Detecting Interpersonal Conflict in Issues and Code Review:
Cross Pollinating Open- and Closed-Source Approaches

Huilian Sophie Qiu
Carnegie Mellon University
Pittsburgh, PA, USA

Bogdan Vasilescu
Carnegie Mellon University
Pittsburgh, PA, USA

Christian Kastner
Carnegie Mellon University
Pittsburgh, PA, USA

hsqq@cmu.edu vasilescu@cmu.edu kaestner@cs.cmu.edu
Carolyn Egelman Ciera Jaspan Emerson Murphy-Hill
Google Google Google

Sunnyvale, CA, USA
cegelman@google.com

ABSTRACT

Interpersonal conflict in code review, such as toxic language or
an unnecessary pushback, is associated with negative outcomes
such as stress and turnover. Automatic detection is one approach to
prevent and mitigate interpersonal conflict. Two recent automatic
detection approaches were developed in different settings: a toxic-
ity detector using text analytics for open source issue discussions
and a pushback detector using logs-based metrics for corporate
code reviews. This paper tests how the toxicity detector and the
pushback detector can be generalized beyond their respective con-
texts and discussion types, and how the combination of the two can
help improve interpersonal conflict detection. The results reveal
connections between the two concepts.

LAY ABSTRACT

Software engineers often communicate with one another on plat-
forms that support tasks like discussing bugs and inspecting each
others’ code. Such discussions sometimes contain interpersonal
conflict, which can lead to stress and abandonment. In this paper,
we investigate how to automatically detect interpersonal conflict,
both by analyzing the text of the what the engineers are saying and
by analyzing the properties of that text.

1 INTRODUCTION

In online communities and offline workplaces alike, interpersonal
conflicts, understood broadly as including hostility, hate, aggression,
toxic language, bullying, etc, has been a major concern and topic of
research [3, 42, 47]. The consensus is not only that such forms of
interaction are antisocial, but also that they are all associated with
negative outcomes in the communities or groups where they take
place, including decreased well-being, job satisfaction, stress, and
turnover [35, 37, 50]. In addition, these outcomes tend to dispropor-
tionately affect members of underrepresented groups [4, 13, 62].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE-SEIS’22, May 21-29, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9227-3/22/05.

https://doi.org/10.1145/3510458.3513019

Sunnyvale, CA, USA
ciera@google.com

Sunnyvale, CA, USA
emersonm@google.com

In software engineering, the problem of interpersonal conflicts
is also well recognized. For example, in software development,
some communities and maintainers have a reputation for being
toxic [20, 55, 58]. Although relatively milder, impolite language is
seen as a barrier to newcomers [48, 59]. There are repeated anec-
dotes of sexist behavior, harassment, or contributors concealing
their identity to avoid abuse [22, 40, 56, 60, 61]. More broadly, ev-
idence is also starting to emerge about anger [21], negative emo-
tions [19], impoliteness [43, 46], pushback [18], or directly toxicity
in issue discussions [2, 12, 38, 50], code reviews [11], and Gitter
developer communication [53]. The programming-related Q&A
platform Stack Overflow is also notorious for being ‘toxic’ [9].

However, despite comparable agreement about the importance of
the problem, there is relatively less progress in software engineering
compared to other domains in terms of automatic detection for
prevention or mitigation [30, 32]. Several factors contribute to this
lag, including inherent difficulty of the problem, but also domain
specificity of some toxic interactions and scarcity of labeled data.

Prior research on automatic detection of toxicity and related
constructs in software engineering has room for improvement. In
particular, we note that approaches published previously in the soft-
ware engineering literature have generally all been based on textual
analytics [10, 50]. For example, Raman et al. [50] experimented with
different sets of features, all text-based, to train a classifier to detect
open-source software (OSS) toxic issue discussions, which is de-
fined as “rude, disrespectful, or unreasonable comment[s] that [are]
likely to make someone leave a discussion” - a definition of toxicity
used also in other public discussion forums such as Wikipedia or
the New York Times, originating from Google’s project Jigsaw [63].
However, follow-up work by Sarker et al. [53] showed that Raman
et al. ’s approach has limited generalizability.

Meanwhile, researchers have long been arguing that meta-infor-
mation can be very useful to refine inconclusive classification [54].
For example, people with a history of hate speech are more likely to
engage in such behavior again than people without any history [14].
In software engineering, Egelman et al. [18] showed that using only
meta-information can detect pushback, defined as “the perception of
unnecessary interpersonal conflict in code review while a reviewer
is blocking a change request”

Notably, the two concepts — ‘toxicity’ as operationalized by Ra-
man et al. [50] and ‘pushback’ as operationalized by Egelman et al.
[18] - are similar, but distinct. For instance, while some types of
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Egelman et al.’s pushback could be considered toxic (e.g., personal
attacks), others would not (e.g., persistent nitpicking). Moreover,
the types of software discussions analyzed and the study settings
in the two studies are arguably very different — Egelman et al.’s
classifier was applied only on code reviews internally at Google
and Raman et al.’s classifier was applied only on public GitHub
issues (not code reviews). Despite these difference, it seems possible
that these two approaches could inform one another as a way to
improve detection of interpersonal conflict.

In this paper, we contribute: (1) a comparison of how toxicity
and pushback manifest in open source and in a company, and (2) a
systematic evaluation of our ability to predict toxicity and pushback
in different settings and using different approaches. To this end, we
use existing and new labeled datasets that capture both concepts
in open-source and corporate code reviews. We use 10-fold cross-
validation to evaluate and compare the two previous classifiers
and also develop a new combined classifier using features from
both. Our results provide insights on how these classifiers work
in different contexts. The comparisons and discussion also shed
light on the relationship between the two concepts, toxicity and
pushback, and the two settings, open source and corporate.

By improving the accuracy of automated approaches to detect
toxicity, pushback, and possibly other forms of interpersonal con-
flict in software discussions, this research paves the way for design-
ing tools to prevent, mitigate, and further study these phenomena,
including designing interventions to offer just-in-time guidance to
developers in such situations. A detector can also be a powerful
tool for researchers studying the effectiveness of tool design and
other interventions. More generally, this research offers an opportu-
nity to apply a technique to both open and closed source software,
possibly benefiting from synergies, a rarity in software engineering
research, in our experience.

2 RELATED WORK

This paper builds directly on two recent approaches to detecting
interpersonal conflict in software engineering artifacts, by Egelman
et al. [18] and Raman et al. [50]. In Egelman et al.’s study at Google,
the authors conducted interviews to develop the concept of push-
back and designed logs-based metrics to detect pushback in code
reviews. These metrics were rounds of a review, active reviewing
time, and active shepherding time. Their logistic regression model
obtained high recall (93%-100%) and low precision (6%-11%).

The other approach that this paper builds directly on is that
of Raman et al. [50]. The authors manually annotated toxic issue
threads from projects on the GitHub platform, and experimented
with outputs from different sets of generic text-based classifiers
to train a new classifier to detect toxic issue discussions specific
for open source. They reported the highest 10-fold cross-validation
accuracy when combining Stanford’s Politeness Detector [15] with
Google’s Perspective APL! The present paper expands on Raman
et al. ’s text-based features, compares them with Egelman et al.’s
classifier [18], and experiments with combining the two classifiers.

In addition to the pretrained general-purpose linguistic tools
used by Raman et al., we also explore other linguistic techniques to
detect interpersonal conflict. Vocabulary-based approaches have

https://perspectiveapi.com/

Huilian Sophie Qiu, Bogdan Vasilescu, Christian Kastner, Carolyn Egelman, Ciera Jaspan, and Emerson Murphy-Hill

been used for text classification. Open-vocabulary analysis extracts
features from the text being analyzed using statistical methods [45].
For example, Sood et al. [57] showed that an SVM classifier using
binary presence and frequency of n-grams as features can be used
to predict personal insults on social news sites. Monroe et al. [39]
showed that the log odds-ratio of an n-gram (the frequency of
being in one group of text divided by 1 minus the frequency) in
two different groups can be used to identify n-grams that are over-
represented in one group relative to the other. We build on Monroe
et al.’s work in Section 5 by attempting to find out if there is a set of
vocabulary that can distinguish between the positive labels (toxic
or pushback) and the negative labels (non-toxic or non-pushback).

Closed-vocabulary analysis relies on predefined lists of words
as features. Building on the classic linguistic theory of politeness
by Brown and Levinson [6], Danescu-Niculescu-Mizil et al. [15]
developed a computational parser for politeness strategies. Polite-
ness theory divides politeness strategies into positive politeness and
negative politeness. Positive politeness strategies encourage social
connection and rapport, such as gratitude, optimistic sentiment,
solidarity, etc. Negative politeness strategies try to minimize the im-
position on the hearer, for example, by being indirect or apologizing
for the imposition [6, 33, 34]. On the other hand, impolite behaviors
can be direct questions (e.g., “why?”) or sentences that start with
second-person pronouns, which may sound forceful. Prior studies
showed that the politeness strategy parser [8] is able to predict
if a conversation may turn awry [64] and can generalize well to
various contexts. We build on this work by using politeness strategy
features in our classifiers.

Finally, in the software engineering community, sentiment anal-
ysis [44] is a popular technique for analyzing issue discussions [21],
pull request comments [25], and forum discussions [7]. Prior work
has shown that sentiment analysis classifiers need to be trained us-
ing software engineering data because many traditionally negative
phrases may have neutral sentiment in the context of software en-
gineering [29], for example, “execute” (for a survey see Zhang et al.
[65]). Popular software engineering sentiment analysis tools in-
clude Senti4SD [7] and SentiCR [1]. Senti4SD, developed by Calefato
et al. [7], is trained on 4,000 posts extracted from Stack Overflow.
This dataset is part of the Collab Emotion Mining Toolkit [41]. Sen-
tiCR [1] is trained on 1,600 manually labeled code review comments.
In our study, we build on this work by using sentiment analysis
developed for code reviews as a feature in our classifiers.

3 RESEARCH QUESTIONS

Our overarching goal is to bridge the gap between the existing liter-
ature on toxicity [50] and pushback [18] in software development.
Besides the two concepts themselves, there are three fundamen-
tal differences between the prior work studies in this area, which
we systematically explore in this paper: (1) the context (open- vs.
closed-source), (2) the type of discussion (issues vs. code review),
and (3) the approach to classify (text-based vs. logs-based). Overall,
we answer the following research questions and sub-questions:

First, we explore how well the two classifiers generalize beyond
the respective settings in which they have been developed, while
maintaining their specific target concepts (toxicity and pushback)
and fundamental approaches to classification (text- and logs-based):
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RQ;. How well do existing classifiers generalize across context and
type of discussion?

To answer this question, for each classifier we explore one addi-
tional setting beyond the one in which they have been developed.
For the toxicity classifier [50], we experiment with open source
code reviews in addition to the original issue discussions. Similarly,
for the pushback classifier [18], we experiment with comments
on open-source pull requests, the approximate equivalent of the
original Google code reviews:

RQ;.1. How well does a text-based toxicity classifier designed for
open-source issues perform when classifying toxicity in open-source
pull requests?

ROQ1.2. How well does a logs-based pushback classifier designed
for corporate code reviews perform when detecting pushback in
open-source code reviews?

Second, given the theoretical overlap between the concepts of
pushback and toxicity, we explore how well the two fundamental
approaches to classification, text-based (toxicity) and logs-based
(pushback) generalize to detecting the other concept if appropriately
trained on relevant data for that other concept:

RQy. How well do existing classifiers generalize for both toxicity
and pushback?

RQ>.1. How well does a text-based (toxicity) classifier perform when
classifying pushback, in both open and closed-source code reviews?

RQ2 2. How well does a logs-based (pushback) classifier perform
when classifying toxicity in open-source code reviews and issue
discussions?

Finally, we explore to what extent using design insights from
one classification approach can be used to improve on the other:

RQs. To what degree can combining existing approaches improve
detection of toxicity and pushback?

RQs3.1. How well can a combined text- and logs-based classifier
classify toxicity?

RQs.2. How well can a combined text- and logs-based classifier
classify pushback?

For completeness, in addition to answering these questions, we
also replicate the original experiments on toxicity in open source
issues [50] and pushback in Google code reviews [18].

4 DATASETS

To answer our research questions, we used a mix of existing (when-
ever possible) and new datasets on toxicity and pushback. First, we
used the two existing data sets from prior work on issue toxicity
in open source [50] and code review pushback at Google [18]. Ad-
ditionally, we created two new datasets on code review toxicity
in open source and code review pushback in open source. Table 1
displays each of these four datasets as a row, labeled D1-D4, sum-
marizes how each of our research questions and the prior work
relates to each data set, and describes the size of the datasets.
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4.1 Design Decisions and Tradeoffs

Before describing each dataset in detail, we note several impor-
tant high-level design decisions, assumptions, and tradeoffs we
had to make when creating the two new datasets, and in order to
meaningfully compare results across all four datasets.

Unit of labeling. In the original toxic issue comments dataset by
Raman et al. [50], ground truth labels are available for individual
comments and the issue thread-level toxicity labels are an aggrega-
tion of comment-level labels, i.e., if there is at least one comment
labeled as toxic, the entire discussion is labeled as toxic. In contrast,
the pushback code review dataset by Egelman et al. [18] contains
only thread-level labels. Since we are reusing these datasets without
relabeling, we maintain the same unit of labeling also in the two
newly created datasets of the same concept.

Unit of classification. Our experiments focus on classifying toxic
or pushback entities at the thread level, because the logs-based
metrics, such as the rounds of review, used by Egelman et al. are
not applicable for individual comments. However, because the text-
based classifier works at the comment level, for pushback datasets
where we only have thread-level labels, we had to assign each
comment the same label as the thread-level label. We will discuss
the limitation when we present the results.

The notion of code review. Our two new code review toxicity
and pushback datasets are extracted from open-source projects on
the GitHub platform whereas Egelman et al. ’s dataset [18] was
extracted from internal Google code reviews. In addition to the dif-
ferences between the corporate and open-source contexts in terms
of culture, process, and their observed consequences, the mechanics
of code reviewing also differ. Google uses a proprietary dedicated
code review management system [52] where all review comments
are associated with specific code changes. On GitHub, projects typi-
cally manage code reviews as part of pull request threads. However,
even though canonically code review comments on GitHub are ex-
pected to be attached to specific lines of code and can therefore be
distinguished from more general discussion comments part of the
same pull request thread, practices vary widely across projects [23].
For reasons of uniformity across projects when sampling candi-
dates for manual labeling, and since we expect that indicators of
pushback may occur across pull requests as a whole, not just re-
view comments attached to specific changed lines, we consider
the conceptual equivalent of a Google code review to be an entire
GitHub pull request thread, including all its general and line-specific
comments, i.e., an “open-source code review thread” hereafter.

Representativeness. When sampling toxicity and pushback pull
request candidates for manual labeling, we use several heuristics
to narrow down the search space (details below) instead of random
sampling. While this compromises the statistical representativeness
of our datasets, it is necessary to do this since the two phenomena
we study are relatively rare; random sampling is unlikely to discover
many, if any, instances of these phenomena. We note that this is not
only a limitation of the two prior work studies we build on, but also
of all similar work on hate speech detection etc. [49]. Alternative
approaches to building labeled datasets for hate speech detection
are, as of 2021, still actively being researched [49].
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Table 1: The relationship between our four datasets and their corresponding RQs.

Classifiers Number of Data Points
Text-based Logs-based Combined
D1 Toxic Open-Source Issue Comments Raman et al. [50] RQ2.2 RQ3.1 80 toxic, 160 non-toxic
D2 Toxic Open-Source Code Review Comments RQ1.1 RQ2.2 RQ3.1 102 toxic, 204 non-toxic
D3 Pushback in Corporate Code Review RQ2.1 Egelman et al. [18] RQ3.2 493 pushback, 809 non-pushback
D4 Pushback in Open-Source Code Review RQ2.1 RQ1.2 RQ3.2 201 pushback, 323 non-pushback

Open source vs corporate metrics. While we try to replicate
Egelman et al. ’s pushback detection method, some measures are
unfortunately not observable on GitHub. For example, we cannot
replicate “shepherding time,” which in Egelman et al. ’s study is the
total amount of time an author spent actively viewing, responding
to reviewer comments, or working on the selected code change,
including looking up APIs or documentation. The public GitHub
trace data about pull request threads captures only wall clock times,
which is an overapproximation of the active shepherding time. We
are particularly interested in evaluating how well such approxima-
tion metrics, that are less precise but more widely available outside
of a corporate setting, can capture the same phenomena.

4.2 Toxic OSS Issues (D1; pre-existing)

This dataset, originally created by Raman et al. [50], consists of 80
GitHub issue discussions labeled as toxic by the authors. Starting
from the GHTorrent database [24], Raman et al. [50] identified
potentially toxic issue comments using the keyword “attitude” (the
authors of the toxic comments are often criticized in the same
thread by others, typically the project maintainers, about their
attitude), and from issue threads “locked as too heated”—one of the
mitigation strategies afforded by the GitHub platform. Raman et al.
then manually reviewed a sample of candidate issue threads from
this initial list and assigned ground truth toxicity labels.

We decided to replace the control group in Raman et al.’s dataset
[50] because we noticed that those non-toxic comments’ total num-
ber of characters is significantly shorter than for the toxic com-
ments. Since a priori we have no reason to expect that toxic issues
are generally longer than non-toxic issues, and we want to cap-
ture other aspects of toxic comments, we compiled a new set of
non-toxic issues. Inspired by Egelman et al. [18], we constructed
stratified samples by propensity score matching on the length of all
comments within an issue thread (which is not used in any of our
prediction models), after excluding code segments and comments
from obvious bots [46], e.g., a continuous integration tool. Our new
set of non-toxic issues contains two non-toxic issues for every toxic
issue.

4.3 Toxic OSS Code Review (D2; novel)

We compiled a dataset of 102 toxic open-source code review threads
(i.e., pull request threads with all their associated comments) and
a separate corresponding control group of non-toxic open-source
code review threads, using a similar approach to the one originally
taken by Raman et al. [50] for issues. Specifically, we use three
heuristics to narrow down the search space for candidates in the

GHTorrent [24] database, followed by manual review and label-
ing. Egelman et al. [18] showed in their study of pushback that
inter-rater agreement is very high when using multiple annotators,
implying that a single annotator is sufficient. One author of the
paper carried out the labeling independently, assigning “toxic” and
“non-toxic” labels to the threads as a whole if at least one of the
comments was considered to be toxic; when in doubt, we discussed
the respective examples as a group and assigned labels collectively.
The three heuristics were:
e Locked as “too heated”—this built-in GitHub mitigation mech-
anism is available for both issues and pull requests; or
e Containing the keyword “attitude”; or
e Containing “code of conduct”, a novel addition relative to
Raman et al. ’s heuristics [50]. We anecdotally observed that
a project’s code of conduct, when present, is invoked by
maintainers when responding to a toxic comment.
Then, as in dataset D1, we performed propensity score matching on
the total length of comments to assemble a control group containing
two non-toxic open source code reviews for every toxic one.

4.4 Pushback in Corporate Code Review (D3;
pre-existing)

We used the collection of code reviews gathered by Egelman et

al. [18] from Google’s internal corporate repository. The authors

collected these using two methods:

First, Egelman et al. [18] pulled a stratified random sample of
code reviews, then surveyed authors, reviewers, and other engi-
neers about whether they perceived each code review as having
elements of “pushback” The authors then labeled a code review
as containing pushback if at least one respondent noted that the
review contained at least one element of pushback. Code reviews
are labeled as not containing pushback if (a) at least one person re-
sponded to a survey about it, and (b) all survey responses about that
code review indicated that no elements of pushback were present.

Second, those same respondents could report a code review that
they thought contained pushback. They labeled these reported
code reviews as “containing pushback”, except that we discarded
those that participants indicated were problematic only because
of excessive review delays, which are not part of Egelman et al.”’
definition of pushback [18].

4.5 Pushback in OSS Code Review (D4; novel)

To construct an open source counterpart to the corporate code
review pushback dataset, we replicated the survey instrument used
by Egelman et al. [18], with only surface-level modifications to
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adapt to pull requests and their specifics on the GitHub platform
instead of Google-specific terminology.

We then compiled a sample of GitHub code reviews that each:

e had atleast 10 comments, to ensure that at least some amount
of interpersonal interaction was present, and

e had no more than 50 comments, to limit the reading effort
expected from survey respondents.

Additionally, to ensure some diversity in code review outcomes,
half of the sampled code reviews were merged pull requests and half
were closed without being merged. We emailed survey invitations
to the authors and reviewers who display their emails publicly.

As with Egelman et al. ’s survey [18], we also asked participants
to report other code reviews that they thought contained pushback;
63 were reported this way. The reasons that these code reviews
were reported as pushback are shown in Figure 7 in Appendix.
We then labeled these discussions using the survey data in the
same way as in Dataset D3. As a result, this dataset contains only
conversation-level labels.

Since one can maximize the recall of a classifier by predicting
all data points as positive, the minimum precision score is the
percentage of positive data points. Therefore, to make D3 and D4
more fairly comparable, we downsampled D4’s negative data points
to match the positive-negative ration in D3. In the end, D4 contains
201 pushback threads and 323 non-pushback threads.

5 EXPLORATORY ANALYSIS

As a first step, before applying machine learning, we explored
how well a more basic word-frequency approach could distinguish
discussions with one label compared to the other (e.g., toxic vs.
non-toxic) in each of the four datasets. To this end, we used an
open-vocabulary analysis [39] to automatically identify words and
phrases that are used distinctly more often in one label than the
other, and then manually reviewed these looking for themes. This
analysis serves two purposes. First, it helps to triangulate that the
manually assigned labels are meaningful, if “obvious” differences
between the two classes are detectable using this independent ap-
proach. Second, it informs the design of more sophisticated auto-
mated classification, by identifying promising features.

Concretely, for the automated part we used log odds-ratio with
Dirichlet prior [39] to identify n-grams that are significantly over-
represented in positive labels, i.e., those labeled as toxic or pushback,
compared to the negative labels, i.e., those labeled as non-toxic or
non-pushback. Since our data sets do not have an equal volume
of text, we measured frequency using the log of an n-gram’s odds-
ratio. Because some n-grams may appear only in one label and not
the other, we added a smoothing Dirichlet to the vocabulary. We
pre-processed the text by removing URLs and numbers. We did not
remove stopwords before performing the analysis because remov-
ing them can interrupt sentences and potentially eliminate some
meaningful n-grams. We then ranked n-grams by z-scores and kept
those with absolute z-scores above 2.326, which corresponds to the
statistical significance cutoff of p < 0.01. Finally, we kept the 10
unigrams, bigrams, and n-grams with the highest positive z-scores
(from positive labels) and 10 with the lowest negative z-scores (from
negative labels).
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Table 2: N-grams that are over-represented in either class in
D2 Toxic OSS Code Review Comments. N-grams with second-
person pronouns are in bold. N-grams with software engi-
neering terms are underlined.

unigram z-score bigram z-score ngram z-score

you 12.172 itis 5.555 if you want  3.397
people 7.292 youwant 4.81 it is not 2.712
even 7.097  thatis 4.272  do you think 2.576
do 6.71 goingto  4.256 youneedto 2397
. what  6.644 you are 4.187
Toxic . .
is 6.373 tryingto  4.053
want  6.078 if you 3.682
your 5796 todo 3.668
because 5.657 do not 3.556
why 5.547 you think 3.539
tests  -4.773 could you -2.815
unit -4.858 the pull -2.889
Vs -4.982 asthe -3.137
file -5.15  and the -3.143
 files  -5.165 of files -3.296
Llongloxicy e -5.574 we can -3.48
test -5.76  pull request -3.668
from -5.872 code to -3.856
at -6.732  to the -4.031
line -6.782 instead of -5.004 the pull request -2.276

We then manually examined the usage of these n-grams in our
data sets by sampling comments containing them. We looked for
patterns in these comments that could help us distinguish toxic or
pushback comments from non-toxic or non-pushback ones, respec-
tively. That is, we applied this process to all four of our datasets

To illustrate the results of this exploratory analysis, consider the
results for dataset D2 Toxic Open-Source Code Review Comments
in Table 2. In the table, empty cells indicate that no more n-grams
were above or below the z-score cutoff. Due to space constraints,
the tables (Tables 3, 4, and 5) for the remaining three data sets are
shown in Appendix. Below, we describe several patterns that we
observed from this analysis.

Second Person Pronouns. One clear pattern we can observe from
the word frequencies is the use of the second person pronoun “you”
in toxic text, including phrases like “you are”, “if you want”. “You”
is the unigram with the highest z-score in both D1 (Table 3) and
D2. In Table 2, n-grams with second-person pronouns are in bold.

To investigate further, from D1 and D2 we randomly sample
10 toxic comments and 10 non-toxic comments that include “you.”
Some of these comments involve direct attacks on the second person
recipient, such as “[y]ou don’t care to be a part of the project,” “[y]ou
are expected to comply,” “[y]ou decided to insult [...]." This echoes
what Danescu-Niculescu-Mizil et al. [15] found: the use of second-
person pronouns at the beginning of a sentence is more likely to
be impolite. The same pattern is observed In D3 (Table 4).

In non-toxic comments in D2, the only n-gram that contains
“you” is “could you”, which is a negative politeness strategy that
tries to minimize the imposition on the hearer by being indirect. The
counterfactual form “could” is more polite than the future-oriented
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variant “can” [15]. This is also true in D3, where we again see some
hedge words and other politeness strategies, such as “could you”,
“should be”, and “seems” among non-pushback code reviews.

Gratitude. Gratitude is another common theme in non-pushback
text, both in open and closed source code reviews (D3 and D4
(Table 5)). These n-grams included “thanks” and “thanks for” that
appear among non-pushback code review comments.

Technical Discussion. In D1 and D2, we see many software engi-
neering-related n-grams, e.g., “tests” and “the pull”, among non-
toxic comments but almost none among toxic comments. In D3 and
D4, we likewise see more technical terms among non-pushback
comments. In Table 2, n-grams with software engineering terms
are underlined.

Code of Conduct. We occasionally see “code of” and “the code of”
appear in the top-10 lists. Typically, these two n-grams appear when
referring to “the code of conduct”, often as a reminder that someone
violated the code of conduct. For example, one contributor wants the
maintainer “to enforce the code of conduct [...]”" Interestingly, we
observe this pattern in D4 (pushback in open source code reviews),
which was sampled without using this as a search term.

No Pattern and Overfitting. Finally, among all four datasets, we
see some n-grams with no discernible rationale for why they might
be indicators or contraindicators of toxicity or pushback. For in-
stance, in Table 2, the bigrams consisting of only stop words, e.g.,
“as the”, “and the”, and “to the”, appear to just be noise, rather than
true indicators of non-toxic open-source code review. As an exam-
ple of overfitting, the top unigram in D3 (“<tech1>") indicates a
widely-used, Google-specific piece of technology.

Overall, this exploration confirms that discussions in the pos-
itive labels, tend to shift focus away from the technical aspects
themselves and onto interpersonal issues. The ground truth labels
on all four datasets appear meaningful, since there are noticeable
differences in the relative frequency of words and phrases between
discussions with presence and absence of toxicity and pushback.
Moreover, the analysis implies that there is substantial overlap be-
tween the two concepts of pushback and toxicity, suggesting that
incorporating text-based features into classifiers for both concepts
is worthwhile. However, the absence of a clear pattern for many
n-grams suggests that a purely frequency-based approach would
be insufficiently discriminatory for an accurate classifier. In what
follows, we introduce more sophisticated classification approaches.

6 METHODS FOR CLASSIFICATION

6.1 Building classifiers for toxic comments and
pushback in code reviews

Text-based features. In this paper, we reuse and improve the clas-
sifier developed by Raman et al. [50], which takes outputs from
several text-based pretrained classifiers as features. We first prepro-
cessed the text by removing URLSs, quotes, numbers, etc. Then we
feed the text into the following three pre-trained NLP classifiers,
and use the outputs as features.

Following Raman et al. [50], we collect (1) the toxicity score and
identity attack score from the Perspective API ([0, 1] range, with
1 being the most toxic/aggressive) and (2) count the occurrences
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of different politeness strategies using the politeness parser [8, 15]
(normalized to [0, 1]). In addition, we used (3) a sentiment analysis
tool developed for software engineering code review comments,
SentiCR [1], with reportedly better performance on GitHub data
than other sentiment analysis tools [65]. The output from SentiCR
is either positive sentiment (1) or negative sentiment (-1).

Logs-based features. Because we are interested in answering
whether the pushback classifier by Egelman et al. [18], which uses
logs-based features, can be applied to open-source code review
comments (RQ1), we calculated logs-based metrics for D2 and D4,
the two novel datasets. Egelman et al.’s work on code review in the
company used rounds of review, active reviewing time, and active
shepherding time to build a classifier for pushback. They defined:

e Rounds of review as the number of batches of contiguously
authored comments, as it “captures the extent to which there
was back-and-forth between the author and reviewer”

o Active reviewing time is “the time invested by the reviewer in
providing feedback,” which includes actively viewing, com-
menting, or working on code review.

o Active shepherding time is the time “the author spent actively
viewing, responding to reviewer comments, or working on
the selected CR, between requesting the code review and
merging the change into the code base”

The above “active” times may include time outside of code review,
e.g., editing files, but does not account for in-person conversations.

As discussed in Section 4, for GitHub data we could not exactly
replicate all three logs-based metrics used by Google, because of
differences between Google’s code review tool and the GitHub
pull request workflow. Therefore, by necessity we operationalized
these metrics for open-source code review comments (D2 and D4)
differently:

e We approximated Rounds of review as the number of com-
ments on a pull request, since GitHub code review comments
are not always grouped into batches the way Google’s are.

e We approximated Active shepherding time as the time differ-
ence between the initial PR post and the last comment. Note
that the difference between our shepherding time and the one
by the company is that the company uses the actual amount
of time an author spent on a code change, whereas ours is
the wall-clock time of the entire review process, which may
result in longer shepherding time overall.

e We did not attempt to approximate Active reviewing time,
because we could not distinguish how much of the time
between the submission of code and the last comment was
taken by reviewers or by the author.

Training. We trained a random forest [5] classifier for each classi-
fication task because of its accuracy and robustness against overfit-
ting [28, 31].

Following Raman et al. [50], we performed 10-fold nested cross
validation to find the best model and reduce bias from random data
splits. We first randomly split our labeled data into a training set
(67%) and a test set (33%). We used stratified sampling to preserve
the ratio between labels and ensure that each set contains both
positive and negative labels.

We then fit and cross validate a random forest model using the
training set for 10 trials. In each trial, the training set is further split
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(b) Logs-based classifier P-R curves on D3 and D4.

Figure 1: Text-based classifier P-R curves

into 10 folds randomly. Each fold is used once as a cross validation
set, while the remaining 9 folds are used for training. The ran-
dom forest model learns the best combination of hyperparameters,
such as n_estimators and max_depth, optimizing for F1 score, the
harmonic mean of precision and recall.

After each trial, we tested the random forest model with the
combination of hyperparameters that produced the highest F1 score
during training (67% of the entire labeled dataset) on the held-out
test data (33% of the entire labeled dataset).

For the text-based classifier, the classification is performed at
comment level. Then we aggregate the classifications to form thread-
based labels. For pushback datasets (D3 and D4) where we only
have thread-level labels, we assign all comments the same label as
the thread-level label. For the logs-based classifier, the classification
is performed at thread-level.

6.2 Classifier Performance Analysis

To evaluate the performance of our classifiers, we computed and
compared the Areas Under the Precision-Recall (P-R) Curves, i.e.,
the P-R AUC scores. Precision tells us how many comments la-
beled by our classifier as toxic/pushback are in fact toxic/pushback,
and recall tells how many toxic/pushback comments in our test
dataset are classified as toxic/pushback. P-R curves explore the
classic precision/recall tradeoff in applications where the data is im-
balanced [16], as is ours — toxicity and pushback are both relatively
rare. P-R curves are also commonly used to evaluate classifiers
when researchers care more about positive (toxic or pushback)
than negative labels. This is also the case in our work — for down-
stream prevention, mitigation, and future research on toxicity and
pushback, we believe that it is more important to identify true in-
stances of toxicity and pushback than it is to identify that some
comment or conversation is not toxic or pushback. A P-R AUC
score summarizes the performance of a classifier into one value
and can be interpreted as the average of precision scores calculated

for different recall thresholds, with higher values (closer to 1) being
preferable.

To compute the P-R curves, we uniformly vary the classifier’s
probability threshold for predicting the positive class, which cor-
responds to exploring the precision-recall tradeoff. To compare
classifiers, we performed pairwise t-tests on their P-R AUC scores
computed after the 10 cross-validation trials. At each trial, we ap-
plied the random forest classifier with the best hyperparameter
combination on the held-out test data and computed an AUC score.
As a result, from our 10-fold nested cross validation training pro-
cess, we obtained 10 AUC scores (one per trial). For each t-test, we
also report Cliff’s delta measure of effect size.

In addition, we estimate the importance of each feature [31] in
our random forest classifiers during the training phase, using a
standard approach based on the mean overall improvement in a
tree’s impurity. The impurity, in classification tasks, is measured
by the Gini index, interpreted as the probability of an item being
incorrectly classified if it was randomly labeled according to the
distribution of a specific feature [28].2

7 RESULTS

ROQ 1: How well do existing classifiers generalize across context
and type of discussion?

To answer this question, we plot the P-R curves by the classifiers
using the same features on different datasets and compare the aver-
age AUC scores. Figure 1 shows one of the curves from the 10 trials.

We start by comparing the P-R AUC scores for the text-based
toxicity classifier on D2 (open-source code reviews) relative to the
benchmark D1 (open-source toxic issues), answering RQj ;. The P-
R curves are shown in Figure 1a. We find that at the thread level, the
text-based classifier performs better on D1 than on D2 (t = 7.977,
p-value = 3.164e — 7; Cliff’s 6 = 0.98 / large effect; the AUCs are
0.820 and 0.692 respectively).

2Q0ur code is available at https://doi.org/10.5281/zenodo.6051070
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Figure 2: P-R curves on pushback classification

We manually checked some randomly sampled toxic comments
from D1 and D2 that our text-based classifier failed to identify.
We found that some of them are responding to toxic behavior. For
example, phrases like "you spent a long time insulting people" are
responses to someone else’s insult and are clearly a signal of the
presence of toxicity. Some other ones contain covert toxicity, such
as sarcasm, entitlement, or the use of “?!” or emojis. Covert toxicity
is difficult for language models to detect in general [36]. These
comments also have a low predicted toxicity score by our classifier;
some even use the word “please” as in “Please consider that this
thread [...] is so problematic. [...] get this PR closed ASAP.”

The impurity-based feature importance analysis (Figure 4a in Ap-
pendix) provides some explanations on what features are important
in both datasets. The x-axis is the importance score of the features.
The sum of importance scores of all features is 1. The two most im-
portant features during the training phase are from the Perspective
API. They are followed by three politeness features: second person
pronouns, the presence of negative words, (e.g., “begging for com-
plete code review” and “many bugs documented and unresolved”),
and the use of first person pronouns. The use of second person pro-
nouns echoes our findings of the word frequency analysis, where
we see the use of “you” overrepresented in toxic text.

Reflecting on differences between the issue conversations and
code review conversations that could cause the performance degra-
dation when detecting toxicity in the latter case, we speculate two
reasons based on exploring the two labeled datasets. One is that
many code-specific comments are much shorter than discussion
comments, yielding less linguistic information. The other possi-
bility is that the code review conversations in our dataset more
often include code chunks and removing inline codes may reduce
information for the text-based classifier.

Next we compare the P-R AUC scores for the logs-based classifier
on D3 (pushback in corporate code review) and D4 (pushback in

open-source code review), answering RQ1 2. The P-R curves are
shown in Figure 1b. Our results show that the logs-based classi-
fier has a lower performance when transferred to the open-source
context, despite being retrained (t = 21.389, p-value = 1.308e — 13;
Cliff’s § = 1; the average AUC scores are 0.453 and 0.630).

We speculate that there are two main reasons for the lower
performance. First, limited by the information publicly available on
GitHub, we could only compute measures for two of the three logs-
based features used originally inside Google. Therefore, we have
less information. Indeed, in D3, reviewing time, the feature missing
in D4, ranks as the most important (Figure 5 in Appendix). Second,
our measure of shepherding time computed for open-source code
reviews is only an approximation, using wall-clock time rather
than the amount of time spent actively working on code in review.
Therefore, the logs-based features we computed for open-source
data are not as accurate as those on corporate data.

Summary: Both the text-based classifier and the logs-based clas-
sifier have performance degradation when generalizing to other
contexts.

RQ>: How well do existing classifiers generalize for both tox-
icity and pushback?

To answer this research question, we compare the performance
of the classification approach originally designed for one construct
(toxicity or pushback) to the classification approach originally de-
signed for the other construct.

We start by evaluating the performance of the text-based clas-
sifier on datasets D3 and D4, compared to the performance of the
logs-based classifier as a benchmark, answering RQ3 ;. Figure 2
shows one of the P-R curves from the 10 trails.

On D3 Pushback in Corporate Code Review, the text-based clas-
sifier outperforms the logs-based classifier on average (t = 2.527,
p-value = 0.022; Cliff’s § = 0.58 / large effect; the mean AUC scores
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Figure 3: P-R curves on toxicity classification

are 0.652 and 0.630 for the text-based and logs-based classifiers
respectively); note, this logs-based classifier is the one using all
three measures of pushback, available inside the company Google.
This suggests that pushback as a construct shares many linguistic
similarities with toxicity. In addition, the better performance of
the text-based classifier suggests that, in a corporate setting, in-
terpersonal conflicts can be more subtle than delay of reviews or
excessive comments.

For D4 Pushback in Open-Source Code Review, comparing the P-R
AUC scores shows that, unlike previously on D3, the text-based
classifier and the logs-based have a similar performance (¢ = 0.495,
p-value = 0.629; the average P-R AUC scores are 0.467 for the text-
based classifier and 0.462 for the logs-based one); note, the logs-
based classifier in this case contains only the measures available
publicly on the GitHub platform.

One possible explanation is that in contrast to the previous cor-
porate dataset, there are relatively fewer examples of open-source
pushback code reviews in our sample that could be traced back to
reasons with linguistic markers. Therefore, there is less for the text-
based classifier to discern. To test this hypothesis, we compiled a
subset of D4, D4-1, containing as positive examples all the reported
pushback open-source code review threads that are linked to lin-
guistic markers (Figure 7 in Appendix), such as “harsh comments”
(39 out of 63 self-reported pull requests), and as negative examples
the remaining self-reported pushback open-source code review
threads with only likely non-linguistic markers, such as “exces-
sive review delays.” Comparing the performance of the logs-based
and text-based classifiers on D4-1 does not support our hypoth-
esis: the text-based classifier underperforms the logs-based one
(t = —5.072, p-value = 0.0002; Cliff’s § = —0.86 / large effect; the
average AUCs are 0.566 and 0.679 respectively). The reason could
be that pushback threads labeled with linguistic-related reasons

are often labeled with non-linguistic ones too, e.g., “requesting a
change without justification.”

Another possible explanation is that since pushback classification
is done at the thread level, within a thread the actual comments
indicative of pushback are too rare for the whole text of the threads
to be significantly different on average between the pushback and
non-pushback classes. To test this, we created dataset D4-2, in which
we assigned pushback labels at the comment level. Specifically, we
used the responses to our survey asking participants to copy-paste
the text fragments indicating pushback, in addition to offering
pushback pull requests as a whole, to identify which comments
in the thread contained those exact fragments. We then labeled
those comments as pushback and all other comments in the same
threads as non-pushback. Then we performed the classification and
thread-level aggregation as usual. Comparing the performance of
thread-level text- vs logs-based classification on D4-2, we observe
that the text-based classifier now outperforms the logs-based one
(t = 2.591, p-value = 0.026; Cliff’s § = 0.54 / large effect; the average
AUCs are 0.534 and 0.471 respectively), supporting our hypothesis.

The feature importance analysis (Figure 4b in Appendix) for the
text-based classifier on both pushback datasets D3 and D4 present
some insights into what linguistic features are associated with push-
back comments. On both datasets, the toxicity score and identity
attack score from the Perspective API have the highest importance.
They are followed by several politeness strategies. The third most
important feature in D3 is the presence of positive lexicons whereas
in D3 is the number of hedge words, such as “likely”, “maybe”,
“seems”. Having second person pronouns is also an important fea-
ture to classifying D3 Pushback in Corporate Code Review but less
so to D4 Pushback in Open-Source Code Review.



ICSE-SEIS’22, May 21-29, 2022, Pittsburgh, PA, USA

Summary: When detecting pushback, the text-based classifier
performs better than the logs-based classifier for corporate code
review comments, but they have a similar performance for open-
source code review comments

Next we compare the performance of the logs-based classifier
against the performance of the text-based classifier on detecting
toxicity, answering RQ2 2. We plotted the P-R curves for the text-
based and the logs-based classifiers on D1 and D2, shown in Figure 3.
We find that the text-based classifier performs better than the logs-
based one on both D1 (¢ = 45.515, p-value < 2.2e — 16; Cliff’s § = 1;
P-R AUC scores are 0.898 and 0.516 respectively) and D2 (t = 17.853,
p-value = 1.425¢ — 08; Cliff’s § = 1; P-R AUC scores are 0.693
and 0.372, respectively). The good performance of the text-based
classifier implies that toxicity is more of a linguistic phenomenon.
Meta-data, such as the logs-based features we computed, could not
capture enough information to distinguish toxic language.

Summary: The logs-based classifier does not perform as well as
the text-based one when detecting toxic open-source issues and
code review comments.

RQs3: To what degree can combining existing approaches
improve detection of toxicity and pushback?

We start by comparing P-R AUC scores of the text-based and the
logs-based classifiers against that of the combined classifier when
detecting toxicity, on both D1 and D2, which answers RQj3 1. The P-
R curves are shown in Figure 3. Overall, we find that the combined
classifier has better performance than the logs-based classifiers but
is similar to the text-based classifier. On D1, the combined classifier
outperforms the logs-based one (t = —51.975, p-value < 2.2e — 16;
Cliff’s § = —1; the AUC scores are 0.895 and 0.516 respectively)
but is indistinguishable from the text-based classifier (¢ = 0.376,
p-value = 0.712, the text-based classifier’s AUC is 0.898). Similarly,
on D2, the combined classifiers outperform the logs-based classifier
(t = —16.55, p-value = 9.846e — 10; Cliff’s § : —1; AUCs are 0.729
and 0.371), and the performance of the text-based and the combined
classifiers are indistinguishable (t = 0.712, p-value = 457; the AUC
of the text-based classifier is 0.702).

The feature importance analysis (Figure 6a in Appendix) shows
that text-based features are more important in detecting toxicity
than logs-based features. This suggests that, again, toxicity is more
about the language than the logs-based metrics. The toxicity score
and identity attack by the Perspective API have the highest impor-
tance. They are followed by the two logs-based features, which are
followed by several politeness strategies. The use of second-person
pronouns is also among the top 5 most important features, which
echoes our findings in the word frequency analysis.

Summary: For toxicity, the combined classifier has similar per-
formance to the text-based one, but better performance than the
logs-based one.

Finally, we compare the AUC scores between the text-based
and the combined classifier and between the logs-based and the
combined classifier when detecting pushback (D3 and D4), which
answers RQs3 2. The P-R curves are shown in Figure 2.
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On D3 Corporate Pushback Code Review Comments, the combined
classifier performs better than the logs-based (t-test between the
logs-based and the combined classifier: + = —2.7069, p-value =
0.015; Cliff’s § = —0.82; AUC are 0.529 and 0.567) but worse than
the text-based ones (t-test between the text-based and the combined
classifier: t = 6.261, p-value = 5.303e — 05; Cliff’s § = 0.98).

On the contrary, on D4 Open-Source Pushback Code Review Com-
ments, the performance of the logs-based classifier is better than the
combined classifier (¢ = 2.817, p-value = 0.013; Cliff’s delta = 0.64;
the average AUC scores are 0.462 and 0.448 respectively). However,
the combined classifier’s performance is indistinguishable from
that of and text-based classifiers (¢t = 2.171, p-value = 0.052, the
text-based classifier’s AUC is 0.467).

From the feature importance analysis on the combined classifier
on our two pushback datasets D3 and D4 (Figure 6b in Appendix)
shows that the logs-based features have higher importance than
the text-based ones. Among the text-based ones, toxicity score and
identity attack have the highest importance, followed by several
politeness strategies.

Summary: For classifying pushback in code reviews, the combined
classifier performs better than the logs-based classifier but worse
than the text-based classifier in a corporate setting, and it is worse
than the logs-based classifier but about equivalently to the text-
based classifier in an open-source setting.

8 DISCUSSION

Classifiers’ cross-domain application. For RQ;, we found that
prior classifiers’ performance [18, 50] degrades when applied to
new datasets. For open-source code review comments, one reason
may be that, compared to issues, discussions in PRs are generally
more technical, and hence, less personal. One reason the logs-based
classifier performed relatively poorly in open-source code review
may be that we were not able to accurately reproduce one of the
corporate pushback features, active shepherding time.

Relationship between toxicity and pushback. By answering
RQ>, how well can the classifiers generalize across domains and
datasets, we can conclude some relationship exists between the
two concepts. Pushback is initially centered around delays in code
review, which is associated with lower productivity [18], whereas
toxicity is centered more around the negative interactions among
contributors during code review [50]. However, Egelman et al. [18]
reported that, in addition to lengthy reviews, pushback is also
characterized by interpersonal conflict. This is supported by our
finding that the text-based classifier has a better performance than
the logs-based one on pushback detection in a corporate setting,
suggesting that pushback in a corporate setting is more subtle
than lengthy discussions or delayed reviews. Similarly, in open-
source, toxic language is also a significant part of pushback. Among
the pushback code review comments users reported, more than
half of them have reasons related to communication (Figure 7 in
Appendix). However, we found that the logs-based features did not
improve toxicity detection. This suggests that toxicity is mostly
about language, and meta-data cannot capture the nuance.
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Corporate vs. open-source settings. When answering RQ3, we
were also able to compare the two contexts, corporate and open
source. We found that the text-based classifier works better when
classifying corporate pushback, but the logs-based classifier works
better when classifying open-source pushback. The distributive
and volunteer-based nature of open source could contribute to
the fact that the logs-based features are more predictive. From the
survey responses, we observed a lot of complains on maintainers
delaying the review process. When looking at some of the PRs, we
saw that many of the maintainers mentioned having a holiday or
busy with day job as reasons for the delay. One comment from the
open-source pushback survey reflected that “It’s not PR and not
about code review, but it’s about open source world”

Moreover, both the text-based and the logs-based classifiers have
better performance on corporate pushback code review comments
than on open-source ones. This suggests some differences between
the two datasets. Perhaps these differences arise from uniformity
in Google’s code review practices [52] compared to the multitude
of practices used on GitHub [23].

This also raises the issue of transferring our results to other set-
tings. When answering RQ1, we found that using the same set of
features on a data from a different context resulted in lower perfor-
mance. However, the multiple levels of comparisons we conducted
in this study can act as a guideline while developing a system for
toxicity and pushback detection in other contexts.

Prediction vs. classification. In this paper, we performed classifi-
cation on conversations after they have concluded, largely because
logs-based features are not applicable to individual comments. As
a result, our current models cannot yet be applied to all scenarios
where automated detection of toxicity or pushback are of inter-
est, e.g., comment-level classification for just-in-time intervention.
Instead, we target primarily scenarios where thread-level classifica-
tion is needed, e.g., to reflect on when discussions have gone awry
(of interest to practitioners) or to detect and study when, how, and
why toxicity and pushback occur (of interest to researchers).
Future work can explore how to use text-based features to do real-
time detection and offer editing suggestions. Cheriyan et al. [10]
proposed a Conflict Reduction System that can rephrase offensive
sentences. However, their datasets are heavily focused on swearing
and profanity. Our findings can greatly enrich the set of text features
that can be used to detect and prevent potential toxic comments.

Text analytics improvements. Our text classifier combined three
different NLP techniques, but other NLP techniques on larger datasets
is a future research direction. Some paths that can be explored in-
clude using text embedding [17] or conversational structure [64].
One could also use Snorkel [51], a weak supervision model, to help
augment our labeled dataset.

Prior studies have shown that general NLP models may not
be directly applicable to software engineering corpora [27, 29].
For example, “error” and “test” are mostly neutral in the software
engineering context but have negative connotations in general
English. Han et al. [26] report that Perspective API can misclassify
toxic inputs due to a domain mismatch or novel lexicon of toxicity.
Therefore, some fine-tuning is needed on top of the Perspective
API to attain better performance. Raman et al. [50] suggested fine-
tuning a classifier using a domain-specific lexicon. However, this is
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a difficult task that needs careful design and evaluation. Thresholds
and datasets are all variables that can be explored. Moreover, when
evaluating the effectiveness of the domain-specific lexicon tuning,
how do we decide what words should be in the list and what should
not? These questions are worth exploring in the future.

9 THREATS TO VALIDITY

Internal validity. The data we used for training and testing our
classifiers is small in two respects. The first is from a machine
learning perspective, where more data often yields more reliable
conclusions. The second is from an ecosystem perspective; the data
we studied represents a small subset of all the discussions going
on within GitHub and Google, likely limiting the generalizablity of
our results.

Another limitation is that our data, both existing and newly col-
lected, rely on human raters to judge interpersonal conflict. While
Egelman and colleagues’ showed some degree of reliability across
different raters, nonetheless perceptions of interpersonal conflict
invariably differ from person to person. Such differences threaten
the true accuracy of our ground truth data.

External validity. A major threat to generalizability is the context
in which we collected our data. For corporate code reviews, we
used data from Google; classifying code reviews in other companies
would likely yield different results. Likewise, our other datasets are
from GitHub; data obtained from other platforms may also yield
different results.

Construct validity. The lack of comment-level labels in pushback
datasets D3 and D4 likely confused the classifiers using text-based
features. Because all comments within a pushback conversation
share the same label, some neutral or positive comments are also
labeled as pushback. Since our text-based classifier works on the
comment level, it can get confused when seeing comments associ-
ated with polite strategies (e.g., indirect start) and impolite strategies
(direct questions) that are both labeled as pushback.

In our analysis, we bridged concepts and contexts in prior work [18,
50], between open and closed source; and issues and code reviews.
However, we did not exhaustively explore this space. For instance,
we did not collect data for toxic corporate code reviews or is-
sues. Given the results that the text-based classifier works well
on Google’s pull requests, using it to detect or understand toxic
comments may be worthwhile future work.

10 CONCLUSION

In this paper, we cross-pollinated with two techniques designed to
detect interpersonal conflict. In applying these text- and logs-based
techniques to broader contexts than those for which they were orig-
inally designed, we uncovered several novel insights. For instance,
we found that prior work that detected code review pushback using
logs data [18] can be improved substantially by analyzing the text
contained in those code reviews. While the opposite was not true
- logs data did not improve issue toxicity detection — we nonethe-
less found that logs can be a useful feature in toxicity classifiers.
Building on these techniques, we envision a future where tools
can help software developers learn from or avoid interpersonal
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conflict, enabling projects to be more inclusive of a wider variety
of contributors.
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Table 3: Over and underrepresented words in D1 Toxicity in
Open-Source Issues Comments. N-grams with second-person
pronouns are in bold. N-grams with software engineering
terms are underlined.

unigram z-score bigram Z-score ngram z-score
you 30.77  thisis 12.756 this is not 6.013
it 23.724 in the 11.822 you want to 5.217
that 22.437 you are 11.651 you need to 4.869
of 22.051 itis 10.608 there is no 4.303
Toxic and 21318 you have 9.389 if you want 4.272
is 18.917 tobe 9.371 you have to 4.036
this 18.524 thatyou 9.145 to do with 4.036
your 18.121 if you 8727 if youwantto 3.971
have 16.647 to do 7.535  part of the 3.94
what  15.62  have to 7514  the problem is 3.799
via -3.526 teamand -2.825
unit -3.82  plenty of -2.838
team  -3.871 of experi--2.954
ence
assigned -3.979 withour  -2.972
. returns -4.32  and provide -2.972
Non-toXic gnetion -4.452  to remove  -3.037
item -5.104 with an -3.042
ticket  -5.121 issue was -3.263

duplicate-5.528
click -5.62

assigned to -3.44
looking for -3.573

Table 4: Over and underrepresented words in D3 Pushback
in Corporate Code Review. N-grams with second-person pro-
nouns and gratitude are in bold. N-grams with software en-
gineering terms are underlined.

label unigram z-score bigram z-score ngram z-score
<techl> 5.352 you want 3.04  you want to 2.792
tests 4.452 want to 2.849  onnov at pm 2.637
<tech2> 3.683 of these 2.849 novat pm 2.577
our 3.599 of our 2.626
Push build 3.564 isto 2.575
back libraries 3362 if we 2.525
break 3.245 depend on 2.464
thing 3.197 we use 2.464
see 3.177 thecl 2.441
rollback 3.152 this case 2311
submit -5.338 to represent -3.831 make sure the -2.566
groups -5.485 to me -3.834 to do the -2.64
feature -5.514 how about -3.882 not sure if -2.69
<tech3> -5.64  to submit -3.96  seems to be -2.805
Non- ap -5.664 this function  -4.106 in this cl -2.813
push- e -6.042 the new -4.286  which is not -2.919
back thanks -6.303 could you -4363 do you have -3.189
section -6.336 for the -4.432  how do we -3.604
the -6.492 change the -4.439 to change the -4.009
for -6.9  thanks for -5.291 thanks for the -4.891
Table 5: Over and underrepresented words in D4 Pushback in
Open-Source Code Review. N-grams with second-person pro-
nouns, gratitude, and “code of conduct” are in bold. N-grams
with software engineering terms are underlined.
label unigram z-score bigram z-score ngram z-score
runtime 17.511 is of 6.622  the code of 3.957
suggestion  9.676  the project 6.452  the new format 3.721
argument  9.32  code of 6.171  for the new 3.457
us 8.762 of type 6.006  the commit message 3.185
Push people 8.35  the linter 4.638  to the project 3.096
back timer 8.218 read the 4.583 aslong as 3.003
non 7.254 itis 4.313  the number of 3.003
high 7.068 social media 4.186  to read the 2.957
requirements 6.29  the old 4.13  just wanted to 2.874
de 6.276 commit message 4.026  we dont want 2.874
access -5.923 the following  -3.402
struct -5.992 an error -3.412
config -6.197 it seems -3.536 is going to -2.311
tests -6.282 the same -3.715 it would be -2.5
push__w -6.351 thank you -3.786 all of the 25
back line -6.431 the server -4.021 this should be -2.802
field -6.632 did not -4.047 it seems that -2.872
build -7.262 the tests -4.12  thank you for -2.972
info -7.309 file line -4.287 let me know -3.111
error -7.319 line in -5.301 file line in -4.287




Detecting Interpersonal Conflict in Issues and Code Review

O ity —

identity attack

identity attack |EEE—SSCCCG----e toxicity
2nd person ——— Has hedge
Has negative [ Has positive  ——
Has positive 1st person |-
Ist person Has negative i
Has hedge == 2nd person  i—
SentiCR =, 1st person pl. —
1st person start == 1st person start ==
1st person pl. == Hedges
Direct start ==, SentiCR &
Hedges = Factuality &
Factuality ™= Direct start
2nd person start ™ Gratitude &
Direct question ™= Direct question &
Please = Indicative &
Gratitude F Please &
Subjunctive ! 2nd person start &
Apologizing ! Please start &
Indicative | Apologizing ¥
Please start | Deference [
Greeting | mbl Greeting & mp3
Deference mD2 Subjunctive & mD4
BTW BTW
0 0.05 0.1 015 02 0.25 03 0.05 01 015 02 025
(a) D1 vs D2 (b) D3 vs D4
Figure 4: Text-based classifier feature importance scores.
o
D1
shesnerding time |
L . mD3
reviewing time e ———
mD4
0 0.1 0.2 03 0.4 0.5 0.6 0.7
Figure 5: Logs-based classifiers’ feature importance
X ity reviewing time
identity attack ~|ETEEGEG_T_—_—__—_SN_—N shepherding time e ——
Shepherding time I [CIUEE e E—
2nd person toxicity  —
Rounds [ identity attack  —
Has negative | — Has positive fm
1st person - Has hedge
Has positive Has negative i
Has hedge 1stpersonpl. &
Direct start = Istperson jm
SentiCR - 2nd person  jm
1st person pl. = senticR
Factuality . 1st person start &
Direct question M Hedges 4
Direct start &
Hedges M, Gratitude |
Please " Direct question }
1st person start [, Factuality §
Gratitude M Please §
2nd person start B Please start |
Apologizing ! 2nd person start |
Greeting ! Indicative |
Indicative | Subjunctive |
Please start | Apologizing |
Subjunctive uD1 Deference | w03
Greeting |
Defereg:\c; ! uD2 sTw mD4
) s e o or om 000 010 o0 030 040
(a) Toxicity (D1 and D2) (b) Pushback (D3 and D4)

Figure 6:

Combined classifiers’ feature importance

ICSE-SEIS’22, May 21-29, 2022, Pittsburgh, PA, USA

Long wait for review to start
Attempts to undermine effort
Excessive review delays

Excessive nitpicking

Excessive review delays

Harsh feedback

Confrontational comments

Aggression

Confrontational comments

Unjustified criticism

Shifting of goal posts

Excessive nitpicking

Attempts to undermine work

Curtness

Request for out-of-scope change
Unnecessary pressure to make changes
Other

Attempts to undermine work

Attempts to undermine personal integrity
Shifting of goal posts

Unnecessary pressure to make changes
Requesting a change without justification
ignoring

Requesting a change without justification
Withholding of necessary information
Request for out-of-scope change

or excluding

Long wait for review to start

Belittling

Curtness

Unjustified monitoring of your work
Freezing out

Attempts to demoralize

Lots of automated warnings in comments
Harsh feedback

Aggression

Unjustified monitoring of your work
Freezing out

Intimation of negative perf repercussions
Intimation of disciplinary procedures
Inappropriate jokes

Humiliation

Attempts to undermine personal integrity
Withholding of necessary information
Unjustified criticism
Teasing

Inappropriate jokes

Humiliation
Belittling
Teasing

30

o
=
o
=
«
N
o
N
«

Figure 7: Reasons for pushback in OSS

35



	Abstract
	1 Introduction
	2 Related Work
	3 Research Questions
	4 Datasets
	4.1 Design Decisions and Tradeoffs
	4.2 Toxic OSS Issues (D1; pre-existing)
	4.3 Toxic OSS Code Review (D2; novel)
	4.4 Pushback in Corporate Code Review (D3; pre-existing)
	4.5 Pushback in OSS Code Review (D4; novel)

	5 Exploratory Analysis
	6 Methods for Classification
	6.1 Building classifiers for toxic comments and pushback in code reviews
	6.2 Classifier Performance Analysis

	7 Results
	8 Discussion
	9 Threats to validity
	10 Conclusion
	References
	11 Appendix

