einfiigens von Klassen mit FeatureHouse

Thaker et al. beschreiben das mehrfache Einfiigen von Klassen als potentielle Fehler-
quelle, aus diesem Grund ist der FeatureHouse-Ansatz vorteilhaft, da es nicht méglich
ist Klassen zu iiberschreiben [TBKCO07].

Komposition von Feldern

In FeatureHouse werden Felder komponiert und Initialwerte werden {ibernommen. Das
Problem des Variablen Shadowing tritt nicht auf. Quelltext 3.11 zeigt die Ausgabe von
FeatureHouse, die aus dem Quelltext 3.3 generiert wurde. Die Feld 7 existiert nur einmal
innerhalb der Klasse. Die print-Methode liefert die erwartete Ausgabe ,,5 23

public class Nachricht {
int i = 5;

-
Il

public void print__ _wrappee_ A () { 23; '}
public void print () {
System.out.println(i);
print__ _wrappee_ A();
System.out.println(i);

Quelltext 3.11: Komposition von zwei Felder mit FeatureHouse

0 O Ui Wi

3.2. Fehlererkennung bei den bestehende Konzepte 39

Haben bei der Komposition von Feldern beide einen Initialwert wird er Initialwert iiber-
nommen, der von der letzten Klassenverfeinerung stammt. Dies steht in Widerspruch
mit den Kompositionsregeln, die in [AKLO09] fiir FeatureHouse beschrieben werden. Die
Kompositionsregel lautet, dass ein Initialwert nur ibernommen wird, falls die Variable
zuvor noch keinen Initialwert hatte.

In dem Fall, dass beide Felder Initialwerte besitzen, generiert FeatureHouse keine War-
nung. Der Entwickler muss bei der Entwicklung wissen oder der Zwischendarstellung
entnehmen, welcher Initialwert gesetzt wird.

//Feature A;
public class Nachricht({
List liste = new ArrayList();

public void history (String text) {
liste.add (text);
}
}
//Feature B;
public class Nachricht({
List liste = null;
VI
}
/ */
//Komposition aus Feature A und Feature B
public class Nachricht{
List liste = null;

public void history (String text) {
liste.add (text);
}

Quelltext 3.12: Kompositionsproblem von Feldern bei FeatureHouse

Quelltext 3.12 zeigt ein Beispiel fiir die Problematik, dass der Initialwert der letzten
Klassenverfeinerung verwendet wird. Das Feature A enthélt ein Feld liste, das mit ei-
ner ArrayList initialisiert wird. Die Methode history speichert in dem Feld liste eine
Zeichenkette. Das Feature B setzt das Feld liste auf null. Wird die Methode history
aufgerufen wird zur Laufzeit eine Null-Pointer Exception geworfen. Das in diesem Bei-
spiel gezeigte Problem, ist kritisch, da es vom Compiler nicht als Fehler erkannt wird,
sondern erst zur Laufzeit auftritt. Wird das Feature B zuerst komponiert, tritt dieser
Fehler nicht mehr auf.

Typfehler

Diese Art von Fehlern wird bei der Komposition mit FeatureHouse nicht erkannt. Das
Typsystem des Java-Compilers erkennt diese Art von Fehlern. Das Problem besteht,
wie auch bei AHEAD, dass die Fehlermeldungen fiir die Zwischendarstellung gelten
und erst auf den eigentlich feature-orientierten Quelltext abgebildet werden miissen.

40 3. FOP Fehlererkennung und Erweiterungsmdoglichkeiten

Methodenverfeinerung

FeatureHouse verwendet zum Aufrufen der originalen Methoden ein original ()-Aufruf.
Wird ein original ()-Aufruf innerhalb einer Methode verwendet, die keine Methode
verfeinert, bleibt der original ()-Aufruf als normaler Methodenaufruf stehen. Der Java-
Compiler wird dann eventuell erkennen, dass es keine entsprechende Methode gibt. Im
ungiinstigen Fall kann es eine Methode mit passender Signatur geben, so dass diese
Methode aufgerufen wird und das Programm ein anderes Verhalten aufweist.

Handelt es sich um eine verfeinerte Methode, wird der original ()-Aufruf durch den
entsprechenden Methodenaufruf ersetzt.

3.3 Abbildung von Fehlermeldungen auf den Quell-
text

Die bestehenden Konzepte AHEAD und FeatureHouse verwenden ein zweistufiges Ver-
fahren. Der feature-orientierte Quelltext wird von einem Kompositionsprogramm in
nativen Quelltext umgewandelt. Dieser wird von einem Standardcompiler {ibersetzt.
Zuvor wurden einige FOP-spezifische Fehler gezeigt und wie die bestehenden Konzep-
te diese Fehler handhaben. Dabei wurde erwidhnt, dass einige Fehler nicht von den
Kompositionsprogrammen sondern vom Compiler erkannt werden. Zusétzlich kann der
Java-Compiler weitere ,normale* Javafehler erkennen und entsprechende Fehlermeldun-
gen erzeugen.

Der Compiler hat bei diesen zweistufigen Ansétzen keine Kenntnis von den zuvor ge-
machten Transformationen. Tritt bei Ubersetzen ein Fehler auf bezieht sich die Fehler-
meldung auf die vom Kompositionsprogramm erstellte Zwischendarstellung.

In Abbildung 3.1 wird die Abbildung der Fehlermeldung auf die entsprechenden Quell-
textdateien nochmal grafisch dargestellt. Einige FOP-Fehler werden von AHEAD oder
FeatureHouse erkannt und werden direkt auf die passenden Quelltextdateien abge-
bildet. Werden vom Java-Compiler Fehlermeldungen erzeugt, beziehen sich diese auf
die Zwischendarstellung. Die Abbildung von der Zwischendarstellung auf den feature-
orientierten Quelltext muss dann von einem Entwickler oder einer Integrated Develop-
ment Environment (IDE) iibernommen werden.

In dem Quelltext 2.5 und Quelltext 2.8 wurden die Zwischendarstellung von AHEAD
und FeatureHouse gezeigt. In diesen einfachen Beispiel ist Abbildung der Fehler auf
den feature-orientierten Quelltext noch gut realisierbar. Es ist aber sicherlich vorstell-
bar, dass bei umfangreicheren Programmen, mit tiefen Vererbungshierarchien und vielen
Features und Verfeinerungen, eine Abbildung von Fehlermeldung zu zusétzliche Auf-
wand fithrt. Hinzu kommt, dass die Zwischendarstellung von der jeweiligen Implemen-
tierung von AHEAD und FeatureHouse beeinflusst wird (Methoden werden umbenannt,
Vererbungshierarchie, usw.).

Der Entwickler wird dazu gezwungen, sich mit der Zwischendarstellung auseinander zu
setzen, um die Fehler und Warnungen auf den feature-orienterten Quelltext abzubilden.

3.3. Abbildung von Fehlermeldungen auf den Quelltext 41

Transfer durch
Entwickler / IDE
- TS ~
P ~

7 FOP spezifische S N Fehler / Warnungen
Fehler
v N

Client.jak

Feature 1 | --
N
Nachricht.jak

Nachricht.java Nachricht.class

1

Client.

Feature 2

N
<] Equation-Datei
Nachricht.jak (Auswahl der Features)

Abbildung 3.1: Abbildungen der Fehlermeldungen auf die Quelltextdateien

Dadurch entsteht ein erhohter Aufwand, was die Kosten fiir die Entwicklung und die
Wartung erhoht.

In Abbildung 3.1 wird zusétzlich gezeigt, dass die Abbildung der Fehlermeldungen von
der Zwischendarstellung auf den feature-orienterten Quelltext von einer IDE erledigt
werden kann. Mit FeatureIDE existiert eine Umsetzung, die im nachfolgenden Kapitel
kurz vorgestellt wird.

3.3.1 Fehlermeldung in FeaturelDE

Bei FeatureIDE [LAMS05, KTS"09] handelt es sich um ein Eclipse Plug-in, dass die
Kompositionsprogramme von AHEAD und FeatureHouse integriert und eine IDE zur
Verfiigung stellt.

In Abbildung 3.2 werden zwei Bildausschnitte von FeaturelDE gezeigt, die den Feature-
Modell Editor und die Featureauswahl vorstellen. Die beiden Ausschnitte sollen einen
kleinen Einblick geben, wie eine IDE die FOP durch Werkzeuge unterstiitzen kann. Mit
dem Feature-Modell Editor kénnen Feature-Modelle grafisch erstellt werden. Bei der
Auswahl einer giiltigen Featurekombination wird der Entwickler mittels grafischer Aus-
wahlmentis unterstiitzt. Ein Kollaborationsdiagramm kann ebenfalls angezeigt werden,
das eine grafisch Ubersicht, iiber die Verfeinerung der Klassen, darstellt.

FeatureIDE enthalt einen Quelltexteditor, der Fehler und Warnungen an den richtigen
Stellen im Quelltext anzeigt. Die Zwischendarstellung jeder Klasse enthélt Informatio-
nen aus welchen Features sie komponiert wurden. Damit kann FeaturelDE feststellen
auf welche Quelltextdatei der Fehler abgebildet werden muss. Die richtige Position in-
nerhalb einer Klasse erfolgt mit einer textuellen Suche und dem Abzéhlen von Pro-

42 3. FOP Fehlererkennung und Erweiterungsmdoglichkeiten

el

5 Foure

)

Abbildung 3.2: Zwei Auschnitte von FeaturelDE

grammzeilen. Tritt beispielsweise in der Zwischendarstellung der Fehler in Methode A
in der vierten Zeile auf, wird diese Zeile im feature-orientierten Quelltext gesucht.

Dieser Ansatz liefert aus praktischer Sicht gute Ergebnisse, doch lassen sich Situatio-
nen finden, in der die Fehlermeldungen nicht an die richtigen Stelle gesetzt werden. In
der Abbildung 3.3 wurde vor der Layer-Anweisung ein Kommentar eingefiigt, was bei
Quelltextdateien durchaus iiblich sein kann. Dies fiihrt dazu, dass die richtige Zeile fiir
die Fehleranzeige nicht richtig berechnet werden kann, da durch den Kommentar die
Zwischendarstellung verdndert wird. Durch den einzeiligen Kommentar verschiebt sich
die Zwischendarstellung um eine Zeile, was dazu fiihrt, dass der Fehler eine Zeile zu tief
angezeigt wird.

Dieses Beispiel soll die Leistungsfihigkeit von FeatureIDE nicht negativ bewerten. Die
Suche kann angepasst werden und eventuell wurde dies in einer neueren Version von
FeatureIDE schon erledigt. Das Beispiel soll aber zeigen, dass diese Art der Umsetzung
der Abbildung von Fehlermeldungen gute Ergebnisse liefern kann, aber das Ganze auf
textueller Suche und Abzihlen von Programmzeilen beruht. Dies kann anfillig fiir Fehler
sein. Andert sich die Zwischendarstellung, auf Grund einer neueren Version des Kom-
positionsprogramms, muss auch die Abbildung der Fehlermeldungen angepasst werden.

3.4 Zusammenfassung der Ergebnisse

In diesem Abschnitt werden die Ergebnisse der Fehlererkennung von AHEAD und Fea-
tureHouse, bei den zuvor gezeigten FOP spezifischen Fehler, zusammengefasst. Dazu
bietet die Tabelle 3.1 einen Uberblick der Ergebnisse. FeatureIDE verwendet als Kom-
positionsprogramm AHEAD oder FeatureHouse, so dass die Ergebnisse bei der Fehler-
erkennung iibernommen wurden.

FOP spezifische Syntaxfehler werden von AHEAD und FeatureHouse erkannt und pas-
sende Fehlermeldungen werden erzeugt.

Leerlaufende Klassenverfeinerugen werden in der aktuellen Version von AHEAD er-
kannt. Bei FeatureHouse tritt dieser Fehler auf Grund des Konzeptes nicht auf. Es kann

3.4. Zusammentassung der Ergebnisse 43

& FeatureIDE - HelloWorld,src/Hello/Main.jak - Eclipse Platform

-0l x|
Ble Edi Movigale Search Project Bun window Help
Irs-Halsls-0-%- |0 |2 -al-0E- - 5 [Festuree R 2
2 Package Explorer 32 = O|[% Heloworld Model [) tanjekliella] £3 e Wonderfulorld equation | = 81(2= ouine 32 o =0
= 4;5| 5 = / /Kommentar o |m Mo data to display avallable,
T ol layer Hello; Please choose a configuration
& C:"':;L whers feature Hello
o
i irpore Java.ucil.; is selecte and buid this
. . cornfiguration.
- HeloWorld [trunkfprojects/Heloworig|| | [LPOEE Java. lang. =
= bin
(= buid public class Main {

-Gy equations
i 6} Beautifubworld equation 54 1 public void print(}) { .,)
6 Hellaworld, squation 54 13.0¢ System. out.priint("Hello"):

i By wonderfulWorld.squation 54 i -
& g e public static void main(String[] args) {

\ B Beautful new Main(].print();

| Eiag Hello ¥

ik Main.jak 54 13,05.09 12:

4% model.m 54 13.05.09 12:28 tthy

4 o

[2 problems 22 &) consols | Il collaboration Dwagvam] Feature Model Edlts] 9] Error Lnﬂ . 7 =g
1 errar, O warnings, O others
Descripkion

[resource [Path [Location [Type
= @ Errors (1 item)
Javac: Cannat find symbol: method print(java lang.String) Main.jek. JHelloworldsrcjHella line 11 Builder
4 | ol | |
o> ‘ Writable ‘ Insert ‘ 11 |

Abbildung 3.3: FeatureIDE: Problem bei der richtigen Anzeige der Fehlermeldung

AHEAD | FeatureHouse | FeatureIDE
FOP Syntaxfehler + + +/+
Leerlaufende Klassen- + 0 +/0
verfeinerung
Mehrfaches Einfithren von + + +/+
Klassen / Interfaces
Komposition von Feldern - - -/
Typfehler - - -/-
/

Methodenverfeinerung 0 0 0
Abbildung der Fehler - - +
auf den Quelltext

- = negativ, o = neutral , + = positiv

Tabelle 3.1: Vergleich der Erkennung FOP spezifischer Fehler mit AHEAD, Feature-
House und FeaturelDE

44 3. FOP Fehlererkennung und Erweiterungsmdoglichkeiten

aber nicht entschieden werden, ob eine Klasse eine Verfeinerung ist oder nicht. Die
Leistung wird als neutral bewertet, da im Vergleich zu AHEAD keine Warnung erzeugt
werden.

Mehrfaches Einfiithren von Klassen ist bei AHEAD moglich. Je nach AHEAD-Version
wird eine Fehlermeldung erzeugt. FeatureHouse umgeht diese potentielle Fehlerquelle,
da mehrfaches Einfiihren von Klassen nicht moglich ist. Existieren zwei Klassen mit
dem gleichen Namen werden sie zu einer Klasse komponiert.

Die Komposition von Feldern bei AHEAD fiihrt dazu, dass in jedem Feature eine Varia-
ble existiert, die unterschiedliche Werte haben konnen. Dies ist kann zu Fehlern fithren
und wird daher mit negativ bewertet.

FeatureHouse iibernimmt, im Gegensatz zu der beschriebene Formalisierung, den Initi-
alwert des letzten Features und gibt keine Fehlermeldung aus. Daher wird die Felder-
komposition mit negativ bewertet.

Typfehler werden weder von AHEAD noch von FeatureHouse erkannt. Der nachfolgen-
de Java-Compiler kann diese Fehler erkennen, dies fithrt aber direkt zu dem néchs-
ten Problem, der Abbildung der Fehlermeldungen auf den Quelltext. Hierbei muss der
Entwickler die Abbildung der Fehlermeldungen, auf den eigentlichen Quelltext, selber
durchfithren und sich intensiv mit der Zwischendarstellung und den Implementierungs-
details der jeweiligen Kompositionsprogramme auseinander setzen. Auf Grund dieses
Zusatzaufwandes wird die Leistung negativ bewertet.

Die originalen Methodenaufrufe konnen bei AHEAD zu dem Problem fiihren, dass eine
andere Methode aufgerufen wird, als die verfeinerte Methode. Bei FeatureHouse kann
ein dhnliches Problem auftreten, wenn ein originaler Methodenaufruf innerhalb einer
Methode verwendet wird, der keine andere Methode verfeinert. In diesem Fall wird der
originale Methodenaufruf nicht umgewandelt.

Da bei AHEAD und FeatureHouse fehlerhafte Methodenverfeinerungen vom Typsystem
erkannt werden, wird die Leistung als neutral bewertet.

Die Abbildung der Fehler auf den Quelltext muss bei AHEAD und FeatureHouse manu-
ell durch den Entwickler erfolgen, was zu zuséitzlichem Aufwand fithrt und daher einen
Nachteil darstellt. Hier zeigt FeatureIDE seine Stéirke und bildet Fehlermeldungen au-
tomatisch auf den richtigen Quelltext ab.

Die Tabelle 3.1 zeigt, dass die bisherigen Ansétze mit dem zweistufigen Verfahren, aus
Kompositionsprogramm und Compiler, besonders im Bereich der Abbildung der Feh-
lermeldungen noch verbessert werden kann. Auch im Bereich der semantischen Uber-
priifung gibt es Potentiel fiir Verbesserungen.

Ein nativer FOP-Compiler benttigt kein separates Kompositionsprogramm und kann
zusétzliche Fehleriiberpriifungen durchfithren. Im néchsten Abschnitt werden die Vor-
teile und Nachteile eines nativen FOP-Compilers detaillierter vorgestellt.

3.5 Nativer FOP-Compiler

Zuvor wurden einige spezifische FOP-Fehler vorgestellt und es konnte gezeigt werden,
dass die bisherigen Ansétze nicht immer befriedigende Ergebnisse liefern. Des Weiteren

3.5. Nativer FOP-Compiler 45

fithrt das zweistufige Verfahren, welches bei AHEAD und FeatureHouse verwendet wird,
dazu, dass die Abbildung von den Fehlermeldungen zu zusétzlichen Aufwand fiihrt.
Mit FeatureIDE wurde eine Integration der beiden Kompositionsprogramme in eine
IDE gezeigt, die die Abbildung der Fehlermeldungen automatisiert. FeatureIDE kann
das Problem der Fehlerabbildung mindern, aber die Behandlung von FOP spezifischen
Fehlern bleibt die gleiche. In diesem Abschnitt wird daher gezeigt, wie ein nativer
FOP-Compiler den Bereich der Fehlererkennung erweitern kann und welche weiteren
Auswirkungen dabei entstehen.

Die Abbildung 3.4 zeigt einen schematischen Aufbau des nativen FOP-Compilers. Ahn-
lich den bisher vorgestellten Ansétzen, werden zunéchst die Feature komponiert und im
Anschluss findet die Ubersetzung in Bytecode statt.

FOP-spezifische Fehler
und
Java Fehler

Y a—

Client.jak

Client.class

Feature

Feature 1 Komposition _ Compiler
Nachricht.jak
Nachricht.class
‘
Client.
Ko
Feature 2
Nachricht.jak Equation-Datei

(Auswahl der Features)

Abbildung 3.4: Schematischer und konzeptionellen Aufbau des nativen FOP-Compilers

Im Gegensatz zu AHEAD oder FeatureHouse wird im nativen FOP-Compiler nur eine
Darstellung des Programms in Form eines AST verwendet. Das bedeutet, dass die Featu-
rekomposition auf die gleichen Informationen zuriickgreifen kann, wie auch der Compi-
ler. Zusétzlich kénnen wihrend der Featurekomposition Funktionen des Compilers (z.B.
das Typsystem) verwendet werden. Dies kann fiir weitere Fehleriiberpriifungen genutzt
werden, die die Komposition sicherer gestalten konnen. Eine Zwischendarstellung, in
Form von nativem Quelltext, wird nicht benttigt. Die einheitliche interne Darstellung
und das Funktionen des Compiler verwendet werden konnen, stellen einen bedeuten-
den Vorteil gegeniiber den bisherigen Ansétzen dar. Welche Nutzen aus diesem Vorteil
gewonnen werden konnen, soll im Anschluss diskutiert werden.

In [TBKCO07, AKLO8] wurden Ansitze gezeigt, um die Featurekomposition sicher zu
gestalten und hierfiir beispielsweise Typsysteme zu verwenden. Die Ansétze beruhen

46 3. FOP Fehlererkennung und Erweiterungsmdoglichkeiten

unter anderem darauf, dass Features nicht isoliert, sondern die gesamte SPL mit allen
Features betrachtet werden muss. Aus diesem Grund wird in dieser Arbeit ein Ansatz
verfolgt, bei dem der native FOP-Compiler zunéchst alle Features einliest und dann
einen AST der gesamten Produktlinien erstellt. Dieser AST kann die Grundlage fiir
weitere Uberpriifungen der SPL bilden. Erst nach diesen moglichen Uberpriifungen,
werden Features entfernt, die nicht ausgewéhlt worden sind.

Zuvor wurden einige FOP spezifische Fehler vorgestellt. Der Compiler kann so imple-
mentiert werden, dass diese Fehler passend erkannt und entsprechende Fehlermeldung
erzeugt werden. Dazu konnen wihrend der Komposition weitere Uberpriifungen im-
plementiert werden, die beispielsweise auch das Typsystem des Compilers verwenden.
Auch koénnen neue Arten von Fehlermeldungen implementiert werden, die sich bei-
spielsweise auf mehrere Quelltextdateien beziehen. Die vorhandene Fehleriiberpriifung
des Compilers iiberpriift die Variante auf semantische Fehler. Niahere Details zu der
Implementierung der Fehleriiberpriifung befindet sich im Kapitel 4.

Tritt beim FOP-Compiler ein Fehler beim Ubersetzen oder bei der Featurekompositi-
on auf, kann auf Grund der einheitlichen Darstellungsform und der Kenntnisse, welche
Features komponiert wurden, zuriick verfolgt werden aus welchem Feature der feh-
lerbehaftete Quelltext kommt. Damit beziehen sich Fehlermeldungen immer auf den
fehlerhaften Quelltext und das Problem der Fehlerabbildung tritt nicht auf.

Die Werkzeugunterstiitzung der FOP kann durch einen nativen FOP-Compiler verbes-
sert werden. Der Compiler kann Informationen aus der Variante und der SPL extra-
hieren und diese Werkzeugen zur Verfiigung stellen. Ein Ziel kann die Integration des
Compilers in FeatureIDE sein. FeatureIDE konnte beispielweise die Informationen aus
dem gesamten AST der SPL, nutzen um Kollaborationsdiagramme zu erstellen oder
eine komfortable Autovervollstindigunsfunktion zu bieten.

Ein Debugger ist heute ein wichtiges Werkzeug zur Entwicklung von Software. Bei den
bisherigen Anséitzen konnte das Debuggen nur auf der Zwischendarstellung erfolgen.
Wie zuvor angesprochen, kann die Zwischendarstellung bei vielen Features sehr um-
fangreich und schwer zu lesen sein. Ein nativer FOP-Compiler bietet die Moglichkeit
an, einen Debugger zu entwickeln, der direkt auf dem feature-orientierten Quelltext
arbeitet. Der Compiler kann als Basis fiir die entsprechende Debugger-Entwicklung die-
nen.

Neben den Vorteilen, die bis jetzt genannt wurden, sind eventuelle Nachteile zu be-
riicksichtigen. Zunéchst einmal entsteht ein hoherer Implementierungsaufwand. Selbst
wenn ein Compiler-Framework zur Erstellung des native FOP-Compilers verwendet
wird, kann die Implementierung und die Wartung schwieriger sein, als bei einem Kom-
positionsprogramm. Ein Entwickler muss sich mit der Featurekomposition und dem
Compiler-Framework auseinander setzen um den FOP-Compiler zu warten oder neue
Features hin zu zufiigen.

Ein anderer Nachteil, der bei der Verwendung eines nativen FOP-Compilers entsteht,
ist, dass dieser Compiler nur fiir eine Programmiersprache funktioniert. FeatureHou-
se und AHEAD unterstiitzen neben der erweiterten Java-Sprache weitere Program-
miersprachen. Der Ansatz von FeatureHouse zeigt durch seine Formalisierung, dass

3.5. Nativer FOP-Compiler 47

viele Sprachen feature-orientiert verwendet werden kénnen. Der Prototyp, der im Rah-
men dieser Arbeit erstellt wurde, kann nur die erweiterte Java-Sprache verarbeiten, da
das verwendete Compiler-Framework einen erweiterbaren Java-Compiler zur Verfiigung
stellt.

Zusammengefasst konnte gezeigt werden, dass die Verwendung eines nativen FOP-
Compilers Vorteile mit sich bringt. Besonders zusitzliche Uberpriifungen und das auf
eine Zwischendarstellung verzichtet werden kann, sprechen fiir einen nativen Compiler.
Im n#chsten Kapitel wird die Implementierung eines FOP-Compiler Prototyps vorge-
stellt. Im Kapitel 5 wird die Leistungsfahigkeit dieses Prototyps evaluiert.

48

3. FOP Fehlererkennung und Erweiterungsmaoglichkeiten

4. Implementierung

Ein Ziel dieser Arbeit ist die Entwicklung eines Prototyps fiir einen nativen FOP-
Compiler. In diesem Kapitel wird die Implementierung eines solchen Compilers mit
dem JastAddJ Framework nédher beschrieben. Der Compiler soll kompatibel zu der
Syntax von AHEAD und FeatureHouse sein, damit unter anderem bestehende Projekte
verwendet werden konnen.

—|

Client.jak
Feature 1
Nachricht. FOP-Compiler
N\ .
p Cli t I
N Gesamt s ient.class
Client. esamier AST der
L—
Feature 2 —
Nachricht.ja Nachricht.class
J
< | =
N
Client.
Feature 3 Equation-Datei
(Auswahl und Reihenfolge
N der Features)
Nachricht.jak

Abbildung 4.1: Schematischer Aufbau des nativen FOP-Compilers

50 4. Implementierung

Die Abbildung 4.1 zeigt den schematischen Aufbau des Compilers. Intern ist der Com-
piler in mehrere Schritte unterteilt, die im Folgenden kurz vorgestellt und in den nach-
folgenden Kapiteln detaillierter diskutiert werden.

Der Compiler liest mit Hilfe des Scanners zunéchst alle Features ein. Der Parser erzeugt
daraus einen AST aller Features. Die Anderungen am Scanner und am Parser werden
im Abschnitt 4.1 beschrieben.

Zusétzlich wird eine Equation- oder Expressiondatei eingelesen, in der die Reihenfolge
und die Auswahl der Features beschrieben ist. Diese Informationen werden genutzt,
um zu entscheiden, welche Teile des ASTs, die zu einem nicht ausgewéhlten Feature
gehoren, geloscht werden konnen. Des Weiteren wird die Reihenfolge festgelegt, in der
die Features komponiert werden. Dies wird in Abschnitt 4.2 gezeigt.

Im Anschluss daran wird im Abschnitt 4.3 die AST-Transformation beschrieben, die die
Komposition der Features darstellt. Dazu wird auf das Konzept, der Uberlagerung von
FSTs, welches von FeatureHouse verwendet wird, zuriickgegriffen. Der Hauptteil der
Transformation stellt die Implementierung der Kompositionsregeln und das Erkennen
von FOP-spezifischen Fehlern dar. Das Ergebnis ist der AST einer Variante.

Im Anschluss wird die Variante auf weitere semantische Fehler iiberpriift.“Zuséitzliche
Erweiterungen fiir die FOP werden im Abschnitt 4.4 gezeigt. Nach der Uberpriifung
erzeugt das, vom Compiler-Framework vorgegebene, Back-End den Bytecode.

Im néchsten Abschnitt wird die Implementierung der Sprachkonstrukte fiir die FOP
mit dem JastAddJ Framework gezeigt. Hierzu gehoren die Anderungen am Scanner
und Parser und die Beschreibung der neuen AST-Knoten.

4.1 Sprachkonstrukte fiir die FOP

Fiir die Umsetzung der FOP verwenden AHEAD und FeatureHouse neue Sprachkon-
strukte und Schliisselworter. Damit der native FOP-Compiler kompatibel zu diesen
beiden Vertretern ist, miissen die entsprechenden Sprachkonstrukte implementiert wer-
den. Fiir ein neues Sprachkonstrukt kénnen folgende Anderungen notwendig sein:

e Hinzufiigen neuer Schliisselworter
e Hinzufiigen von neuen oder Modifizieren von bestehenden Produktionsregeln
e Beschreibung der AST-Knoten in der JastAdd spezifischen Grammatik

e Hinzufiigen von weiteren Konstruktoren in die AST-Knoten mittels Aspekte

In Abhéngigkeit der zu implementierenden Sprachkonstrukte sind nicht unbedingt
neue Schliisselworter, AST-Knoten oder Konstruktoren notwendig. Anderungen an der
Grammatik sind immer notwendig, da sonst kein neues Sprachkonstrukt implementiert
werden kann.

Die Implementierung der Klassen- und Interfaceverfeinerung wird im nachfolgenden
Abschnitt detailliert gezeigt, um das Vorgehen zu verdeutlichen, wie neue Sprachkon-
strukte in JastAdd implementiert werden kénnen.

4.1. Sprachkonstrukte fiir die FOP 51

4.1.1 Klassen- und Interfaceverfeinerung

In diesem Abschnitt wird die Implementierung der Klassen- und Interfaceverfeinerung
detailliert gezeigt, um das Vorgehen bei der Implementierung von neuen Sprachkon-
strukten zu zeigen. Das Sprachkonstrukt der Klassen- und Interfaceverfeinerung erlaubt
es, bestehende Klassen oder Interfaces durch neue Methode und Felder zu verfeinern.
Da die Implementierung von Klassen- oder Interfaceverfeinerungen sehr dhnlich sind,
wird dies zusammen vorgestellt.

Der erste Schritt stellt das Hinzufiigen des Schliisselwortes refines in den Scanner dar.

Fiir die Anderungen am Parser muss zunichst festgelegt werden, an welcher Stelle
im AST Verfeinerungsknoten auftreten konnen. Die Verfeinerungen wurden so Imple-
mentiert, dass sie auf gleicher Ebene wie eine Klassen- oder Interfacedefinition stehen.
Damit kann auf bestehende Knoten fiir die Korper der Verfeinerungen zuriick gegrif-
fen werden, was zu einem reduzierten Aufwand bei der Implementierung fiithrt. Fiir
die Klassenverfeinerung wurde als unterliegender Knoten der bestehende Knoten vom
Typ Classbody gewahlt und fiir die Interfaceverfeinerung entsprechend ein Knoten vom
Typ Interfacebody. So kann innerhalb einer Verfeinerung alles stehen, was auch in einer
Klasse oder einem Interface stehen kann. In Abbildung 4.2 wird dieser Zusammenhang
grafisch dargestellt. Die Abbildung zeigt einen Ausschnitt aus dem vereinfachten AST,
der schon in Abbildung 2.10 gezeigt wurde. Die neuen Knoten sind in der Farbe Rot

dargestellt.
Compilation Compilation
Unit Unit
Type Type Type
Declaration Declaration Declaration
Interface
Declaration

Interface Interface
Body Body

Abbildung 4.2: Position der Klassen- und Interfaceverfeinerung im AST

Compilation
Unit

Type
Declaration

Compilation
Unit

Class
Declaration

In der Grammatik der Java-Sprache muss der Aufbau der Verfeinerung beschrieben
werden. Die neuen Produktionsregeln werden in Quelltext 4.1 detailliert gezeigt. Auf
Grund der Ahnlichkeit von Klassen- und Interfaceverfeinerung wird zur besseren Im-

0O Ui Wi~

52 4. Implementierung

plementierung ein abstrakter Verfeinerungsknoten eingefiihrt, der die Gemeinsamkeiten
abstrahiert.

Die Zeile 1 in Quelltext 4.1 beschreibt die Position im AST. Eine Verfeinerung steht
auf gleicher Ebene wie eine Klassen- oder Interfacedefinition. Eine solche abstrakte
Verfeinerung kann entweder eine Klassen- oder Interfaceverfeinerung sein (Zeile 2-3). In
Zeile 5-7 wird dann der Aufbau der Klassenverfeinerung gezeigt. Zunéchst der optiona-
le Modifikator (public, private usw.), im Anschluss die beiden Schliisselworter refines
und class und danach der Name der Klasse, die verfeinert werden soll. Danach fol-
gen geschwungene Klammern, in denen ein Klassenblock (der Konstruktoren, Felder,
Methoden, usw. enthalten kann) stehen kann.

Die Produktionsregel fiir die Interfaceverfeinerung (Zeile 11-15) ist der Klassenverfei-
nerung sehr dhnlich und unterscheidet sich durch das Schliisselwort interface und das
eine Interfaceverfeinerung anstelle eines Klassenblocks einen Interfaceblock verwendet.

TypeDecl type_declaration = refine_Stmt;
Refine_Stmt refine_Stmt = refine.r {: return r; :}
| refines_interface.r {: return r; :};

Refines refines =
modifiers.m? REFINES CLASS IDENTIFIER
LBRACE class_body_declarations RBRACE
{:return new Refine_Class (new Modifiers(m), "REF "+IDENTIFIER,
class_body_declarations, IDENTIFIER); :}

Refines_interface refines_interface =
modifiers.m? REFINES INTERFACE IDENTIFIER
LBRACE interface_member_ declarations RBRACE
{:return new Refine_Interface (new Modifiers (m), "REF "+IDENTIFIER,
interface_member_ declarations, IDENTIFIER); :};

Quelltext 4.1: Anderungen am Parser fiir die Klassen- und Interfaceverfeinerung

Die AST-Knoten werden vom Compiler-Framework generiert und miissen dafiir in einer
JastAdd spezifischen Grammatik beschrieben werden. In Quelltext 4.2 befindet sich die
Beschreibung fiir die Klassen- und Interfaceverfeinerung.

Wie zuvor erldutert, haben die Klassen- und die Interfaceverfeinerung Gemeinsambkei-
ten, die durch einen abstrakten Knoten abstrahiert werden. Dieser abstrakte Knoten
wird in Zeile 1 beschrieben und erbt von einem Reference Type-Knoten, der wiederum
von dem Knoten TypDeclaration erbt. Die beiden Knoten zur Klassen- (Zeile 2) und
Interfaceverfeinerung (Zeile 3) erben von dem abstrakten Knoten und haben als zu-
satzlichen Knoten eine Zeichenkette. Diese Zeichenkette beschreibt die Klasse, oder das
Interface, das verfeinert werden soll.

Zuletzt werden noch neue Konstruktoren in den AST-Knoten eingefiihrt, damit der
Parser diese Knoten erzeugen kann. Die Konstruktoren werden mittels imperativen
Aspekt eingefiigt. Ein solcher Aspekt, kann wie in Quelltext 4.3 gezeigt, aussehen.

[\

© 00 O U W

4.1. Sprachkonstrukte fiir die FOP 53

abstract Refine_Stmt : ReferenceType;
Refine_Class : Refine_Stmt ::= <Name:String>;
Refine_Interface : Refine_Stmt ::= <Name:String>;

Quelltext 4.2: Beschreibung der Knoten fiir die Klassen und Interfaceverfeinerung

aspect RefinesStmt {
public Refine_Class.Refine_Class(
Modifiers p0O, String pl, List<BodyDecl> p2, beaver.Symbol p3) {
setChild (p0O, 0);
setID(pl);
setChild(p2, 1);
setName (p3) ;

}

Quelltext 4.3: Imperativer Aspekt zum Einfiigen der Konstruktoren fiir die Klassen und
Interfaceverfeinerung

Mit der Klassen- und der Interfaceverfeinerung sind zwei wichtige neue Sprachkonstruk-
te fiir AHEAD implementiert, die es erlauben bestehenden Klassen oder Interfaces zu
verfeinern. Des Weiteren wurde detailliert gezeigt, wie neue Sprachkonstrukte mit Ja-
stAdd realisiert werden konnen. Zunéchst wurde das Schliisselwort refines zum Scanner
hinzugefiigt. Die Java-Grammatik wurde durch weitere Produktionen erweitert. Neue
AST-Knoten werden durch die JastAdd-Grammatik beschrieben und neue Konstruk-
toren werden mittels imperative Aspekte eingefiigt.

4.1.2 Konstruktorverfeinerung

Mit Hilfe der Konstruktorverfeinerung kénnen bestehenden Konstruktoren durch weite-
re Anweisungen verfeinert werden. AHEAD verwendet fiir die Konstruktorverfeinerung
wieder das Schliisselwort refines. Damit stellt die Konstruktorverfeinerung bei AHEAD
ein weiteres Sprachkonstrukt dar, das implementiert werden muss.

In Abschnitt 2.2.1 wurde die Konstruktorverfeinerung vorgestellt. Dabei steht innerhalb
einer Verfeinerung das Schliisselwort refines und dahinter die Konstruktorsignatur, von
dem Konstruktor, der verfeinert werden soll.

Das Schliisselwort refines wurde schon durch die Klassenverfeinerung eingefiithrt und
daher sind keine Anderungen am Scanner notwendig.

In Quelltext 4.4 werden die Produktionsregeln fiir die Konstruktorverfeinerung gezeigt.
Eine Konstruktorverfeinerung wurde so implementiert, dass sie innerhalb einer Klassen
stehen kann (Zeile 1), sieche auch Abbildung 4.3. In Zeile 3-5 wird dann das Sprachkon-
strukt beschrieben. Dieses besteht aus dem Schliisselwort refines und dahinter aus einer
Konstruktorsignatur. Diese Signatur beschreibt, welcher Konstruktor verfeinert werden
soll.

Aus dieser Implementierung folgt, dass eine solche Verfeinerung auch innerhalb einer
Klasse stehen kann, die keine Klasse verfeinert. Die Entwickler des Jast Add-Frameworks

ST W N

54 4. Implementierung

BodyDecl class_body_declaration = constructor_refinement;

Constructor_Refinement constructor_refinement =
REFINES IDENTIFIER LPAREN formal_parameter_list.l? RPAREN
LBRACE block_statements? RBRACE
{...}

Quelltext 4.4: Erweiterungen des Parser fiir die Konstruktorverfeinerung

geben in ihren Préasentationsfolie den Ratschlag, dass der Parser mdoglichst einfach ge-
halten werden soll. Daher wird die Erkennung, dass eine Konstruktorverfeinerung inner-
halb einer normalen Klasse steht, nicht vom Parser erledigt, sondern findet an spéterer
Stelle statt (siche Abschnitt 4.4).

Die néchsten Schritte stellen wieder die Beschreibung des AST-Knotens und das Hin-
zufiigen eines Konstruktors mittels Aspekt dar. Der Aufbau der Beschreibung unter-
scheidet sich nicht sonderlich von der Klassenverfeinerung und wird aus diesem Grund
hier nicht detailliert gezeigt.

4.1.3 Originaler Methodenaufruf

Wenn eine Methode von einer anderen Methode verfeinert wird, kann bei AHEAD
mit Hilfe der super ()-Anweisung und bei FeatureHouse mit Hilfe der original()-
Anweisung auf die originale Methode zugegriffen werden. Im Gegensatz zu der Imple-
mentierung in FeatureHouse wird der original ()- Aufruf mit Hilfe eines Schliisselwor-
tes realisiert. Dies hat den Vorteil, dass besser erkannt werden kann, ob ein original ()-
Aufruf innerhalb einer Methode verwendet wird, die keine andere Methode verfeinert.

Obwohl die Syntax der beiden Sprachkonstrukte unterschiedlich ist, erfiillen beide die
gleiche Funktion und kénnen sehr dhnlich implementiert werden. Aus diesem Grund
werden die beiden Konstrukte zusammen vorgestellt.

Der erste Schritt bildet wieder das Hinzufiigen der neuer Schliisselworter. In diesem Fall
Super und original.

Die Position der originalen Methodenaufrufe wird in Abbildung 4.3 gezeigt. Die origi-
nalen Methodenaufrufe wurden als Ausdriicke (Expressions) implementiert, so dass sie
innerhalb einer Methode an verschiedenen Stellen auftreten kénnen.

In Quelltext 4.5 werden in der Methode neuerClient verschiedene Positionen eines origi-
nalen Methodenaufrufes gezeigt. Wiirden die originalen Methodenaufrufe als Anweisung
(Statement) implementiert, wire auf Grund der Java-Grammatik, nur die erste Position
giiltig. Als Ausdriicke sind die anderen Positionen ebenfalls giiltig.

Der néchste Schritt stellt wieder die Beschreibung der neuen Produktionsregeln fiir den
Parser dar. Die Regeln im Quelltext 4.6 beschreiben den syntaktischen Aufbau und dass
es sich bei den originalen Methodenaufrufe um Ausdriicke (Expressions) handelt.

Da die Funktion der beiden Varianten der originalen Methodenaufrufe sehr &hnlich ist,
wird fiir die beiden Knoten ein abstrakter Knoten verwendet von dem beide Varianten
erben. Die genaue Knotenbeschreibung befindet sich in Quelltext 4.7.

4.1. Sprachkonstrukte fiir die FOP %5}

Field
Declaration

Method
Declaration

Constructor
Declaration

Variable
Declaration

Method
Access

Abbildung 4.3: Position der originalen Methodenaufrufe und Konstruktorverfeinerungen
im AST

1 |public class Server{

2

3 ArrayList client;

4

) public ArraylList neuerClient () {
6 original () ;

7 ArrayList liste = original();
8 client = original();

9 return original();

10 }

11

12 |}

Quelltext 4.5: Unterschiedliche Positionen fiir einen originalen Methodenaufruf

Zum Erzeugen des Knotens ist ein passender Konstruktor notwendig. Dieser wird mittels
imperativen Aspekt in den AST-Knoten eingefiihrt.

© 00 O U W

[\

=W N

56 4. Implementierung

Expr expression refsuper;
Expr expression = original_call;

OriginalMethodCall refsuper=
REFSUPER LPAREN type_list? RPAREN DOT method_invocation
{...};
OriginalMethodCall original_call=
ORIGINAL LPAREN argument_list.l1? RPAREN
{...};

Quelltext 4.6: Produktionsregeln fiir die originalen Methodenaufrufe fiir AHEAD und
FeatureHouse

abstract OriginalMethodCall : Expr;
RefSuper: OriginalMethodCall;
Original : OriginalMethodCall ::= Argument_list:List ;

Quelltext 4.7: Beschreibung der Knoten fiir die originalen Methodenaufrufe

4.1.4 Layer-Anweisung

Die Layer-Anweisung dient in AHEAD dazu, dem Quelltext ein Feature zuordnen zu
konnen. Die Layer-Anweisung besteht aus dem Schliisselwort layer, dem Featurenamen
und einem Semikolon.

Zum Scanner wird das Schliisselwort layer hinzugefiigt.

Eine Quelltextdatei wird von JastAdd als Knoten vom Typ CompilationUnit dar-
gestellt. Aus diesem Grund betrifft die Layer-Anweisung nur den CompilationUnit-
Knoten. Die bestehende Produktionsregel des Knotens wird um die Moglichkeit der
Layer-Anweisung erweitert, so wie es in Quelltext 4.8 durch Fettdruck dargestellt ist.

CompilationUnit compilation_unit =
LAYER IDENTIFIER SEMICOLON
package_declaration.p import_declarations.i? type_declarations.t?

{...}

Quelltext 4.8: Anderung am Parser fiir die Layer-Anweisung

Ein neuer Knoten wird nicht benétigt. Fiir den Knoten CompilationUnit ist zusétzlich
ein neuer Konstruktor notwendig, der mittels imperativen Aspekt eingefiigt wird. Mit
diesen Anderungen akzeptiert der Scanner und Parser eine Layer-Anweisung am Anfang
einer Quelltextdatei und speichert den entsprechenden Featurenamen als Zeichenketten
im AST-Knoten.

Damit sind alle Sprachkonstrukte, die von AHEAD und FeatureHouse benutzt werden,
implementiert. Der Parser ist nun in der Lage, eine AST mit den neuen Sprachkon-
strukte zu erzeugen.

4.2. Auswahl der Features 57

4.2 Auswahl der Features

Im vorherigen Abschnitt wurde die Implementierung der neuen Sprachkonstrukte vor-
gestellt. In Abbildung 4.1 wurde gezeigt, dass der Parser einen AST von der kompletten
SPL erzeugt. Der Grund warum auch nicht ausgewéhlte Features und Quelltextdatei-
en eingelesen werden ist, dass der komplette AST viele Informationen iiber die SPL
enthélt. Fiir spiatere Erweiterungen konnen die Informationen zur erweiterten Werk-
zeugunterstiitzung oder Fehlerdiagnose genutzt werden.

Mit Hilfe der Equation-Datei wird eine Auswahl und die Reihenfolge der Features fest-
gelegt. Werden Features fiir eine Variante nicht ausgewéhlt, miissen Teile des ASTs
geloscht werden. Die Reihenfolge bestimmt, welches Feature ein anderes Feature verfei-
nert.

Eine Equation- oder eine Expressiondatei enthélt die Namen und die Reihenfolge der
Features. Die Dateien bestehen aus einer Liste der Featurenamen, die fiir die Variante
ausgewahlt wurden. Die Reihenfolge, in der die Featurenamen angeordnet sind, legt
gleichzeitig auch die Reihenfolge der Featurekomposition fest.

Der Unterschied zwischen einer Equationdatei (AHEAD) und einer Expressiondatei
(FeatureHouse) besteht im Aufbau der Datei. Eine Expressiondatei kann am Anfang
noch eine Kommentarzeile enthalten, und die Features werden durch Tabulatoren ge-
trennt. Bei einer Equationdatei werden die Features durch Zeilenumbriiche getrennt.
Der in dieser Arbeit vorgestellte Prototyp kann beide Dateien einlesen und auswerten.

Nachdem der Parser den AST erstellt hat, wird die Equation- oder Expressiondatei
ausgelesen. Eine Methode legt im AST-Knoten Program eine Liste an, in der die ausge-
wihlten Features und die Reihenfolge festgelegt sind. Im Anschluss daran miissen Teile
des AST entfernt werden, die zu nicht ausgewéhlten Features gehoren. Jede Klassen-
oder Interfaceverfeinerung lésst sich hierbei immer auf einen AST-Knoten vom Typ
CompilationUnit abbilden. Daraus folgt, dass ein Feature aus einer Menge von AST-
Knoten vom Typ CompilationUnit besteht.

Die Auswahl der Features wird nun so realisiert, dass jeder CompilationUnit-Knoten
iiberpriift wird, ob er zu einem ausgewéhlten Feature gehort. Wenn dies nicht der Fall
ist, wird er entfernt.

Der néchste Schritt stellt die Implementierung der Reihenfolge der Featurekomposition
dar. Fiir die Umsetzung wird auf die Formalisierung, die bei FeatureHouse verwendet
wird, zuriick gegriffen. Dabei wurden FSTs rekursiv iiberlagert. Zunéchst werden alle
Packages in einer Liste gespeichert. Zu jedem Package gehort wiederum eine Liste von
Klassen, Interfaces oder Verfeinerungen. In der zuletzt genannten Liste sind die Objekte
so angeordnet, in der sie auch komponiert werden.

Die Abbildung 4.4 stellt den Schritt der Featureauswahl und die Reihenfolge nochmal an
Hand eines Beispiels grafisch dar. Im oberen Teil der Grafik wird ein Program gezeigt,
in dem noch alle Feature enthalten sind (Feature 1-4). Die Equation-Datei beschreibt,
dass die Feature 1, Feature 2 und Feature 3 in dieser Reihenfolge komponiert werden
sollen. Feature 4 ist nicht ausgewéhlt.

58 4. Implementierung

Mit diesen Informationen erfolgen dann, wie im unteren Teil der Grafik zu sehen ist, die
Komposition der Features von links nach rechts. Das nicht ausgewéhlte Feature 4 und
die dazu gehorigen CompilationUnit wird geloscht und spielt bei der Komposition keine
Rolle mehr. Zunéchst wird Feature 1 mit Feature 2 und im Anschluss Feature 2 mit
Feature 3 komponiert. Dabei werden auch die unterschiedliche Packages beriicksichtigt
und nur Klassen im gleichen Package werden komponiert.

Compilation Compilation Compilation Compilation Compilation Compilation
Unit Unit Unit Unit Unit Unit Feature 1
Feature 2

Feature 3

[Feature4 | [Feature2 | [Feature3 | [Feature 1 | [Feature2 | [Feature3 |

Equation-Datei

1. Komposition 2. Komposition 3. Komposition

ér:pilation Compilation \ Gpilation Compilgtion \ /Co.r-npilation Compilation \
Unit Unit Unit Unit
‘ Feature 3 ‘ Feature 1eFeature 2 Feature 2

Unit Unit

Feature 1 Feature 2 [Feature2 |

_/

Abbildung 4.4: Beispiel zur Auswahl und Reihenfolge bei der Komposition von Features

4.3 Transformation des AST

Der néchste Teil des Compilers enthélt den AST aller Features und die Reihenfolgen,
die festlegt, welche Klassen von welcher Klasse verfeinert wird. In diesem Abschnitt
wird nun die eigentliche Featurekomposition erldutert. Grundlage hierbei bildet die
Formalisierung von FeatureHouse [ALMKO0S8]. Jedes Feature wird durch eine Menge
von Klassen oder Klassenverfeinerung dargestellt. Im Compiler werden diese als AST
dargestellt. Nahe liegend ist hier, die Featurekomposition durch Uberlagerung der ASTs
zu realisieren.

Der AST, der zu einer Klasse gehort, kann daher wie ein FST betrachtet werden. Die
Implementierung der Featurekomposition stellt somit nur noch die Implementierung der
einzelnen Kompositionsregeln fiir zwei Knoten vom gleichen Typ dar. In [AKL09] sind
fiir Java Kompositionsregeln beschrieben, die fiir diese Arbeit teilweise iibernommen
und angepasst wurden. Auf Grund der Kompatibilitdt zu AHEAD und FeatureHouse

4.3. 'Transformation des AST 59

sind die Regeln so zu implementieren, dass das vom Compiler erstellte Programm das
gleiche Verhalten ausweist wie ein Programm, dass mit AHEAD oder FeatureHouse
erstellt wurde. Des Weiteren wurden die Regeln so angepasst, dass die Implementierung
mit dem JastAddJ-Framework moglichst einfach gestaltet werden konnte. Diese Regeln
werde in den nachfolgenden Abschnitten im Einzelnen beschrieben.

Felder

Enthélt eine Klassenverfeinerung ein Feld, wird zunéchst gepriift, ob in der original
Klasse ein Feld mit dem gleichen Namen enthalten ist. Ist dies nicht der Fall, wird
dieses Feld in die original Klasse {ibernommen. Enthélt die original Klasse bereits ein
solches Feld, bestehen mehrere Moglichkeiten:

e Das Feld in der original Klasse und das Feld in der Klassenverfeinerung haben
keinen Initialwert. In diesem Fall wird nichts gedndert.

e Das Feld in der original Klasse hat keinen Initialwert, aber das Feld in der Klas-
senverfeinerung besitzt einen. In diesem Fall wird der Initialwert iibernommen.

e Das Feld in der original Klasse hat einen Initialwert, das Feld in der Klassenver-
feinerung aber nicht. In diesem Fall wird nichts verdndert.

e Beide Felder besitzen einen unterschiedlichen Initialwert. Dies fithrt zu einem
Fehler beim der Featurekomposition.

import-Anweisungen

Enthélt eine Klassenverfeinerung import-Anweisungen werden diese in die originale
Klasse iibernommen. Dies ist notwendig, damit nach der Komposition alle benétigten
Klassen eingebunden werden kénnen. Doppelte Anweisungen werden ignoriert.

Implementierte Interfaces

Enthélt eine Klassenverfeinerung implementierte Interfaces werden diese in die origi-
nal Klassen iibernommen. Eine Klassenverfeinerung kann sich beispielsweise bei einem
Listener registrieren und ein entsprechendes Interface implementieren. Bei der Kompo-
sition miissen nicht nur die Methoden iibernommen werden, sondern auch das Interface
damit es bei der Registrierung zu keinem Typfehler kommt. Doppelte Interfaceeintriage
werden nicht iibernommen.

Innere Klassen

Innere Klassen werden in die originale Klasse iibernommen, damit sie dort auch genutzt
werden. Existiert eine innere Klasse bereits in der originalen Klasse wird zur Zeit ein
Fehler erzeugt. In zukiinftigen Versionen kann eine Verfeinerung von inneren Klassen
unterstiitzt werden.

60 4. Implementierung

Konstruktor

Enthélt eine Klassenverfeinerung einen Konstruktor, der in der originalen Klasse nicht
enthalten ist, wird dieser iibernommen. Damit kénnen neue Konstruktoren von Featu-
res eingefithrt und verwendet werden. Gibt es in der originalen Klasse einen Konstruk-
tor mit der gleichen Signatur, wird der Inhalt aus der Verfeinerung an das Ende des
Konstruktors in der originalen Klasse gehangen. Das gleiche gilt, wenn eine Konstruk-
torverfeinerung, wie in Abschnitt 4.1.2 gezeigt wurde, verwendet wird. Dadurch kénnen
bestehenden Konstruktoren um weitere Anweisungen erweitert werden.

Methoden

Enthélt die Klassenverfeinerung eine Methode, die in der original Klasse nicht vorhan-
den ist, wird sie iibernommen. Bei einer bereits vorhandenen Methode wird die origina-
le Klasse umbenannt und die verfeinerte Klasse wird eingefiigt. Das Umbenennen der
originalen Methoden erfolgt, damit beide Methoden in der originalen Klassen zur Ver-
fiigung stehen. Die originale Methode wird fiir einen eventuell vorhandenen originalen
Methodenaufruf benétigt. Innerhalb des Knotens der Methodendeklaration wird mit-
tels imperativen Aspekts ein Feld angelegt, das auf die umbenannte originale Methode
zeigt. Nachdem die Methode umbenannt wurde, wird das Feld gesetzt.

Wenn eine bereits vorhandene Methode {iberschrieben wird, besteht die Moglichkeit,
dass innerhalb einer Methode ein originaler Methodenaufruf steht. Dieser kann entweder
durch ein original ()-Aufruf oder durch ein super ()-Aufruf umgesetzt werden. Dafiir
muss zunédchst die gesamte Methode nach so einem Aufruf durchsucht werden. Hierbei
muss der gesamte AST der Methode durchsucht werden, da tiefe Verschattelungen durch
Blocke oder if-else Anweisungen moglich sind.

Wird ein originaler Methodenaufruf gefunden, muss dieser durch den passenden Me-
thodenaufruf ersetzt werden. Der original ()-Aufruf wird durch einen Methodenaufruf
ersetzt. Dieser wird mit Hilfe der Referenz, auf die umbenannte originale Methode,
erzeugt.

Beim super () -Aufruf steht hinter dem Schliisselwort Super ein Methodenaufruf. Die-
ser Methodenaufruf wird mit dem originalen Methodenaufruf verglichen. Besteht ein
Unterschied bedeutet dies, dass nicht die originale Methode aufgerufen wird, sondern
irgendeine andere Methode. Da dies in den meisten Féllen nicht so gedacht ist, und es
sich wahrscheinlich um einen Fehler handelt, wird eine Warnung ausgegeben.

Jast Add spezifische Implementierungsdetails

Zuvor wurden die wichtigsten Kompositionsregeln und deren konzeptionellen Imple-
mentierung beschrieben. Bevor nun die Uberpriifung des AST beziehungsweise des
Programms vorgestellt wird, werden noch zwei Implementierungsdetails erlautert. Dazu
gehort das Zwischenspeichern von Werten in den AST-Knoten und das Erzeugen des
Bytecodes aus den CompilationUnits. Diese Details sollten beachtet werden, wenn der
Compiler erweitert werden soll, da es sonst zu Fehlern bei den nachfolgenden Uberprii-
fungen kommt.

4.4. Uberpriifung 61

Das Compiler-Framework baut die Knoten des AST so auf, dass Werte zwischenge-
speichert und nur einmal berechnet werden. Wird beispielsweise in dem AST-Knoten
MethodDecl die Methode getsignature () aufgerufen, wird die Zeichenkette nur beim
ersten Mal berechnet. Dies sorgt dafiir, dass umfangreichere Berechnungen nur einmal
durchgefiihrt werden miissen. Beispielsweise existiet innerhalb einer Klassendeklaration
eine Liste, die alle Methodensignaturen der entsprechenden Klasse enthélt. Eine solche
Liste ist zum Zeitpunkt der Featurekomposition mit den Methodensignaturen gesetzt.

Werden bei der Komposition neue Methoden und Felder in eine Klasse eingefiigt, wird
diese Liste nicht aktualisiert, da die zwischengespeicherte Liste weiter verwendet wird.
Das fithrt dazu, dass der Compiler ein neu eingefiigtes Feld nicht kennt, obwohl dieses
im AST vorhanden ist.

Nach der Transformation / Komposition des AST miissen zwischengespeicherten Werte
geloscht werden. Hierzu gibt es im AST-Knoten eine flushcaches ()-Methode, die dafiir
sorgt dass alle Werte geloscht und beim nachsten Aufruf neu berechnet werden. Es sollte
darauf geachtet werden, dass nach Verdanderungen am AST die flushcaches ()-Methode
aufgerufen wird, damit keine Fehler durch nicht mehr aktuelle Werte entstehen.

Nach der Transformation findet eine Uberpriifung aller Knoten statt. Hierzu wiirden
auch die Klassenverfeinerungen zdhlen. Diese Knoten brauchen an dieser Stelle nicht
mehr iiberpriift zu werden, da sie fiir den weiteren Verlauf nicht mehr benotigt werden.
Des Weiteren soll von den Klassenverfeinerungen auch kein Bytecode erzeugt werden.
Um dies zu unterdriicken gibt in dem CompilationUnit-Knoten ein boolesches Feld mit
dem Namen fromSource. Wird dieses Feld auf false gesetzt wird die CompilationUnit
nicht weiter iiberpriift und es wird auch kein Bytecode erzeugt.

4.4 Uberpriifung

Waihrend der Komposition wurde das Programm auf FOP spezifische Fehler iiberpriift,
zum Beispiel auf ins Leere laufende Klassenverfeinerungen oder fehlerhafte originale Me-
thodenaufrufe. In diesem Abschnitt wird in der Uberpriifung das Programm auf weitere
semantische Fehler iiberpriift, die die Sprache Java betreffen. Dazu wird beispielswei-
se iiberpriift ob Variablennamen nicht doppelt vergeben wurden oder ob eine Variable
erst initialisiert wurde bevor sie verwendet wird. Bei der Zuweisung von Werten zu ei-
ner Variable wird iiberpriift, ob der Wert kompatibel zu der Variable ist. Hierzu wird
ein Typsystem [Pie02] verwendet. Zu den weiteren Aufgaben des Typsystems gehort
die Ausnahmebehandlung (Exception-Handling) und die Uberpriifung ob Anweisungen
vorhanden sind, die nicht erreichbar sind.

Im JastAddJ-Framework wird die Uberpriifung so realisiert, dass jeder AST-Knoten
unterschiedliche Priifungen implementieren kann. Bei der Uberpriifung wird dann der
komplette AST durchlaufen und jeder Knoten fithrt die entsprechenden Uberpriifun-
gen durch. Die Transformation, durch die die Klassenverfeinerung realisiert wird, sorgt
dafiir, dass der AST an diesem Punkt ein normales Java-Programm enthélt. Damit
sind fiir die Uberpriifung nur noch wenige Anderungen notwendig, da die Implementie-
rung der Uberpriifung vom Framework bereitgestellt wird. Die Anpassungen, die noch
gemacht werden miissen, werden in den folgenden Abschnitten diskutiert.

62 4. Implementierung

4.4.1 Erkennung falsch platzierter Konstruktorverfeinerungen
und originaler Methodenaufrufe

Im Abschnitt 4.1 wurden die neuen Sprachkonstrukte, wie die Konstruktoverfeinerung
oder die originalen Methodenaufrufe so implementiert, dass sie in jeder Klasse bezie-
hungsweise Methode stehen kénnen. Der Grund dafiir war, dass die Anderungen am
Parser moglichst einfach gehalten worden sind und alles Weitere spéter iiberpriift wird.
Mit Hilfe der Uberpriifung kénnen nun falsch positionierte originale Methodenaufrufe
und Konstruktorverfeinerung erkannt werden.

Wie zuvor beschrieben, ist die Uberpriifung so aufgebaut, dass der gesamte AST durch-
laufen wird und jeder Knoten unterschiedliche Uberpriifungen durchfithren kann. Wh-
rend der Transformation werden alle Konstruktoverfeinerungen und original Methoden-
aufrufe ersetzt. Bei der Konstruktorverfeinerung wird der Inhalt der Verfeinerung an
den verfeinerten Konstruktor gehangen. Der originale Methodenaufruf wird in einen
Methodenaufruf umgewandelt.

Wird bei der Uberpriifung ein Knoten vom Typ Konstruktorverfeinerung oder ein ori-
ginaler Methodenaufruf erreicht, deutet dies darauf hin, dass diese Sprachkonstrukte an
einer Stelle verwendet wurden, an der sie nicht stehen diirfen. Dazu wird in den beiden
Knoten einen Uberpriifung implementiert, die sofort eine Fehlermeldung erzeugt, dass
die entsprechende Konstrukte an dieser Stelle falsch platziert sind.

4.4.2 Positionsangaben der Fehlermeldungen

Im Kapitel 3 wurde gezeigt, dass sich durch den Einsatz eines nativen FOP-Compilers
Fehlermeldungen auf den feature-orientierten Quelltext beziehen. Um dieses zu errei-
chen, miissen die Zeile und die Datei bekannt sein, die den Fehler produziert hat.

Das JastAddJ-Framework bietet in jedem AST-Knoten eine Error- und Warningmetho-
de an. Jeder AST-Knoten besitzt zuséitzlich auch die Information zu welcher Position
(Zeilennummer) im Quelltext er gehort. Wird eine solche Methode vom einem Knoten
aufgerufen, wird der AST nach oben durchlaufen bis er den Knoten CompilationUnit
erreicht. In diesem Knoten befindet sich die Information, zu welcher Datei die Compi-
lationUnit gehort.

Bei der Transformation des ASTs werden Knoten aus einer CompilationUnit (Inhal-
te einer Klassenverfeinerung) in eine andere CompilationUnit (die verfeinerte Klasse)
verschoben. Tritt nun ein Fehler auf, ist die Zeilennummer noch richtig, aber bei der
Bestimmung der Quelltextdatei wird die verfeinerte Klasse und nicht die Klassenverfei-
nerung angezeigt.

Damit die richtige Quelltextdatei angezeigt wird, wird bei der Transformation des AST's
die originale CompilationUnit gespeichert. Wird nun einen Fehlermeldung erzeugt, wird
zunéchst gepriift, ob es sich um einen transformierten Knoten handelt und eine originale
CompilationUnit gespeichert ist. Trifft dies zu, wird die Quelltextdatei aus der originalen
CompilationUnit ausgelesen und an die entsprechende Fehlermeldung iibergeben.

4.4. Uberpriifung 63

4.4.3 Fehlermeldungen fiir zwei Dateien

Bei der FOP werden Klassen von Klassenverfeinerungen erweitert. In einer Quelltext-
datei wird die Klasse und in weiteren Dateien werden die Verfeinerungen beschrieben.
Nun konnen bei der Klassenverfeinerung und im speziellen bei der Komposition, wie
zuvor gezeigt, Fehler auftreten. Beispielsweise wenn in der originalen Klasse und in der
Verfeinerung jeweils ein Feld mit dem gleichen Namen und Initialwert vorhanden ist.
In diesem Fall bezieht sich der Fehler auf zwei unterschiedlichen Positionen in unter-
schiedlichen Quelltextdateien. Fiir diesen Fall wurde eine neue Art von Fehlermeldung
implementiert, die sich auf zwei Quelltextdateien beziehen kann.

Mit der Uberpriifung sind nun alle wichtigen Implementierungsdetails besprochen wor-
den. Der Prototyp des Compilers akzeptiert die Syntax und die neuen Sprachkonstrukte
von FeatureHouse und AHEAD. Die Auswahl und die Reihenfolge der Features werden
mit einer Equation- oder Expresseiondatei bestimmt. Mit Hilfe einer Transformation
des AST werden die Features komponiert. Die Uberpriifung des Programms und das
Back-End werden vom JastAddJ-Framework vorgegeben. Die Funktions- und Leistungs-
fahigkeit werden im Kapitel 5 gezeigt. Dort werden einige Beispielsprogramme mit dem
Prototypen iibersetzt und es findet ein Vergleich mit den bisherigen Ansétzen statt.

64

4. Implementierung

5. Evaluation

In diesem Kapitel wird der Prototyp des nativen FOP-Compilers evaluiert. Dazu wur-
den im Rahmen dieser Arbeit einige feature-orientierte Projekte ausgewéhlt und von
dem Prototypen iibersetzt. Die ausgewéhlten Projekte werden im Abschnitt 5.1 kurz
vorgestellt. Die Ergebnisse der Laufzeitmesssung werden dann mit den Ergebnissen von
AHEAD und FeatureHouse verglichen. Im Anschluss wird im Abschnitt 5.2 gezeigt,
wie der Prototyp, die in Abschnitt 3.1 vorgestellten, FOP spezifischen Fehler erkennt.
Danach erfolgt eine Bewertung iiber die Leistungsfahigkeit des Prototypen.

5.1 Verwendete Programme zur Evaluierung

In diesem Abschnitt werden die ausgewéahlten Projekte kurz vorgestellt, die fiir die
Evaluation genutzt wurden.

5.1.1 Chat-SPL

Bei der Chat-SPL handelt es sich um ein kleines Chat-Programm, das mit AHEAD
erstellt wurde. Das Programm besteht aus einer Client und einer Server Anwendung.
Die Chat-SPL ist der gezeigten SPL im Kapitel 2 sehr &hnlich. Damit die Chat-SPL ein
gutes Beispiel fiir diese Arbeit darstellt, wurden einige Features und ihre Anordnung
verdandert. Das Programm wurde im Rahmen der Vorlesung Erweiterte Programmier-
konzepte fiir mageschneiderte Datenhaltung [KS09] an der Universitdt Magdeburg
erstellt.

5.1.2 Graph-Produktlinie

Bei der Graph-Produktlinie (GPL) handelt es sich um eine bekannte SPL, die in zahlrei-
chen Publikationen als Beispiel SPL dient [LhBO1]. Die Graph-Produktlinie wurde fiir
verschiedene Programmiersprachen umgesetzt. In dieser Arbeit wird die Java-Variante
betrachtet. Als Kompositionsprogramm wird FeatureHouse verwendet.

66 5. Evaluation

5.1.3 TankWar

Bei diesem Programm handelt es sich um eine SPL, aus der verschiedene Varianten
eines 2D Spiels erzeugt werden koénnen. ! Die SPL wurde mit FeatureIDE und AHEAD
erstellt.

5.1.4 myViolett

Violett ist ein Opensource UML-Editor ? . Bei myViolett handelt es sich um eine FOP-
Version des UML-Editors, der im Rahmen eines Projektes an der Universitit Texas in
Austin in ein FeatureHouse Projekt portiert wurde [ALOS].

5.1.5 GUIDSL

GUIDSL ist ein Teil von AHEAD und wurde selber mit AHEAD erstellt. Es dient dazu
Feature-Modelle, die in der GUIDSL Grammatik erstellt wurden, zu analysieren und
zu iiberpriifen [Bat05].

5.1.6 BerkleyDB

Bei BerkleyDB handelt es sich um ein Datenbanksystem fiir eingebettete Systeme
von Oracle. Im Rahmen einer Fallstudie wurde diese Datenbank in Feature aufgeteilt
[AKL09]. Dazu wurden die Features zunéchst mit CIDE annotiert und dann in Feature
Module tiberfithrt [KAKO09].

5.1.7 Ubersicht der verschiedenen Programme

In Tabelle 5.1 befindet sich eine Ubersicht iiber die einzelnen Projekte. Bei der
Chat-SPL, TankWar und GUIDSL handelt es sich um AHEAD-Projekte. Die Graph-
Produktlinie (GPL), myViolett und BerkeleyDb sind Projekte, die mit FeatureHouse
komponiert werden. Die Anzahl der Features beschreibt wie viele verschiedene Featu-
remodule vorhanden sind. Die Anzahl der Verfeinerung stellt ein Mafl dar, wie héufig
zwei Klassen komponiert werden. Ein Feature kann ein oder mehrere Verfeinerungen
erhalten. Die Anzahl der Klassen beschreibt, wie viele unterschiedliche Klasse inner-
halb des Projektes vorhanden sind. Die Anzahl der Programmzeilen stellt ein Maf fiir
den Umfang des Projektes dar. Dieses Mafl wurde mit dem Programm loc-counter 3
bestimmt. Dieses Programm misst die Anzahl physikalischer Programmzeilen. Kom-
mentare werden bei der Zéhlung nicht beriicksichtigt.

!Die SPL wurde von Lei Luo, Liang Liang und Songxuan Wu im Rahmen des Laborpraktikums mit
dem Thema Implementation of Software Product Lines with FOP (2D Game) 2009 an der Universitét
Magdeburg erstellt.

2http://alexdp.free.fr /violetumleditor /page.php

3https://loc-counter.dev.java.net/

http://alexdp.free.fr/violetumleditor/page.php
https://loc-counter.dev.java.net/

5.2. Ergebnisse und Auswertung 67
Chat-SPL | GPL | TankWar | myViolett | GUIDSL | BerkeleyDB
Anzahl Features 8 26 60 88 26 99
Anzahl Verfeinerungen 9 56 60 89 102 620
Anzahl Klassen 8 16 20 67 130 284
Lines of Code 380 1997 3920 5168 7844 66343

Tabelle 5.1: Ubersicht iiber die verwendeteten Programme

5.1.8 Beschreibung der Testplattform

Die nachfolgenden Messungen wurden auf einem DesktopPC mit einem AMD 3200+
(2,3GHz) und 2GB Arbeitsspeicher durchgefiihrt. Als Betriebssystem wurde Windows
7 (64Bit) Professional verwendet.

Die Laufzeitmessung des FOP-Compilers wurde mit der Java-Methode
System.currentTimeMillis () umgesetzt. Bei der Ausfithrung des Compilers wird am
Anfang die aktuelle Zeit gespeichert und am Ende ebenfalls. Die Differenz stellt die
Laufzeit, die fiir die Ubersetzung benétigt wurde, dar.

Die Laufzeit der bisherigen Ansédtzen wurde mit Hilfe von ANT-Skripten realisiert.
ANT-Skripte bieten Methoden an, die es ermoglichen, die Laufzeit zu bestimmen. Des
Weiteren sorgen die Skripte dafiir, dass die verschiedenen Werkzeuge (z.B. FeatureHou-
se, Java-Compiler) nacheinander aufgerufen werden. Der Aufbau der jeweiligen Skripte
befindet sich im Anhang A.

5.2 Ergebnisse und Auswertung

In diesem Abschnitt sollen die Ergebnisse der Evaluierung betrachtet werden. Im nach-
folgenden Abschnitt wird zunéchst die Laufzeit betrachtet.

5.2.1 Laufzeituntersuchung

Ausfithrzeit von: | Kompositionsprogramm | Java-Compiler || FOP-Compiler
Chat-SPL (1,04 4+ 5,03)s 1,568 1,64s
GPL 2,86s - 1,72s
TankWar (1,45 4+ 9,241)s 1,63s 2,57s
my Violett 11,29s 2,568 5,61s
GUIDSL (6,91425,3)s 3,81s 4,84s
BerkeleyDB 62,519s - 9,06s*

Tabelle 5.2: Ubersetzungszeit der verschiedenen Projekte

In diesem Abschnitt werden die Ergebnisse der Laufzeitmessung diskutiert. Die Ergeb-
nisse der Messungen befindet sich in Tabelle 5.2.

Bei der GPL konnte das Ubersetzen nicht fehlerfrei beendet werden. Der Java-Compiler
meldet, dass an einigen Stellen original ()-Methoden gefunden wurden, zu denen es

68 5. Evaluation

keine passende Methode gibt. Dies deutet darauf hin, dass FeatureHouse nicht al-
le original ()-Aufrufe umwandelt. Der native FOP-Compiler wandelt alle original-
Aufrufe um und es gibt keine Fehler beim Ubersetzen.

BerkleyDB konnte ebenfalls nicht iibersetzt werden. Der Composer lduft ohne Fehler
durch, aber der nachgeschaltete Compiler meldete eine Vielzahl unterschiedlicher Fehler.
Der Prototyp des nativen FOP-Compilers lduft dem entsprechend auch nicht fehlerfrei
durch. Aus diesem Grund wurde beim Prototyp nach der AST-Transformation eine
zusitzliche Zeit gemessen. Nach dieser Transformation sind alle Features komponiert.
Dieser gemessene Wert kann aber auch nur bedingt mit dem Zeitwert von FeatureHouse
verglichen werden, da beim FOP-Compiler nach der Komposition die Ergebnisse nicht
in Dateien auf der Festplatte gespeichert werden.

Die Chat-SPL, TankWar und GUIDSL verwenden als Kompositionsprogramm den
AHEAD-Composer. Dieser Composer erzeugt als Ausgabe jak-Dateien, die durch ein
zusitzlichen Programm jak2java * in Java-Dateien umgewandelt werden miissen. Die-
ses Programm kann nur einzelne Dateien einlesen. Dies fithrt dazu, dass dieses Pro-
gramm sehr hdufig aufgerufen werden muss, was die lange Laufzeit erkldren kann. Aus
diesem Grund soll der Zeitwert fiir jak2java nicht sonderlich stark beriicksichtigt wer-
den. In der Tabelle 5.2 wird daher bei diesen Programmen die Ausfiithrungszeit fiir die
Komposition durch zwei Werte angegeben. Der erste Wert stellt die Zeit dar, die vom
AHEAD-Composer benotigt wurde und der zweite Werte entsprechend die Zeit fiir das
Programm jak2java.

Die Ergebnisse in Tabelle 5.2 zeigen deutlich, dass der Prototyp des nativen FOP-
Compiler schneller ist als die Ansédtze mit AHEAD und FeatureHouse. Ein Nachteil bei
den bisherigen Ansétzen ist, dass unterschiedliche Programme sequenziell aufgerufen
werden. Allein der Start eines Java-Programmes benotigt Zeit. Des Weiteren wird in
den zweistufigen Verfahren an zwei Stellen eine Syntaxiiberpriifung durchgefiihrt. Das
Kompositionsprogramm und der Java-Compiler fithren jeweils eine eigene Uberpriifung

durch.

Zusammengefasst kann gesagt werden, dass der Geschwindigkeitsgewinn gegeniiber den
zweistufigen Verfahren sehr deutlich ist. Laufzeit stellt aber nur ein Kriterium dar, an
dem die Vorteile eines nativen FOP-Compilers gezeigt werden sollen. In dem néchs-
ten Abschnitt wird gezeigt, wie der Prototyp die zuvor vorgestellten FOP-spezifischen
Fehler erkennt.

5.2.2 FOP-spezifische Fehler

Im Abschnitt 3.1 wurden einige FOP-Fehler vorgestellt und es konnte gezeigt werden,
dass die bestehenden Ansétze nicht immer befriedigende Ergebnisse liefern. Daraus
entwickelte sich unter anderem die Motivation zur Entwicklung eines nativen FOP-
Compilers. Aufbauend auf der Implementierung, die in Kapitel 4 diskutiert wurde,
wird in diesem Abschnitt gezeigt, wie der Prototyp die FOP spezifischen Fehler erkennt.
Damit sollen die Vorteile eines nativen FOP-Compilers gegeniiber den zweistufigen An-
sdtzen gezeigt werden.

4http:/ /userweb.cs.utexas.edu/ schwartz/ATS /fopdocs/j2j.html

http://userweb.cs.utexas.edu/~schwartz/ATS/fopdocs/j2j.html

5.2. Ergebnisse und Auswertung 69

FOP Syntaxfehler

Die Java-Grammatik wurde bei der Implementierung fiir die FOP erweitert, so dass die
neuen Sprachkonstrukte erkannt werden. Bei fehlerhafte Syntax wird eine Fehlermel-
dung vom Parser erzeugt, der die Quelltextdatei angibt und aufzeigt, in welcher Zeile
der Fehler aufgetreten ist.

Leerlaufende Klassenverfeinerungen

Der Prototyp des Compilers kann Klassenverfeinerungen verwenden, die, wie bei
AHEAD, durch ein neues Sprachkonstrukt realisiert sind, oder das Verfahren von Fea-
tureHouse anwenden.

Der Compiler wurde so implementiert, das zwei unterschiedliche Modi per Compilerflag
ausgewahlt werden konnen. Im AHEAD-Modus konnen Klassen nur durch ein refines
class verfeinert werden. Tritt dabei eine Klassenverfeinerung auf, zu der keine Klassen
existiert, wird eine Fehlermeldung erzeugt.

Im FeatureHouse-Modus werden Klassen durch andere Klassen verfeinert. Tritt eine
Klasse zum ersten Mal auf kann nicht entschieden werden, ob es sich um eine Klassen-
verfeinerung handelt.

Mehrfaches Einfiigen von Klassen / Interfaces

Beim mehrfachen Einfiigen von Klassen oder Interfaces muss wieder zwischen den bei-
den Modi unterschieden werden. Beim AHEAD-Modus wird eine Warnung erzeugt,
wenn eine Klasse oder ein Interface doppelt eingefiihrt wird.

Beim FeatureHouse-Modus findet eine Verfeinerung statt, wenn zwei Klassen oder In-
terfaces komponiert werden. Dadurch besteht nicht die Moglichkeit, bestehende Klassen
komplett durch andere Klassendefinitionen zu ersetzen. Wie schon bei FeatureHouse ist
dies vorteilhaft, da so eine potentielle Fehlerquelle nicht auftreten kann.

Komposition von Feldern

Bei der Komposition von Feldern konnen in Abhéangigkeit der Initialwerte Fehler erzeugt
werden. Hat keines der Felder einen Initialwert wird nichts verdndert. Hat nur eines der
Felder einen Initialwert, wird dieser Wert iibernommen. Haben beide einen Initialwert
wird ein Fehlermeldung erzeugt.

Da der Prototyp des Compilers fiir die Komposition ein Jampack-ahnlichen Ansatz
verwendet, tritt das Problem des Variablen Shadowing nicht auf.

Typfehler

Typfehler werden vom Typsystem des Compilers nach der Komposition erkannt. Auf
Grund dessen, dass kein mehrstufiges Verfahren verwendet wird, werden die Fehlermel-
dungen direkt auf den feature-orientierten Quelltext abgebildet.

70 5. Evaluation

Methodenverfeinerung

Wird ein originaler Methodenaufruf innerhalb einer Klasse oder Verfeinerung verwendet,
die keine andere Methode verfeinert, wird eine Fehlermeldung erzeugt, die den Entwick-
ler dariiber informiert. Dabei ist es egal, ob ein super ()-Aufruf, oder ein original ()-
Aufruf verwendet wird.

Wird als originaler Methodenaufruf ein super ()-Aufruf verwendet, iiberpriift der Com-
piler, ob der Methodenaufruf die verfeinerte Methode beschreibt. Trifft dies nicht zu,
wird ein Warnung ausgegeben.

5.2.3 Vergleich mit den bisherigen Ansitzen

In der Tabelle 5.3, werden die Ergebnisse nochmals zusammengefasst dargestellt. Die
Tabelle baut auf der Tabelle 3.1 auf und wurde dabei um drei Zeilen (Laufzeit, Ver-
wendung verschiedener Sprachen und Erweiterungspotential) erweitert.

Bei der Fehlererkennung werden FOP-spezifische Fehler erkannt und passende Fehler-
meldungen erzeugt.

Bei der Komposition von Feldern tritt das Problem des Variablen Shadowing nicht auf
und bei zwei Initialwerten wird eine Fehler erzeugt.

Typfehler werden direkt vom Typsystem des Compilers erkannt und Fehlermeldungen
werden direkt auf den entsprechenden Quelltext abgebildet.

Bei den zweistufigen Ansétzen werden falsch platzierte originale Methodenaufrufe even-
tuell erst vom Typsystem erkannt. Der Prototyp des Compilers erkennt diesen Fehler
direkt und gibt eine Fehlermeldung aus, die beschreibt, dass der Aufruf an der falschen
Stelle verwendet wurde. Beim super () -Aufruf wird zusétzlich iiberpriift, ob der Metho-
denaufruf auch die verfeinerte Methode beschreibt.

Im Abschnitt 5.2.1 konnte gezeigt werden, dass die Laufzeit des Prototyp kiirzer ist, als
bei den zweistufigen Verfahren.

Der Nachteil, der durch den Einsatz des Compilers entsteht, ist, dass nur die Pro-
grammiersprache Java unterstiitzt wird. AHEAD unterstiitzt neben JAK, als erweiterte
Java-Sprache, weitere Sprache unterschiedlicher Paradigmen. FeatureHouse bietet ein
Framework an, mit dem leicht weitere Sprache implementiert werden kénnen [AKL09].
Der Prototyp bietet eine solche Moglichkeit nicht und ist fiir weitere Sprachen nicht er-
weitertbar. Dies liegt daran, dass der Compiler mit dem JastAddJ-Compilerframework
erstellt wurde und dieser einen erweiterbaren Java-Compiler bietet.

Der Quelltext von FeatureHouse und AHEAD ist verfiigbar, so dass Erweiterungen méog-
lich sind. Der Prototyp des nativen FOP-Compilers bietet im Gegensatz zu AHEAD
und FeatureHouse mehr Erweiterungspotential. Der Prototyp wurde mit dem JastAd-
dJ-Framework erstellt. Das Framework zeichnet sich dadurch aus, dass Anderungen
modular implementiert werden kénnen. Der erstellte Prototyp kann um weitere Uber-
priifungen erweitert werden und dafiir beispielsweise das Typsystem verwenden. Durch

5.2. Ergebnisse und Auswertung 71

AHEAD | FeatureHouse | nativer FOP-Compiler

FOP Syntaxfehler + + +
Leerlaufende Klassen- + 0 +
verfeinerung
Mehrfaches Einfiihren von + + +
Klassen / Interfaces
Komposition von Feldern - - +
Typfehler - - +
Methodenverfeinerung) 0 +
Abbildung der Fehler - - +
auf den Quelltext
Laufzeit 0 0 +
Verwendung verschiedener 0 + -
Sprachen
Erweiterungspotential 0 0 +

- = negativ, o = neutral , + = positiv

Tabelle 5.3: Vergleich Erkennung FOP spezifischer Fehler mit bisherigen Ansétzen und
einem nativen FOP-Compiler

modulare Erweiterungen kann er fiir weitere Forschungen im Bereich der SPL und der
FOP verwendet werden. Hierfiir sei auf das Kapitel 7 verwiesen.

Im Abschnitt 2.2.1 wurde zur aktuellen Version von AHEAD vermerkt, dass die Java-
Version 1.5 und Packages nicht unterstiitzt werden. Der Prototyp des Compilers ist
kompatibel zu AHEAD, beruht aber auf einem Java 1.5 Compiler. So kénnen auch die
Sprachkonstrukte der Java-Version 1.5 | wie zum Beispiel die erweiterte For-Schleife,
verwendet werden.

Packages werden vom Prototypen des Compilers unterstiitzt und bei der Komposition
beriicksichtigt. Damit ist der Prototyp des FOP-Compilers nicht nur Kompatibel zu
AHEAD sondern behebt auch gleichzeitig einige Nachteile der aktuellen Implementie-
rung.

FeatureHouse zeichnet sich unter anderem dadurch aus, dass keine neuen Sprachkon-
strukte benotigt werden. Bei den FOP-spezifischen Fehlern konnte aber beispielsweise
nicht unterschieden werden, ob eine Klasse eine Verfeinerung darstellt oder nicht. Fiir
zukiinftige Projekte, konnen beispielsweise Klassenverfeinerungen mit refines verwen-
det werden. So kénnen dann ins Leere laufende Klassenverfeinerungen erkannt werden.
Gleichzeitig kann der original ()-Aufruf verwendet werden, der vom Aufbau einfacher
ist, als der super () -Aufruf. Der Entwickler kann das Beste aus beiden Ansétzen verwen-
den. Der Nachteil dabei ist, dass durch diesen Mischbetrieb, die so erstellten Programme
nicht mehr kompatibel zu AHEAD und FeatureHouse sind.

In diesem Kapitel wurde der Prototyp eines nativen FOP-Compilers evaluiert. Es konnte
gezeigt werden, dass der Compiler entscheidende Vorteile gegeniiber den bisherigen
zweistufigen Verfahren hat. Der Compiler verwendet keine Zwischendarstellung in Form

72 5. Evaluation

von nativen Java-Quelltext, wo durch das Problem der Fehlerabbildung behoben ist.
Zusétzlich kann wihrend der Komposition Funktionen des Compilers (zum Beispiel das
Typsystem) verwendet werden. Durch modulare Erweiterungen kann dieser Prototyp
als Basis fiir weitere Forschungen im Bereich der FOP und SPL verwendet werden. Im
néchsten Kapitel werden die Ergebnisse dieser Arbeit zusammengefasst.

6. Zusammenfassung

Im Rahmen dieser Arbeit wurde untersucht, welche Vor- und Nachteile durch den Ein-
satz eines nativen FOP-Compiler entstehen. Zunéchst wurden SPL als eine Technik der
Softwareentwicklung beschrieben, die es erlauben Varianten aus einer Quelltextbasis
und effizient Quelltext wieder zu verwenden. Fiir die Implementierung wurden einige
mogliche Techniken vorgestellt, zu denen auch die FOP gehort. Die FOP eignet sich
besonders fiir die Implementierung von SPL, da Quelltext, der ein Feature beschreibt,
modular in separaten Modulen gespeichert wird. Aus einer Menge von Features kann
dann eine Variante der SPL erzeugt werden.

Mit AHEAD und FeatureHouse wurden zwei prominente Vertreter dieses Programmier-
paradigmas vorgestellt. Diese beiden Vertreter verwenden ein zweistufiges Verfahren.
Ein Kompositionsprogramm komponiert den feature-orientierten Quelltext und erzeugt
nativen Quelltext. Dieser native Quelltext wird dann von einem Standardcompiler in
die Zielsprache iibersetzt. Die Kompositionsprogramme von AHEAD und FeatureHouse
konnen verschiedene Programmiersprachen unterschiedlicher Programmierparadigmen
verarbeiten.

In Rahmen dieser Arbeit wurde nur Java als erweiterte Programmiersprache betrachtet.
FeatureHouse und AHEAD setzen das Paradigma der FOP durch die Moglichkeit der
Klassenverfeinerung um. Ein Feature kann in eine Basisimplementierung neue Klassen
einfithren oder bestehende Klassen durch neue Methoden und Felder verfeinern.

Durch die Moglichkeit der Klassenverfeinerung entstehen neue FOP spezifische Fehler,
die bei der Komposition der Features auftreten konnen. In dieser Arbeit wurden einige
dieser moglichen Fehler vorgestellt und gezeigt, wie AHEAD und FeatureHouse diese
Fehler erkennen. Es konnte gezeigt werden, dass einige der Fehler nicht erkannt wer-
den und das durch die Umsetzung der Klassenverfeinerung zusétzliche Fehlerquellen
entstehen. Ein anderes Problem, das durch den zweistufigen Ansatz entsteht, ist das
Fehlermeldungen vom Compiler, sich auf die Zwischendarstellung beziehen, die vom
Kompositionsprogramm erstellt wurde. Die Abbildung der Fehler auf den eigentlichen

74 6. Zusammenfassung

feature-orientierten Quelltext muss von einem Entwickler oder einer IDE erledigt wer-
den, was zu zusétzlichen Aufwand fiihrt.

Auf Grund der nicht immer befriedigenden Fehlererkennung und die Notwendigkeit der
Zwischenabbildung und der daraus resultierende Mehraufwand bei der Abbildung der
Fehlermeldung, bildete die Motivation, zu untersuchen, wie ein nativer FOP-Compiler
diese Aufgaben l6sen kann.

Dazu wurde im Rahmen dieser Arbeit ein Prototyp eines nativen FOP-Compilers er-
stellt. Da die Implementierung eines kompletten Compilers eine sehr aufwéndige und
gleichzeitig fehleranfillige Aufgabe ist, wurde das Compiler-Framework JastAddJ ver-
wendet. Bei JastAddJ handelt es sich um einen Java-Compiler, der beispielsweise mit
einer Aspekttechnologie erweitert werden kann. Mit diesem Framework wurde ein Com-
piler erstellt, der kompatibel zu AHEAD und FeatureHouse ist. Durch die Implemen-
tierung mit JastAddJ, ist der erstellte Compiler auch weiterhin durch die Mechanismen

des Frameworks erweiterbar und stellt somit einen guten Ausgangspunkt fiir zukiinftige
Forschungen und Projekte in Bereichen der FOP und SPL dar.

Zur Evaluierung des Prototyps wurden einige Projekte, die fiir AHEAD oder Feature-
House erstellt wurden, iibersetzt. Dies diente dazu, das Laufzeitverhalten und die Funk-
tionsfahigkeit zu testen. Es konnte gezeigt werden, dass der Prototyp ein besseres Lauf-
zeitverhalten aufweist, als die zweistufigen Ansétze, die AHEAD und FeatureHouse
verwenden. Eine Zwischendarstellung in Form von Java-Quelltext wird nicht benétigt
und somit tritt das Problem mit der Abbildung der Fehlermeldungen nicht auf.

Die FOP-spezifischen Fehler konnen besser erkannt werden, da bei der Komposition der
Features auf Funktionen des Compilers, zum Beispiel das Typsystem, zuriick gegriffen
werden kann.

7. Ausblick

In dieser Arbeit wurde ein Prototyp eines nativen FOP-Compilers entwickelt. Es konnte
gezeigt werden, dass durch die Verwendung eines solchen Compilers besonders Vorteile
bei der Fehleriiberpriifung entstehen.

Der Prototyp des native FOP-Compilers wurde mit dem JastAddJ-Compilerframework
entwickelt, das sich besonders durch die gute Erweiterbarkeit auszeichnet. Der Prototyp
ist auch weiterhin gut erweiterbar, so dass er als Grundlage fiir weitere Forschungen im
Bereich der FOP und SPL genutzt werden kann.

Als Vorteil des nativen FOP-Compilers wurde genannt, das vor und wahrend der Kom-
position auf Funktionen des Compilers , wie zum Beispiel das Typsystem, zuriickgegrif-
fen werden kann.

Bevor die Features komponiert werden, steht die gesamte SPL als AST zur Verfiigung.
Der Compiler kann an diesem Punkt erweitert werden, so dass die gesamte SPL mit
Hilfe des Typsystems auf Fehler iiberpriift wird. Ein Typsystem zur Fehleriiberpriifung
der SPL zuverwenden wurde beispielsweise von [Thiil0] vorgeschlagen. Zusétzlich zur
Featurereihenfolge und der eigentlichen Quelltextbasis kann das Featuremodell eingele-
sen werden um an zusétzliche Informationen zu gelangen. Mit diesen Information kann
versucht werden, Typfehler innerhalb der SPL zu finden.

In [ALSO07] wurden die Moglichkeiten der Aspectual Feature Modules diskutiert, die eine
Kombination von Features und Aspekten vorsieht. Mit einem nativen FOP-Compiler
besteht die Moglichkeit, dieses Konzept umzusetzen. Mit dem AspectBench Compiler
for AspectJ (abc-Compiler), steht ein Compiler fiir die Aspekt-orientierte Programmie-
rung zur Verfiigung, der mit JastAddJ erstellt wurde [AETO08]. Auf Grund, dass das
gleiche Compiler-Framework verwendet wird, kann beispielsweise der abc-Compiler um
die Moglichkeit der Klassenverfeinerung erweitert werden. Die Umsetzung der Aspectual
Feature Modules kann durch eine Kombination der beiden Compiler realisiert werden.

Bei dem nativen FOP-Compiler handelt es sich zur Zeit um einen Prototyp, so dass si-
cherlich noch Zeit fiir weitere Implementierungen und Fehlerbehebung investiert werden

76 7. Ausblick

kann. Auch bietet der Compiler sicherlich noch viel Raum fiir weitere Optimierungen,
so dass das Laufzeitverhalten noch verbessert werden kann.

Ein mogliches Anwendungszenario stellt die Integration des Compilers in FeaturelDE
dar. Der Compiler kann der IDE den gesamten AST der SPL zur Verfiigung stellen. Mit
dem AST konnen in FeatureIDE weitere , komfort-Funktionen“ wie Autovervollstindi-
gung oder Kollaborationsdiagramme realisiert werden. Die verbesserte Fehlererkennung
hilft bei der Entwicklung von Software in FeatureIDE, in dem spezifische FOP-Fehler er-
kannt werden. Mit Hilfe des nativen FOP-Compilers und dem Eclipse-Framework kann
in FeatureIDE ein Debugger entwickelt werden. Dieser Debugger kann dann direkt auf
dem feature-orientierten Quelltext arbeiten.

A. Anhang A

In diesem Abschnitt werden die ANT-Skripte gezeigt, die fiir die Zeitmessung im Ka-
pitel 5 verwendet wurden.

Der Quelltext A.1 zeigt das ANT-Skript, das fiir die Zeitmessung von TankWar verwen-
det wurde und soll Stellvertretend fiir alle Projekte, die mit AHEAD erstellt wurden,
stehen. Zunéchst wird ein Timer initialisiert. Im Anschluss wird zunéchst der AHEAD-
Composer aufgerufen. Dieser komponiert die Features, erzeugt aber als Ausgabe Jak-
Dateien, die im Anschluss von dem Programm jak2java in Javadateien umgewandelt
werden. Als letztes wird der Java-Compiler javac zum Compilieren verwendet.

Der Quelltext A.2 zeigt das ANT-Skript, das fiir die Zeitmessung von Projekten, die mit
FeatureHouse komponiert werden, misst. Im Gegensatz zu der AHEAD-Variante wird
nur der FeatureHouse-Composer aufgerufen und im Anschluss der javac-Javacompiler.

© 00 O U Wi

© 00 O UL Wi

78 A. Anhang A

<project>
<taskdef resource="net/sf/antcontrib/antlib.xml"/>
<property name="expression" value="TankWar"/>

<target name="stoptime">
<stopwatch name="timer1"/>

<java jar="..\ahead\build\lib\composer. jar"
fork="true">
<arg line = "--equation_ ${expression}.equation," />
<arg line = "--target_${expression}_build" />
</java>

<stopwatch name="timerl" action="elapsed"/>
<for param="file">
<path>
<fileset dir="${expression}_build" includes="x*.jak"/>
</path>
<sequential>
<java jar="..\ahead\build\1lib\jak2java. jar"
fork="true">
<arg line = " @{file} " />
</Jjava>
</sequential>
</for>
<stopwatch name="timerl" action="elapsed"/>
<javac srcdir="${expression}_build\"/>
<stopwatch name="timerl" action="total"/>
</target>

</project>

Quelltext A.1: ANT-Skript fiir die Featurekomposition mit AHEAD

<project>
<taskdef resource="net/sf/antcontrib/antlib.xml"/>
<property name="expression" value="violet"/>

<target name="stoptime">
<stopwatch name="timer1"/>

<java jar="..\FeatureHouse-2010-02-27. jar"
fork="true">
<arg line = "--expression_${expression}.expressiony" />
</Jjava>

<stopwatch name="timerl" action="elapsed"/>
<javac srcdir="${expression}\"/>
<stopwatch name="timerl" action="total"/>
</target>
</project>

Quelltext A.2: ANT-Skript fiir die Featurekomposition mit FeatureHouse

B. Anhang B

In diesem Abschnitt soll die Funktionsweise des JastAdd-Frameworks anhand eines
Beispiels detailliert gezeigt werden. Diese Art Anleitung kann fiir spatere Erweiterungen
am Prototypen des nativen FOP-Compilers einen guten Einstieg in das Framework
bieten.

PicoJava ‘stellt eine minimale Objekt-oriente Sprache dar, die nur Klassen, Vererbung
und einfache Ausdriicke wie Variablen und Schleifen zulédsst. Bei PicoJava handelt es
sich daher um ein Beispielprojekt, das die Fahigkeiten des JastAdd Frameworks zeigen
soll. Es existiert fiir diese Sprache nur ein Priifprogramm (PicoJavaChecker.java), das
ein Programm nur auf Syntax und semantische Fehler iiberpriift. Ein Back-End und dem
entsprechend ein ausfithrbares Programm wird nicht erzeugt. Es wurde fiir diese Arbeit
bewusst ein etwas umfangreicheres Beispiel gewéhlt, um moglichst viele Techniken des
Frameworks zu zeigen. Diese Techniken wurden fiir die Implementierung in Kapitel 4
benotigt.

Der Scanner wird mit dem Programm JFlex ? erzeugt. Als Schliisselworter erkennt der
Scanner class, extends, while und dazu noch die Boolschen Ausdriicke true und false.

Als Parsergenerator wird Beaver ® verwendet. Die Grammatik der PicoJava Sprache

wird in Quelltext B.1 gezeigt. Die dort gezeigte Grammatik ist vom Aufbau und der
Interpretation her, der Grammatik aus dem Quelltext 2.10 dhnlich. Anstelle des Pfeiles
(->) wird eine Gleichheitszeichen (=) verwendet. Zusétzlich stehen hinter jeder Pro-
duktion, Anweisungen fiir die Erzeugung des ASTs. Die Grammatik beschreibt ein
Programm, das aus einem Block besteht (Zeile 1). Ein Block besteht aus geschwunge-
nen Klammern (LBRACE { , RBRACE }) und kann eine Liste von Block-Anweisungen
(Statements) enthalten (Zeile 4-15). Diese Block-Anweisungen sind entweder Klassende-
klarationen, Variablendeklarationen, oder Anweisungen (Zeile 17-19). Die Anweisungen
werden dann nochmal in Zuweisungen (assign-statement) und Schleifen-Anweisungen

Thttp://jastadd.org/jastadd-tutorial-examples /picojava-checker
http://jflex.de/
3http:/ /beaver.sourceforge.net/

http://jastadd.org/jastadd-tutorial-examples/picojava-checker
http://jflex.de/
http://beaver.sourceforge.net/

80 B. Anhang B

(while-statement) unterschieden (Zeile 21-22). Zeile 24-25 beschreibt den Aufbau einer
Klassendeklaration. Diese besteht aus dem Schliisselwort class einem Namen (IDENTI-
FIER) und einem optionalen extends-Block. Der eztends-Block, der die Vererbung von
Klassen implementiert wird in Zeile 27-30 beschrieben. Die restlichen Zeilen beschreiben
in gleicher Art, den Aufbau von Variablendeklarationen, Zuweisungen, While-Schleifen
und so weiter.

In Quelltext B.2 ist giiltiges PicoJava Programm dargestellt, welches alle zuvor be-
schriebenen Sprachmittel enthéllt. Der Parser erzeugt mit Hilfe, der zuvor gezeigten
Grammatik, den AST. Hierfiir stehen in der Grammatik aus Quelltext B.1 Anweisun-
gen zur Erzeugung der Knoten. Hierbei handelt es sich um Java-Anweisungen (Aufrufen
der Konstruktoren).

Die zu den Konstruktoren zugehérigen Klassen werden vom JastAdd Framework gene-
riert. Die Knoten / Klassen werden in speziellen AST-Dateien beschrieben und verwen-
den als Endung *.ast. Zu einem Knoten gehort ein Name, von welchen existierenden
Knoten geerbt wird und welche Parameter bei der Erzeugung vom Parser iibergeben
werden. Die abstrakte Grammatik * in den AST-Dateien korrespondiert direkt mit der
Klassenhierachie im AST. Damit kann der Begriff Knoten synonym mit dem Begriff
Klasse verwendet werden. JastAdd bietet drei vorgegebene Knoten:

e AST-Knoten, dieser Knoten stellt grundlegende Eigenschaften und Methoden
zur Verfiigung. Hierzu zdhlen beispielsweise das Hinzufiigen oder Entfernen von
Kinder-Knoten

e List-Knoten, dieser Knoten stellt die Implementierung von Listen dar. Zusétzlich
erbt dieser Knoten vom AST-Knoten

e OPT-Knoten, da Java keine variable Parameterlisten unterstiitzt, werden fiir op-
tionale Parameter, OPT-Knoten als Wrapper verwendet. Bei der Erzeugung wird
immer ein OPT-Knoten iibergeben, der dann den optionalen Parameter enthalten
kann. Dieser Knoten erbt ebenfalls vom AST-Knoten

Fiir die Sprache PicoJava werden die Knoten wie in Quelltext B.3 beschrieben. Der
Ausdruck in Zeile 1 beschreibt, dass der Knoten Program einen Knoten Block als Kind
hat. Ein Knoten Block kann optional Block-Anweisungen enthalten (gekennzeichnet
durch das Sternchen *). Nichtterminalknoten werden durch Abstrakte-Knoten darge-
stellt (Zeile 3-6 und Zeile 11-13). Der Ausdruck in Zeile 4 besagt, dass der Knoten Stmt
von dem Knoten BlockStmt erbt (Gekennzeichnet durch den Doppelpunkt :). In Zeile
7 wird der Knoten ClassDecl beschrieben. Der Knoten erbt von dem Knoten TypeDecl.
Als Kinder kann eine Liste von Superklassen enthalten (Listen werden durch die ecki-
gen Klammer [| gekennzeichnet). Der Ausdruck Body:Block bedeutet, dass der Knoten
ClassDecl zusitzlich einen Knoten Block als Kind haben kann, der als Body benannt
ist.

4http://jastadd.org/jastadd-reference-manual /abstract-syntax

http://jastadd.org/jastadd-reference-manual/abstract-syntax

81

Das letzte wichtige Konstrukt wird in Zeile 5 gezeigt. Der Knoten Decl erbt BlockStmt
und hat als Kind einen String. Strings als Parameter werden in Spitzenklammern (<,
>) gesetzt.

(Anmerkung: PicoJava bietet trotz der sehr eingeschriankten Sprachmittel, Typ-
Uberpriifung an. Hierfiir werden weitere Knoten benétigt, die in der Grammatik nicht
gezeigt wurden. Aus Griinden der Ubersicht wird auf dieses Merkmal der Sprache Pi-
coJava nicht ndher eingegangen.)

JastAdd erzeugt nun die passenden Klassen und Funktionen die fiir den AST wichtig
sein konnen. Als Beispiel ist die Klasse Block in Quelltext B.4 gezeigt, so wie sie vom
Framework erzeugt wird. Die Methodenriimpfe wurden zur besseren Ubersicht ausge-
blendet. Die Knoten bieten fiir die weiterer Verwendung Methoden an, um auf Felder
zu zugreifen oder Werte zu setzen. Des Weiteren existieren Methoden um Kinder zu
AST hinzufiigen oder zu entfernen.

82 B. Anhang B

1 |Program goal = block

2 {: return new Program(block); :} ;

3

4 |Block block = LBRACE block_stmt_list_opt RBRACE

5 {: return new Block (block_stmt_list_opt); :} ;
6

7 |List block_stmt_list_opt =

8 {: return new List (); :}

9 | block_stmt_list

10 {: return block_stmt_1list; :} ;

11

12 |List block_stmt_list = Dblock_stmt

13 {: return new List ().add(block_stmt); :}

14 | block_stmt_list block_stmt

15 {: return block_stmt_list.add(block_stmt); :} ;
16

17 |BlockStmt block_stmt = class_decl

18 | var_decl

19 | stmt ;

20

21 |Stmt stmt = assign_stmt

22 | while_stmt ;

23

24 |ClassDecl class_decl = CLASS IDENTIFIER extends_opt block

25 {: return new ClassDecl (IDENTIFIER, extends_opt, block);
26

27 |Opt extends_opt =

28 {: return new Opt(); :}

29 | EXTENDS IDENTIFIER

30 {: return new Opt (new Use (IDENTIFIER)); :} ;
31

32 |VarDecl var_decl = name IDENTIFIER SEMICOLON

33 {: return new VarDecl (IDENTIFIER, name); :} ;
34

35 |AssignStmt assign_stmt = name ASSIGN exp SEMICOLON

36 {: return new AssignStmt (name, exp); :} ;

37

38 |WhileStmt while_stmt = WHILE LPAREN exp RPAREN stmt

39 {: return new WhileStmt (exp, stmt); :} ;

40

41 |Exp exp = name

42 | boolean_literal ;

43

44 |Access name = IDENTIFIER

45 {: return new Use (IDENTIFIER); :}

46 | name DOT IDENTIFIER

47 {: return new Dot (name, new Use (IDENTIFIER)); :} ;
48

49 Exp boolean_literal = BOOLEAN_LITERAL

50 {: return new BooleanLiteral (BOOLEAN_LITERAL); :} ;

Quelltext B.1: Auszug aus der PicoJava.parser Datei

0 O Uik Wi

00 O Ui Wi

83

class A {
boolean a;
a = true;
class AA {
boolean aa;

}
class B extends A {
boolean b;
b = a;
A refh;
B refB;
refA = refB;
refB.b = refA.a;
class BB extends AA {
boolean bb;

bb = aa;
while (b)
b = a;

Quelltext B.2: Beispiel fiir ein giiltiges PicoJava-Programm

Program ::= Block ;

Block ::= BlockStmtx;

abstract BlockStmt;

abstract Stmt: BlockStmt;

abstract Decl: BlockStmt ::= <Name:String>;
abstract TypeDecl:Decl;

ClassDecl: TypeDecl ::= [Superclass:IdUse] Body:Block;
VarDecl: Decl ::= Type:Access;

AssignStmt: Stmt ::= Variable:Access Value:Exp;
WhileStmt: Stmt ::= Condition:Exp Body:Stmt;
abstract Exp;

abstract Access:Exp;

abstract IdUse: Access ::= <Name:String>;
Use: IdUse;

Dot :Access ::= ObjectReference:Access IdUse;
BooleanLiteral : Exp ::= <Value:String>;

Quelltext B.3: Beschreibung der AST-Knoten fiir PicoJava

01O Ui Wi =

84

B. Anhang B

public class Block extends ASTNode implements Cloneable {
public Block () {...}

public Block (List p0O) {...}

public ASTNode copy () {...}

public ASTNode fullCopy () {...}

public void flushCache () {...}

protected int numChildren() {...}

public boolean mayHaveRewrite () { ...}

public void setBlockStmtList (List list) {...}
public int getNumBlockStmt () {...}

public BlockStmt getBlockStmt (int i) {...}
public void addBlockStmt (BlockStmt node) {...}
public void setBlockStmt (BlockStmt node, int i) {...}
public List getBlockStmtList () {...}

public List getBlockStmtListNoTransform() {...}

public ASTNode rewriteTo() {...}

public Object clone() throws CloneNotSupportedException {...}

Quelltext B.4: Von JastAdd generierte Klasse Block

Literaturverzeichnis

[ADTO7]

[AETO0S]

[AGMO06]

[AK09)]

[AKGL10]

[AKLOS]

[AKLOY]

[ALOS]

Felipe I. Anfurrutia, Oscar Diaz, and Salvador Trujillo. On Refining XML
Artifacts. In Proceedings of the International Conference on Web Enginee-
ring (ICWE), volume 4607 of Lecture Notes in Computer Science, pages
473-478. Springer-Verlag, Berlin / Heidelberg, 2007. (zitiert auf Seite 13)

Pavel Avgustinov, Torbjorn Ekman, and Julian Tibble. Modularity first: a
case for mixing AOP and attribute grammars. In Proceedings of Interna-
tional Conference on Aspect-oriented software development (AOSD), pages
25-35, New York, NY, USA, 2008. ACM Press. (zitiert auf Seite 75)

Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann. An
Overview of CaesarJ. Lecture Notes in Computer Science : Transactions on
Aspect-Oriented Software Development I, pages 135-173, Springer-Verlag,
Berlin / Heidelberg, 2006. (zitiert auf Seite 30)

Sven Apel and Christian Késtner. An overview of feature-oriented software

development. Journal of Object Technology (JOT), 8(5):49-84, July/Au-
gust 2009. Guest Column. (zitiert auf Seite 6 und 8)

Sven Apel, Christian Késtner, Grofllinger, and Christian Lengauer. Type
Safety for Feature-Oriented Product Lines. Automated Software Enginee-
ring — An International Journal, 2010. to appear; submitted August 23,
2009; accepted February 3, 2010. (zitiert auf Seite 33)

Sven Apel, Christian Késtner, and Christian Lengauer. Feature Feather-
weight Java: A Calculus for Feature-Oriented Programming and Stepwise
Refinement. In Proceedings of the International Conference on Generative
Programming and Component Engineering (GPCE), pages 101-112. ACM
Press, October 2008. (zitiert auf Seite 33 und 45)

Sven Apel, Christian Késtner, and Christian Lengauer. Featurehouse:
Language-independent, automated software composition. In Proceedings of
the International Conference on Software Engineering (ICSE), pages 221—
231, Washington, DC, USA, 2009. IEEE Computer Society. (zitiert auf
Seite 2, 16, 18, 31, 39, 58, 66 und 70)

Sven Apel and Christian Lengauer. Superimposition: A Language-
Independent Approach to Software Composition. In Proceedings of the

86

Literaturverzeichnis

[ALKT09]

[ALMKOS]

[ALRS05]

[ALS07]

[Bat05]

[BCKO5]

[BSRO3]

[CDS06]

International Symposium of Software Composition (SC), pages 20-35, Bu-
dapest, Hungary, March 2008. Springer-Verlag, Berlin / Heidelberg. (zitiert
auf Seite 66)

Sven Apel, Jorg Liebig, Christian Kéastner, Martin Kuhlemann, and Tho-
mas Leich. An Orthogonal Access Modifier Model for Feature-Oriented
Programming. In Proceedings of the International Workshop on Feature-
Oriented Software Development (FOSD), pages 27-33, New York, NY,
USA, 2009. ACM Press. (zitiert auf Seite 36)

Sven Apel, Christian Lengauer, Bernhard Moller, and Christian Késtner.
An algebra for features and feature composition. In Proceedings of the
International Conference on Algebraic Methodology and Software Techno-
logy (AMAST), volume 5140 of Lecture Notes in Computer Science, pages
36-50. Springer-Verlag, July 2008. (zitiert auf Seite 16, 19, 38 und 58)

Sven Apel, Thomas Leich, Marko Rosenmiiller, and Gunter Saake. Featu-
reC+-+: On the Symbiosis of Feature-Oriented and Aspect-Oriented Pro-
gramming. In Proceedings of the International Conference on Generative
Programming and Component Engineering (GPCE), volume 3676 of Lec-
ture Notes in Computer Science, pages 125-140. Springer-Verlag, Berlin /
Heidelberg, September 2005. (zitiert auf Seite 13)

Sven Apel, Thomas Leich, and Gunter Saake. Aspectual feature modules.
IEEE Transactions on Software Engineering, 34:162—180, 2007. (zitiert auf
Seite 75)

Don Batory. Feature models, grammars, and propositional formulas. In
Proceedings of the International Software Product Line Conference (SPLC),
pages 7—20. Springer-Verlag, Berlin / Heidelberg, 2005. (zitiert auf Seite 6,
7 und 66)

Len Bass, Paul Clements, and Rick Kazman. Software architecture in prac-
tice. Addison-Wesley, Boston ; Munich [u.a.], 2005. (zitiert auf Seite 1 und 6)

Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling step-wise
refinement. In Proceedings of the 25th International Conference on Software
Engineering (ICSE), pages 187-197, May 3-10, 2003. (zitiert auf Seite 1, 2,
12 und 13)

Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi. Coverage and ade-
quacy in software product line testing. In Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA), workshop on Role
of software architecture for testing and analysis (ROSATEA), pages 53-63,
New York, NY, USA, 2006. ACM Press. (zitiert auf Seite 8)

Literaturverzeichnis 87

[CE00]

[CPO6]

[DA99)]

[Dij82]

[Dij97]

[EHO4]

[EHO07a]

[EHOTD]

[Ekm06]

[FBB*99]

[GE99]

Krzysztof Czarnecki and Ulrich Eisenecker. Generative programming: me-
thods, tools, and applications. ACM Press, New York, NY, USA, 2000.
(zitiert auf Seite 6)

Krzysztof Czarnecki and Krzysztof Pietroszek. Verifying feature-based mo-
del templates against well-formedness OCL constraints. In Proceedings of
the International Conference on Generative Programming and Component
Engineering (GPCE), pages 211-220, New York, NY, USA, 2006. ACM.
(zitiert auf Seite 33)

David Detlefs and Ole Agesen. Inlining of Virtual Methods. In Proceedings
of the European Conference on Object-Oriented Programming (ECOOP),
pages 258-278, London, UK, 1999. Springer-Verlag, Berlin / Heidelberg.
(zitiert auf Seite 18)

Edsger Wybe Dijkstra. Selected writings on computing: a personal perspec-
tive. Springer-Verlag New York, Inc., New York, NY, USA, 1982. (zitiert
auf Seite 8)

Edsger Wybe Dijkstra. A Discipline of Programming. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 1997. (zitiert auf Seite 8)

Torbjorn Ekman and Gorel Hedin. Rewritable reference attributed gram-
mars. In Proceeding of the European Conference on Object-Oriented Pro-
gramming (ECOOP), pages 144-169. Springer-Verlag, Berlin / Heidelberg,
2004. (zitiert auf Seite 24)

Torbjorn Ekman and Gorel Hedin. The jastadd extensible java compiler.
In Companion to the conference on Object-oriented programming systems
and applications (OOPSLA), pages 884-885, New York, NY, USA, 2007.
ACM Press. (zitiert auf Seite 24)

Torbjorn Ekman and Gorel Hedin. The jastadd system — modular exten-
sible compiler construction. Sci. Comput. Program., 69(1-3):14-26, 2007.
(zitiert auf Seite 23)

Torbjorn Ekman. Eztensible Compiler Construction. PhD thesis, Depart-
ment of Computer Science, Lund University, 2006. (zitiert auf Seite 23 und 25)

Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts.
Refactoring: Improving the Design of Existing Code. Addison-Wesley Pro-
fessional, June 1999. (zitiert auf Seite 29)

Ralf Hartmut Giiting and Martin Erwig. Ubersetzerbau - Techniken, Werk-
zeuge, Anwendungen. Springer-Verlag, Berlin / Heidelberg, 1999. (zitiert
auf Seite 20 und 22)

88

Literaturverzeichnis

[GJO6]

[GJSBO3]

[HMO3]

[HZS05]

[JFSS]

[KAOS]

[KAO9]

[KAKOS]

[KAKO9]

[KALOT]

[KAS10]

Dick Grune and Ceriel J. H. Jacobs. Parsing Techniques (Monographs in
Computer Science). Springer-Verlag, Berlin / Heidelberg, Secaucus, NJ,
USA, 2006. (zitiert auf Seite 21)

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Langua-
ge Specification, Third Edition. Addison-Wesley Longman, Amsterdam, 3
edition, June 2005. (zitiert auf Seite 36)

Gorel Hedin and Eva Magnusson. Jastadd: an aspect-oriented compiler
construction system. Science of Computer Programming, 47(1):37-58, 2003.
(zitiert auf Seite 23)

Shan Shan Huang, David Zook, and Yannis Smaragdakis. Statically sa-
fe program generation with SafeGen. In Proceedings of the International
Conference on Generative Programming and Component Engineering (GP-
CE), volume 3676 of Lecture Notes in Computer Science, pages 309-326.
Springer-Verlag, Berlin / Heidelberg, 2005. (zitiert auf Seite 33)

Ralph E. Johnson and Brian Foote. Designing reusable classes. Journal
of Object-Oriented Programming, 1(2):22-35, June/July 1988. (zitiert auf
Seite 11)

C. Kastner and S. Apel. Type-Checking Software Product Lines - A Formal
Approach. In Proceedings of the International Conference on Automated
Software Engineering (ASE), pages 258-267, Washington, DC, USA, 2008.
[EEE Computer Society. (zitiert auf Seite 33)

Christian Késtner and Sven Apel. Virtual separation of concerns — a second

chance for preprocessors. Journal of Object Technology (JOT), 8(6):59-78,
September 2009. Refereed Column. (zitiert auf Seite 10)

Christian Késtner, Sven Apel, and Martin Kuhlemann. Granularity in soft-
ware product lines. In Proceedings of the International Conference on Soft-
ware engineering (ICSE), pages 311-320, New York, NY, USA, 2008. ACM
Press. (zitiert auf Seite ix, 9, 10 und 11)

Christian Késtner, Sven Apel, and Martin Kuhlemann. A Model of Re-
factoring Physically and Virtually Separated Features. In Proceedings of
the International Conference on Generative Programming and Component
Engineering (GPCE), pages 157-166. ACM Press, October 2009. (zitiert
auf Seite 66)

Martin Kuhlemann, Sven Apel, and Thomas Leich. Streamlining feature-
oriented designs. In Software Composition, pages 168-175. Springer-Verlag,
2007. (zitiert auf Seite 14 und 18)

Christian Késtner, Sven Apel, and Gunter Saake. Virtuelle Trennung von
Belangen (Préprozessor 2.0). In Software Engineering 2010 — Fachtagung

Literaturverzeichnis 89

[KCH+90]

[KHH*01]

[KLM*97]

[KR90]

[KS94]

[KS09)

[Kiis10]

[KTST09]

[LAMSO05]

des GI-Fachbereichs Softwaretechnik, number P-159 in Lecture Notes in In-
formatics, pages 165-176. Gesellschaft fiir Informatik (GI), February 2010.
(zitiert auf Seite 10)

Kyo C. Kang, Sholom. G. Cohen, James A. Hess, William E. Novak, and
A. Spencer Peterson. Feature-Oriented Domain Analysis (FODA) Feasibili-
ty Study. Technical Report CMU /SEI-90-TR-21, Carnegie-Mellon Univer-
sity, Software Engineering Institute, Pittsburgh, PA, USA, November 1990.
(zitiert auf Seite 6)

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
and William G. Griswold. An overview of aspectj. In Proceedings of the
European Conference on Object-Oriented Programming (ECOOP), pages
327-353, London, UK, 2001. Springer-Verlag. (zitiert auf Seite 11)

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristi-
na V. Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented pro-
gramming. In Proceedings of the Furopean Conference on Object-Oriented
Programming (ECOOP), pages 220-242. Springer-Verlag, 1997. (zitiert auf
Seite 8, 9 und 11)

Brian W. Kernighan and Dennis M. Ritchie. Programmieren in C : mit
dem C-Reference-Manual in deutscher Sprache - 2. Ausg., ANSI C. Hanser,
Miinchen [u.a.], 1990. (zitiert auf Seite 9)

Maren Krone and Gregor Snelting. On the inference of configuration struc-
tures from source code. In Proceedings of the International Conference on
Software Engineering (ICSE), pages 49-57. IEEE Computer Society Press,
1994. (zitiert auf Seite 10)

Christian Késtner and Gunter Saake. Vorlesung: Erweiterte Programmier-
konzepte fiir mafigeschneiderte Datenhaltung (EPMD). University of Mag-
deburg, 2008-2009. (zitiert auf Seite ix, 12 und 65)

Christian Késtner. Virtual Separation of Concerns: Preprocessors 2.0. PhD
thesis, University of Magdeburg, School of Computer Science, 2010. (zitiert

auf Seite ix und 8)

Christian Késtner, Thomas Thiim, Gunter Saake, Janet Feigenspan, Tho-
mas Leich, Fabian Wielgorz, and Sven Apel. Featureide: A tool framework
for feature-oriented software development. In Proceedings of the Internatio-
nal Conference on Software Engineering (ICSE), pages 611-614, Washing-
ton, DC, USA, 2009. IEEE Computer Society. (zitiert auf Seite 6 und 41)

Thomas Leich, Sven Apel, Laura Marnitz, and Gunter Saake. Tool Support
for Feature-Oriented Software Development: FeatureIDE: an Eclipse-based
approach. In Proceedings of the Object-Oriented Programming, Systems,

90

Literaturverzeichnis

[LhBO1]

[LHBLO6]

[LROY]

INCMO3]

[NTJO6]

[Par72]

[PBLO5]

[Pie02]

[Pre97]

[Sar03]

Languages € Apllications (OOPSLA), workshop on Eclipse technology eX-
change, pages 55-59, New York, NY, USA, 2005. ACM Press. (zitiert auf
Seite 41)

Roberto E. Lopez-herrejon and Don Batory. A Standard Problem for Eva-
luating Product-Line Methodologies. In Proceedings of the Conference on
Generative and Component-Based Software Engineering (GCSE), pages 10—
24. Messe Erfurt, Erfurt, Germany, Springer-Verlag, Berlin / Heidelberg,
2001. (zitiert auf Seite 65)

Roberto Lopez-Herrejon, Don Batory, and Christian Lengauer. A discipli-
ned approach to aspect composition. In Proceedings of the International
Symposium on Partial evaluation and semantics-based program manipula-
tion (PEPM), pages 68-77, New York, NY, USA, 2006. ACM Press. (zitiert
auf Seite 33)

Bernhard Lahres and Gregor Rayman. Praxisbuch Objektorientierung: Das
umfassende Handbuch. Galileo Press, Bonn, 2. edition, 2009. (zitiert auf
Seite 8)

Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. Poly-
glot: An extensible compiler framework for java. In Proceedings of the
International Conference on Compiler Construction (CC), pages 138-152.
Springer-Verlag, Berlin / Heidelberg, 2003. (zitiert auf Seite 23)

Clémentine Nebut, Yves Le Traon, and Jean-Marc Jézéquel. System testing
of product lines: From requirements to test cases. In Software Product Lines,
page 447. Springer-Verlag, 2006. (zitiert auf Seite 8)

David. L. Parnas. On the criteria to be used in decomposing systems into
modules. Communications of the ACM, 15(12):1053-1058, December 1972.
(zitiert auf Seite 8)

Klaus Pohl, Giinter Bockle, and Frank J. van der Linden. Software Product
Line Engineering: Foundations, Principles and Techniques. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2005. (zitiert auf Seite 1 und 6)

Benjamin C. Pierce. Types and programming languages. MIT Press, Cam-
bridge, MA, USA, 2002. (zitiert auf Seite 22 und 61)

Christian Prehofer. Feature-oriented programming: A fresh look at objects.
In Proceeding of the European Conference on Object-Oriented Programming
(ECOOP), pages 419-443. Springer-Verlag, Berlin / Heidelberg, 1997. (-
tiert auf Seite 1 und 12)

Jacob N. Sarvela. The bali language. Verfiighar unter: http://userweb.cs.
utexas.edu/users/schwartz/ATS /fopdocs/bali.pdf, May 2003. (zitiert auf
Seite 16)

http://userweb.cs.utexas.edu/users/schwartz/ATS/fopdocs/bali.pdf
http://userweb.cs.utexas.edu/users/schwartz/ATS/fopdocs/bali.pdf

Literaturverzeichnis 91

[SB02]

[SGMO02]

[SLAOS]

[Spe92]

[Ste06]

[Sys06]

[TBKCO07]

[Thii10]

[TOHS9Y]

[UGKBOS]

Yannis Smaragdakis and Don Batory. Mixin Layers: An Object-Oriented
Implementation Technique for Refinements and Collaboration-Based De-
signs. ACM Transactions on Software Engineering and Methodology,
11(2):2157255, 2002. (zitiert auf Seite 14 und 18)

Clemens Szyperski, Dominik Gruntz, and Stephan Murer. Component Soft-
ware - Beyond Object-Oriented Programming. Addison-Wesley Longman,
Amsterdam, 2nd ed. (15. november 2002) edition, 2002. ISBN-13: 978-
0201745726. (zitiert auf Seite 10)

Ravi Sethi, Monica S. Lam, and Alfred V. Aho. Compiler. Prinzipien, Tech-
niken und Tools (Pearson Studium): Prinzipien, Techniken und Werkzeuge.
Pearson Education, Miinchen, 2. Auflage edition, January 2008. (zitiert auf
Seite 20)

Henry Spencer. ifdef Considered Harmful, or Portability Experience with
C News. In Proceeding of the Summer’92 USENIX Conference, pages 185
197, 1992. (zitiert auf Seite 10)

Friedrich Steimann. The paradoxical success of aspect-oriented program-
ming. SIGPLAN Not., 41(10):481-497, 2006. (zitiert auf Seite 11)

Andreas Syska. Produktionsmanagement. Betriebswirtschaftlicher Verlag
Dr. Th. Gabler GWV Fachverlage GmbH, Wiesbaden, 2006. (zitiert auf
Seite 5)

Sahil Thaker, Don Batory, David Kitchin, and William Cook. Safe com-
position of product lines. In Proceedings of the international conference on
Generative programming and component engineering (GPCE), pages 95—
104, New York, NY, USA, 2007. ACM Press. (zitiert auf Seite 2, 29, 30, 31,
33. 38 und 45)

Thomas Thiim. A Machine-Checked Proof for a Product-Line Aware Type
System. (Diplomarbeit), University of Magdeburg, 2010. (zitiert auf Seite 33

und 75)

Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton, Jr. N
degrees of separation: multi-dimensional separation of concerns. In Pro-

ceedings of the International Conference on Software Engineering (ICSE),
pages 107-119, New York, NY, USA, 1999. ACM Press. (zitiert auf Seite 8)

Engin Uzuncaova, Daniel Garcia, Sarfraz Khurshid, and Don Batory. Tes-
ting software product lines using incremental test generation. In Proceedings
of the International Symposium on Software Reliability Engineering (ISS-
RE), pages 249-258, Washington, DC, USA, 2008. IEEE Computer Society.
(zitiert auf Seite 8)

92

Literaturverzeichnis

[Vis97] Eelco Visser. Scannerless generalized-LR parsing. Technical report, Uni-
versity of Amsterdam, Programming Research Group, 1997. (zitiert auf
Seite 20)

[Wir71] Niklaus Wirth. Program development by stepwise refinement. Commun.
ACM, 14(4):221-227, 1971. (zitiert auf Seite 33)

[ZO01] Matthias Zenger and Martin Odersky. Implementing extensible compilers.
In proceedings of the European Conference on Object-Oriented Programming
(ECOOP), workshop on Multiparadigm Programming with Object-Oriented
Languages, pages 61-80. ACM Press, 2001. (zitiert auf Seite 23)

Hiermit erklére ich, dass ich die vorliegende Arbeit selbstdndig verfasst und keine an-
deren als die angegebenen Quellen und Hilfsmittel verwendet habe.

Magdeburg, den 24.05.2010

	Inhaltsverzeichnis
	Abbildungsverzeichnis
	Tabellenverzeichnis
	Quelltextverzeichnis
	Abkürzungsverzeichnis
	1 Einleitung
	2 Grundlagen
	2.1 Software-Produktlinien
	2.1.1 Implementierungstechniken für Software-Produktlinien

	2.2 Feature-orientierte Programmierung
	2.2.1 AHEAD
	2.2.2 FeatureHouse
	2.2.3 Reihenfolge der Featurekomposition

	2.3 Compiler
	2.4 Compiler-Frameworks
	2.4.1 JastAdd

	3 FOP Fehlererkennung und Erweiterungsmöglichkeiten
	3.1 FOP spezifische Fehler
	3.2 Fehlererkennung bei den bestehende Konzepte
	3.2.1 AHEAD
	3.2.2 FeatureHouse

	3.3 Abbildung von Fehlermeldungen auf den Quelltext
	3.3.1 Fehlermeldung in FeatureIDE

	3.4 Zusammenfassung der Ergebnisse
	3.5 Nativer FOP-Compiler

	4 Implementierung
	4.1 Sprachkonstrukte für die FOP
	4.1.1 Klassen- und Interfaceverfeinerung
	4.1.2 Konstruktorverfeinerung
	4.1.3 Originaler Methodenaufruf
	4.1.4 Layer-Anweisung

	4.2 Auswahl der Features
	4.3 Transformation des AST
	4.4 Überprüfung
	4.4.1 Erkennung falsch platzierter Konstruktorverfeinerungen und originaler Methodenaufrufe
	4.4.2 Positionsangaben der Fehlermeldungen
	4.4.3 Fehlermeldungen für zwei Dateien

	5 Evaluation
	5.1 Verwendete Programme zur Evaluierung
	5.1.1 Chat-SPL
	5.1.2 Graph-Produktlinie
	5.1.3 TankWar
	5.1.4 myViolett
	5.1.5 GUIDSL
	5.1.6 BerkleyDB
	5.1.7 Übersicht der verschiedenen Programme
	5.1.8 Beschreibung der Testplattform

	5.2 Ergebnisse und Auswertung
	5.2.1 Laufzeituntersuchung
	5.2.2 FOP-spezifische Fehler
	5.2.3 Vergleich mit den bisherigen Ansätzen

	6 Zusammenfassung
	7 Ausblick
	A Anhang A
	B Anhang B
	Literaturverzeichnis

