A Qualitative Study of Cleaning in Jupyter Notebooks

Helen Dong

Carnegie Mellon University

ABSTRACT

Data scientists commonly use computational notebooks because
they provide a good environment for testing multiple models. How-
ever, once the scientist finds the ideal model, he or she will have to
dedicate time to clean the code in order for others to understand
it. In this paper, we perform a qualitative study on how scientists
clean their code. Our end goal is to provide additional aid to data
scientists, who can then focus more on their actual work rather
than the routine and tedious cleaning duties.

CCS CONCEPTS

« Software and its engineering — Software post-development is-
sues.

KEYWORDS
Empirical Study, Mining Repositories, Software Engineering for Al

ACM Reference Format:

Helen Dong. 2021. A Qualitative Study of Cleaning in Jupyter Notebooks. In
Proceedings of the 29th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE °21),
August 23-28, 2021, Athens, Greece. ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/3468264.3473490

1 INTRODUCTION

Data scientists often use computational notebooks, such as Jupyter
or R notebooks, to conduct the exploratory programming aspect
in a project [6]. From previous research [3], it was discovered that
data scientists who use notebooks tend to incrementally add new
cells of code to explore alternative methods. If the overall end goal
is to share their model with other collaborators, these scientists
must perform cleaning steps in order to make it easier for others
to understand their code. Although a seemingly simple task, this
cleaning step can be tedious and laborious. Additionally, current
notebook environments provide little explicit support for cleaning,
and the few academic projects in this area focus on specific tasks,
such as slicing the code used to reproduce a specific figure or result
[1]. More generally, we do not have a solid understanding of the
different types of cleaning steps that data scientists commonly
engage in, without which we cannot effectively design a more
tailored tool.

This issue leads us to ask the following research question: what
types of cleaning activities are the most common in computational

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ESEC/FSE °21, August 23-28, 2021, Athens, Greece

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8562-6/21/08.

https://doi.org/10.1145/3468264.3473490

USA

notebooks? To answer this question, we perform a qualitative anal-
ysis of public notebooks, their version history, and related source
code files to identify which cleaning activities data scientists engage
in to help us understand what type of tools could support typical
cleaning tasks. Our long-term vision is for tool builders to address
possible gaps and provide additional aid to data scientists, who
then can focus more on their actual work rather than the routine
cleaning work. Having clean code is important because it not only
saves time for the reader, but also for the writer, since the writer
ideally will not have to take the time to explain the code to the
reader.

2 RESEARCH APPROACH

Given that we have little initial knowledge about different forms
of cleaning, we adopt a mostly qualitative research strategy in
which we carefully analyze the public history of a sample of Jupyter
notebooks. For each notebook, we noted all the changes made
between two artifacts (i.e the notebook before and after a specific
commit), and used inductive coding to identify common groups
and come up with a coding frame. Then we use our coding frame
to sample notebooks and identify trends.

To come up with the coding frame, we fetched 2600 Jupyter
notebooks on GitHub and randomly selected about 25 of them to
analyze their commit history. We identified cleaning activities by
manually analyzing changes between commits using reviewNB
[4]. While looking for patterns in cleaning activities, we found
that notebooks are used for different purposes, and the cleaning
activities vary correspondingly. Using literature [1] from previous
studies and observing characteristics of the 25 notebooks, we were
able to distinguish 3 main groups that most notebooks on GitHub
fall under. Due to this separation of groups, we determined that a
uniformly random sample was not suitable for our purposes. Thus,
we decided to stratify our sample in order to cover a larger range
of different notebooks.

3 CORPUS SELECTION & SAMPLING

We describe the three different types of notebooks and how we
sample each of them below.

Sharing Notebooks are notebooks that are created with an
intended purpose to be shared with others. Such notebooks are
characterized by extensive README files that communicate the
purpose of the project to an audience. These notebooks tend to have
less inline code comments and more markdown (titles in Jupyter
Notebooks) describing the notebook on a high level.

Production notebooks are those that are used to prepare mod-
els that are intended to be integrated in some software system to be
used as a library by other developers or as product by end users. For
these notebooks, there exists some sort of production code, and in
our case, we looked for python files (which were originally .ipynb
files converted to .py files). These notebooks also tend to have an

https://doi.org/10.1145/3468264.3473490
https://doi.org/10.1145/3468264.3473490

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

wmped walished veleosed
X (pevsonat) ° (snawing) (production)
C/ convert & py
MMO\\'HQ _/ o
cleani : cleanin
cleaning i
wikain b W Pythan

Figure 1: Process of cleaning notebooks. A box represent a
state of a notebook or python file. An arrow indicates a tran-
sition to a new state..

extensive README, but they generally explain how to use the tool
rather than describing the code on a high level.

Personal Notebooks are notebooks that are used for data ex-
ploration, and may not become anything more than that. In these
notebooks we tend to observe a lot of playground code and testing,
and it is harder to understand the purpose of the code. These note-
books may be for the developer’s personal use and not intended for
anyone else to see.

After identifying these three groups, we were able to perform
stratified sampling to continue our study. We fetched repositories
from GitHub that were last edited in 2018. The reason for this was to
ensure that the project was completed or abandoned, and thus the
notebook will likely not have any further cleaning steps. We chose a
relatively recent date because we wanted to look at notebooks that
represented cleaning in modern-day coding. To retrieve sharing
notebooks, we searched for notebooks (1) in repositories that had
at least 10 stars on GitHub (i.e., received some recognition), (2) that
had an extensive README file, and (3) do not contain python files to
exclude libraries and production notebooks. To fetch production
notebooks, we used clone detection techniques to identify similar
code snippets between notebook and python files. Specifically, we
looked for type 3 clones, which are defined as code where ‘one or
more statements can be modified, added, or removed.’ [2] To find
the code clones, we used a tool, namely Nicad [5]. With multiple
rounds of testing the best modes on Nicad, we decided to detect
the type 3 clones with at least 75% similarity. To find personal
notebooks, we searched for notebooks that did not fall under the
sharing or production notebook category. As long as it was not
used for a class project, it was a viable personal notebook. Within
each group of notebooks, we randomly selected 10 notebooks and
carefully looked through the commit history to identify common
cleaning qualities.

4 RESULTS

Figure 1 displays, on a high level, the cleaning steps and different
categories of notebooks that implement these cleaning steps.
Based on our observations, the most common activity involved
adding or deleting comments, or making changes by commenting
out code. This is because in notebooks, developers may write many
functions for testing purposes and when they do not work, they
can just comment them out and run other cells. Upon finding the
best one, they can just delete the other commented out, less optimal
functions. Another common act of cleaning we saw was the act

Helen Dong

of reordering cells. Since notebooks can be executed in any order
desired, it is possible the developer wrote the code sequentially, but
did not run them in that order. After finalizing the code, the devel-
oper has reorder the cells in order for the reader to understand the
intended order of the cells. While all notebooks embodied similar
qualities, different types of notebooks also had specific traits.

Personal Notebooks. We noted minimal cleaning in these types
of notebooks; the extent of cleaning was merely making changes
to comments or markdown. Since these notebooks were mostly
meant for exploration, we noticed a lot of code being commented
out throughout each commit. We also saw a lot of inline changes
to the code (for example, adjusting parameters of models). There
were instances where the notebook on the final version was not
completely clean (i.e. commented out code remained was an obvious
sign). This could be because the author did not intend to clean the
notebook as it may not have been meant to seen by others.

Sharing Notebooks. The cleaning traits in sharing notebooks
mostly had to do with markdown changes (i.e adding headers or
descriptive paragraphs for a group of cells). The markdown changes
in these notebooks seemed to be directed towards an audience, and
often would provide a high level explanation of the code. One dif-
ference we noticed between sharing notebooks and personal note-
books was that in sharing notebooks, the cleaning steps occured
much earlier in the commit history as compared to the personal
notebooks. This is likely because authors of sharing notebooks
originally intended to share the notebook with others, so keeping
their code clean was on their priority list.

Production Notebooks. For production notebooks, the most
cleaning occured in the transition between notebook to python
file. When we compared the notebook to the python files, we no-
ticed that there was often one notebook that was split into multiple
python files. Additionally, the subset of the code was often put
into a class and any commented out code in the notebook was
removed. The notebook was likely used for testing and perfecting
code and after, it was split into to several python files. When we
compared the notebooks and the python files, the notebooks were
always messier and less readable. The notebook also included com-
mented out code that was never cleaned up within the notebook
but was later removed when converted to python files. We also saw
instances where the notebook was directly converted to a python
file, which occured quite often, but we did not look into these cases
because it was likely that the developer just used a tool such as
nbconvert to convert the notebook to a python file.

5 CONCLUSION

From this qualitative study, we saw that cleaning practices vary
depending on the purpose of the notebook. An ideal tool would
allow the user to identify the purpose of the notebook, and clean
the notebook accordingly. For instance, the cleaning for personal
notebooks can focus more at the code level whereas the cleaning
for sharing notebooks can focus more on markdown to allow a
reader to understand the code. For production notebooks, there
could be a functionality where it takes in a notebook file and splits
into separate python files with respective classes.
Acknowledgements. The work was supported as part of an NSF-
funded REU project (award 1813598).

A Qualitative Study of Cleaning in Jupyter Notebooks

REFERENCES

[1] Andrew Head, Fred Hohman, Titus Barik, Steven M Drucker, and Robert DeLine.
2019. Managing messes in computational notebooks. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems. 1-12.

[2] Yue Jia, David Binkley, Mark Harman, Jens Krinke, and Makoto Matsushita. 2008.
KClone: A Proposed Approach to Fast Precise Code Clone Detection. In Proceedings
of the 16th IEEE International Conference on Program Com- prehension, ICPC 2008.
172-181.

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

[3] Liu, Jiali, Nadia Boukhelifa, and James R. Eagan. 2019. Understanding the role of

alternatives in data analysis practices.. In IEEE Transactions on Visualization and
Computer Graphics.

Amit Rathi. 2018. ReviewNB Tool. https://www.reviewnb.com/.

C.K.Roy and J.R. Cordy. 2008. NICAD: Accurate Detection of Near-Miss Intentional
Clones Using Flexible Pretty- Printing and Code Normalization. In Proceedings
of the 16th IEEE International Conference on Program Com- prehension, ICPC 2008.
172-181.

Beau Sheil. 1983. Variolite: Supporting Exploratory Programming by Data Scien-
tists. In Environments for exploratory programming. Datamation 29, 7. 131-144.

https://www.reviewnb.com/

	Abstract
	1 Introduction
	2 research approach
	3 Corpus Selection & Sampling
	4 results
	5 Conclusion
	References

