2018 ACM/IEEE 40th International Conference on Software Engineering: Companion Proceedings

Adding Sparkle to Social Coding: An Empirical Study of
Repository Badges in the npm Ecosystem

Asher Trockman

University of Evansville, USA
asher.trockman@gmail.com

1 INTRODUCTION AND MOTIVATION

Contemporary software development is characterized by increased
reuse and speed. Open source software forges such as GiITHUB host
millions of repositories of libraries and tools, which developers
reuse liberally [6], creating complex and often fragile networks of
interdependencies [1]. Hence, developers must make more deci-
sions at a higher speed, finding which libraries to depend on and
which projects to contribute to. This decision making process is
supported by the transparency provided by social coding platforms
like GITHUB [4, 5], where user profile pages display information
on a one’s contributions, and repository pages provide information
on a project’s social standing (e.g., through stars and watchers).

Using such visible cues, known as signals [9], found on profile
and repository pages, developers can better manage their projects
and dependencies, communicate more efficiently, become informed
about action items requiring their attention, learn, socialize, and
form impressions about each other’s coding ability, personal char-
acteristics, and interpersonal skills [5, 7, 8, 11].

We focus on repository badges, images such as [EXJELel, which
are embedded in projects’ README files and often dynamically
generated. Badges can be seen as signaling mechanisms, increasing
transparency by quickly providing insights into otherwise hard-to-
see project qualities such as test suite quality, adherence to coding
standards, dependency management practices, and openness to
contributions.

We investigate which qualities maintainers intend to signal with
badges and how well badges corrrelate with those qualities. We
perform a large-scale mixed-methods empirical study of badges in
the npm ecosystem, a large and vibrant open-source ecosystem for
JavaScript with documented interdependency-related coordination
challenges [1], wherein many badges originated.

The npmecosystem contains a vast number of competing projects
which provide similar functionality. If we understood which badges
were reliable signals, developers could make more informed choices
about which of these projects to depend on, more effectively evalu-
ating security, well-testedness, and availability of support. Contrib-
utors could better determine which projects follow suitable devel-
opment practices and are welcoming to new contributors. Project

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.

ACM ISBN 978-1-4503-5663-3/18/05...$15.00
https://doi.org/10.1145/3183440.3190335

524

maintainers could be more deliberate when selecting badges to dis-
play, highlighting and providing evidence for their good practices.
The developers of badge-providing services could design badges
that provide a better assessment of long-term adherence to quality
standards. In summary, badges are a potentially impactful feature
in transparent, social coding environments; our study provides new
understanding of their value and effects.

2 APPROACH

Survey. To better understand what maintainers intend to signal
with badges and how developers perceive those badges, we con-
ducted a survey of npm maintainers and contributors, sending 580
emails and receiving 32 maintainer and 57 contributor responses.
Both surveys required specific badges and the qualities expected
to be associated with them to be mentioned. A majority, 88% of
respondents, agreed that “the presence of badges in general is an
indicator of project quality.”

Data mining. To study the adoption and the effects associated with
badges, we mined a longitudinal data set of 294,941 npm packages.
We collected metadata on downloads and releases from npm and
project history, such as test suite size, historical dependencies, and
commit counts from GrTHuB. Badges and their adoption dates were
extracted from the git history of each repository’s README file.
We iteratively devised regular expressions and keywords for badge
identification and classification.

We found 88 distinct types of badges and split them into six cat-
egories: quality assurance (e.g., continuous integration build status),
dependency management (version and vulnerability tracking), infor-
mation (e.g., latest release, coding style), popularity (e.g., downloads,
CDN availability), support (e.g., chat, issue statistics), and other.

Data analysis. To check hypotheses about developer perceptions
from the survey, we follow three complementary steps, each ana-
lyzing the correlation of badges with a quality at a deeper level:

Correlation. We explore whether badges are reliable signals of cer-
tain qualities without concern for causal relationships, confounds,
or historical trends; e.g., do quality assurance badges correlate with
larger test suites (in bytes)?

Additional information. Here we investigate correlation while
controlling for other visible indicators of project quality (e.g., stars
and dependents); does a project with a quality assurance badge
have a larger test suite, other factors held equal? We compare a
base regression model without badges to a full one with badges.

Longitudinal analysis. We use a time-series regression discontinu-
ity design [2], measuring a quality at 19 monthly intervals, with
the middle month being that in which a badge is adopted. The
change in the trend after the adoption can reveal whether badges
are indicative of lasting changes to development practices.

ICSE *18 Companion, May 27-June 3, 2018, Gothenburg, Sweden

Asher Trockman

10 10 g 05 05
@ 2
-— |73
8 04 204
1) w3 ° £
@a o 10 = =]
9 g o o3 203
S @
@ M ‘é :13 E
(0] = et e]
o 3 @ 0.2 1M 0.2
£ 8] s 5
10 2 o1 g o1
k7] s
ST 5, T
10 = 00 0.0

86-4-202 468 -8-6-4-2024638
Month index relative to badge

-8-6-4-20 2 4 6 8
Month index relative to badge

-8-6-4-20 2 4 6 8
Month index relative to badge

-8-6-4-20 2 4 6 8
Month index relative to badge

(a) Monthly freshness scores, rel. to dependency- (b) Monthly downloads, rela- (c) Ratio test suite size / pack- (d) Fraction PRs with tests,

manager (left) and information badges (right). tive to first badge.

age size, rel. to QA badge. relative to QA badge.

Figure 1: Trends in response variables before and after badge adoption (month highlighted).

3 RESULTS

Badge adoption. We found that 46% of packages have adopted
at least one badge; only few are broadly adopted, with the most
common being Travis CI [[EEREELE. They are adopted in groups
and are not frequently updated or removed.

Signals of updated dependencies. To clearly illustrate our three-
step process, we focus on dependency management badges. As the
response, we created a metric of dependency up-to-dateness, or
freshness, based on previous work [3]. A lower score is better; zero
means the project’s dependencies are entirely up-to-date.

Based on our survey, we hypothesize that dependency manage-
ment badges (e.g., Ugiockis), which indicate whether a
project’s dependencies are outdated or insecure, are correlated with
dependency freshness. Furthermore, since information badges (e.g.,
[(EEENZEEN) primarily provide convenient links and are not asso-
ciated with an assessment of a quality, we hypothesize that they
do not systematically influence freshness.

Correlation. Packages with dependency management badges tend
to have fresher dependencies than those without. Surprisingly, we
see the same effect for packages with just information badges.

Additional information. To test if the presence of these badges
is associated with a deeper indication of freshness beyond other
readily available signals, we fit a hurdle regression: a logistic re-
gression to model whether freshness = 0 and a linear regression to
model the level of freshness. This approach is necessary since 37%
of packages with dependencies have up-to-date (freshness = 0)
dependencies. For the logistic regression, we found that the odds of
having up-to-date dependencies increases by 27% if a project has a
dependency management badge. Surprisingly, information badges
are correlated with a similar increase of 17%. We see similar results
for the linear regression.

Longitudinal analysis. We collect a sample of 1,761 packages that
have 9 months of history before and after the adoption of the first
badge and at least one month with freshness # 0 in that time
frame. In Fig. 1a, a trend is clearly visible, which is supported by a
statistical model. The adoption of any badge is correlated with a
strong improvement in freshness. The freshness slightly decays over
time, i.e., the change in practices does not last. As hypothesized, the
adoption of a dependency management badge is associated with a
longer-lasting effect on freshness than other badges. The additional
effect of information badges on the decay is negligible.

Discussion. The results from the three preceding steps support
our hypothesis that dependency management badges are reliable

signals of practices that lead to fresher dependencies. Though de-
pendency management badges are correlated with a stronger and
longer-lived effect, the effect is is not exclusive to dependency man-
agement badges: we speculate that any maintenance task involving
the addition of badges might involve other project cleanup efforts.
Developers and contributors can use this information to select
projects that are more likely to be up-to-date and secure.

Summary of other results. Using the same method as above, we
also found that build status and coverage badges correlate with
increased test suite sizes (Fig. 1c) and encourage external contribu-
tors to include more tests in pull requests (Fig. 1d). We found that
popularity badges correlate with gains in downloads, though the
effect does not persist (Fig. 1b). Badges are inextricably tied to third-
party services, yet we isolated the effects of badges by comparing
with projects that adopted Travis CI without the associated badge;
projects with the badge are more likely to have passing builds than
those without, and the badge adoption correlates with a larger
increase in test suite size than merely adopting Travis CL

Threats to validity. Our operationalized measures cannot fully
capture the underlying qualities mentioned in the survey, but we
expect a strong correlation on average given our large data set. One
must be careful when generalizing beyond the studied measures.

4 CONTRIBUTIONS

We found that packages with badges tend to have more of the
quality they intend to signal, a small effect remaining even when
controlling for other visible signals. Correlations are particularly
strong for assessment signals, or badges that test an underlying non-
trivial quality, e.g., quality assurance and dependency management
badges, rather than just stating intentions, e.g., information badges.
Badges tend to correlate with a positive increase in the qualities they
signal around the time of their adoption. For assessment signals,
this effect tends to be stronger and longer-lived, suggesting a lasting
change to development practices.

Implications for practitioners. Based on our results, package
maintainers can make more deliberate choices about badges, e.g., by
favoring assessment signals. Service developers can design badges
more carefully by providing an assessment signal based on some
analysis of past conformance. Package users and contributors can bet-
ter decide which badges to use as indicators of underlying practices
and as starting points to investigate deeper qualities.

Overall: EXEEIIEETS. More details can be found in a related
publication [10].

An Empirical Study of Repository Badges in the npm Ecosystem

REFERENCES

[1] Christopher Bogart, Christian Késtner, James Herbsleb, and Ferdian Thung. 2016.

How to break an API: Cost negotiation and community values in three software
ecosystems. In Proc. Int’l Symp. Foundations of Software Engineering (FSE). ACM,
109-120.

Thomas D Cook, Donald Thomas Campbell, and Arles Day. 1979. Quasi-
experimentation: Design & analysis issues for field settings. Vol. 351. Houghton
Mifflin Boston.

Joél Cox, Eric Bouwers, Marko van Eekelen, and Joost Visser. 2015. Measuring De-
pendency Freshness in Software Systems. In Proc. Int’l Conf. Software Engineering,
Volume 2. IEEE Press, 109-118.

Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social coding
in GitHub: transparency and collaboration in an open software repository. In
Proc. Conf. Computer Supported Cooperative Work (CSCW). ACM, 1277-1286.
Laura Dabbish, Colleen Stuart, Jason Tsay, and James Herbsleb. 2013. Leveraging
transparency. IEEE Software 30, 1 (2013), 37-43.

526

ICSE *18 Companion, May 27-June 3, 2018, Gothenburg, Sweden

[6] Mohammad Gharehyazie, Baishakhi Ray, and Vladimir Filkov. 2017. Some from

[7

[11

here, some from there: cross-project code reuse in GitHub. In Proc. Working Conf.
Mining Software Repositories (MSR). IEEE, 291-301.

Jennifer Marlow, Laura Dabbish, and Jim Herbsleb. 2013. Impression formation
in online peer production: activity traces and personal profiles in GitHub. In Proc.
Conf. Computer Supported Cooperative Work (CSCW). ACM, 117-128.

Vishal Midha and Prashant Palvia. 2012. Factors affecting the success of Open
Source Software. Journal of Systems and Software 85, 4 (2012), 895-905.
Michael Spence. 1973. Job market signaling. The Quarterly Journal of Economics
87,3 (1973), 355-374.

Asher Trockman, Shurui Zhou, Christian Kastner, and Bogdan Vasilescu. 2018.
Adding Sparkle to Social Coding: An Empirical Study of Repository Badges in the
npm Ecosystem. In Proceedings of the 40th International Conference on Software
Engineering (ICSE). ACM Press, New York, NY.

Bogdan Vasilescu, Vladimir Filkov, and Alexander Serebrenik. 2015. Perceptions
of diversity on GitHub: A user survey. In Proc. Int’l Workshop Cooperative and
Human Aspects of Software Engineering (CHASE). IEEE, 50-56.

