
CIDE: Decomposing Legacy Applications into Features

Christian Kästner
School of Computer Science

University of Magdeburg
39106 Magdeburg, Germany

kaestner@iti.cs.uni-magdeburg.de

Abstract

Taking an extractive approach to decompose a legacy ap-
plication into features is difficult and laborious with current
approaches and tools. We present a prototype of a tool-
driven approach that largely hides the complexity of the task.

1 Introduction

A software product line (SPL) aims at creating highly con-
figurable programs from a set of features. To reduce costs
and risks, developers often take an extractive approach for
creating the SPL by refactoring one or more legacy applica-
tions into features [2]. In prior case studies we experienced
that refactoring legacy applications is a complex and difficult
tasks [4]. When implementing features with mixin layers [6],
aspects [5, 3], or other language-based approaches, an severe
overhead is required to implement features.

During development and discussions we communicated
with code examples where we underlined code, or used other
text styles and colors, to mark features in the original code.
An example of a Stack with two features Locking and Log-
ging is shown in Figure 1.1 This way to present features
turned out conveniently, because it hides all language con-
structs that are usually necessary to implement these features.
Similarly, in our refactoring process we first deleted all fea-
ture code, i.e., all underlined or colored code, and afterward
reintroduced this code with an aspect or mixin layer [4].

Finally, we took this idea and created a tool called Col-
ored IDE (CIDE) where refactoring a legacy application is
as simple as underlining or coloring code in the example
above. In the demonstration we show the basic concepts and
benefits of CIDE.

1In the printed version we use bold and italic fonts to mark features.

1 class Stack {
2 boolean push(Object o) {
3 Lock lock=lock();
4 if (lock==null) {
5 log("lock failed for: "+o)’;
6 return false;
7 }
8 elementData[size++] = o;
9 ...

10 }
11
12 void log(String msg) { /*...*/ }
13 }

Figure 1. Colored Example Code

2 CIDE

CIDE is an Eclipse plug-in that replaces the Java editor in
SPL projects. Developers start with a standard Java legacy
application, then they select code fragment and associate
them with features from the context menu. The marked
code is then permanently highlighted in the editor using
a background color associated with the feature. It is also
possible to associate a code fragment with more than one
feature, as Line 5 in our example above. In this case we
currently mix the colors and show the full list of associated
features in a tool tip.

Internally, CIDE uses a abstract syntax tree (AST) rep-
resentation of the source code. Thus, the users can only
mark AST nodes and their children – e.g., classes, methods,
statements, or parameters – but not arbitrary text. The focus
however is on hiding as much SPL related complexity as
possible from the user.

To create a configuration, the user invokes a dialog to
select the features of the configuration. CIDE copies the
project and removes all code that is associated with features
not included in the configuration. This resembles preproces-
sors, but additional preprocessor statements are not required
in the base code. Technically, the removal of feature code is
implemented as AST transformations.



Figure 2. CIDE Screenshot

3 Advanced Topics

CIDE provides a virtual desktop on the project, where
certain features can be hidden from the editor. Thus, it is
possible to view and edit the simplified source code without
feature code. Markers that indicate hidden code are still
present to allow safe changes.

CIDE checks syntactical correctness of the decomposed
application. For example a method call must be associated
with all features the method’s definition is associated with,
otherwise some configurations result in missing references.
CIDE provides several such checks that mirror compiler
checks and can ensure syntactical correctness of the source
code in all configurations.

CIDE provides a granularity that we have not found in
any language-based approach. For example, we can asso-
ciate single statements inside a method, or even method
parameters with features and thus remove them in some
configurations.

CIDE supports analyzing interactions between feature
implementations. During decomposition each feature can
be marked individually, but interactions are found naturally
each time features overlap. Tools and statistics support the
developer in finding and analyzing interactions.

4 Future Work

Our current focus is on providing a tool-based approach
on decomposing legacy applications to hide as much com-
plexity as possible from the user. In future work we intend
to expand our tool as a general purpose SPL tool that can

also be used to design new SPLs and support other code
fragments than Java code.

Furthermore, we intend to provide a language-based foun-
dation, so that the tool can be used as a front end to a
language-based approach. For example, we could store fea-
tures according to the AHEAD model [1] but still present the
composed marked front end to the user that hides all internal
complexity.

Acknowledgments

We thank Don Batory, Sven Apel, Martin Kuhlemann,
and Christian Lengauer for their helpful discussions and
comments on earlier versions of the tool.

References

[1] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling Step-
Wise Refinement. IEEE Trans. Softw. Eng., 30(6), 2004.

[2] P. Clements and C. Kreuger. Point/Counterpoint: Being Proac-
tive Pays Off/Eliminating the Adoption Barrier. IEEE Software,
19(4), 2002.

[3] M. L. Griss. Implementing Product-Line Features by Compos-
ing Aspects. In Proc. Int’l Software Product Line Conference.
2000.

[4] C. Kästner, S. Apel, and D. Batory. A Case Study Implement-
ing Features Using AspectJ. In Proc. Int’l Software Product
Line Conference, 2007.

[5] G. Kiczales et al. Aspect-Oriented Programming. In Proc.
Europ. Conf. Object-Oriented Programming. 1997.

[6] Y. Smaragdakis and D. Batory. Mixin Layers: an Object-
Oriented Implementation Technique for Refinements and
Collaboration-Based Designs. ACM Trans. Softw. Eng.
Methodol., 11(2), 2002.

2


