
Detecting Interpersonal Conflict in Issues and Code Review:
Cross Pollinating Open- and Closed-Source Approaches
Huilian Sophie Qiu

Carnegie Mellon University

Pittsburgh, PA, USA

hsqq@cmu.edu

Bogdan Vasilescu

Carnegie Mellon University

Pittsburgh, PA, USA

vasilescu@cmu.edu

Christian Kästner

Carnegie Mellon University

Pittsburgh, PA, USA

kaestner@cs.cmu.edu

Carolyn Egelman

Google

Sunnyvale, CA, USA

cegelman@google.com

Ciera Jaspan

Google

Sunnyvale, CA, USA

ciera@google.com

Emerson Murphy-Hill

Google

Sunnyvale, CA, USA

emersonm@google.com

ABSTRACT
Interpersonal conflict in code review, such as toxic language or

an unnecessary pushback, is associated with negative outcomes

such as stress and turnover. Automatic detection is one approach to

prevent and mitigate interpersonal conflict. Two recent automatic

detection approaches were developed in different settings: a toxic-

ity detector using text analytics for open source issue discussions

and a pushback detector using logs-based metrics for corporate

code reviews. This paper tests how the toxicity detector and the

pushback detector can be generalized beyond their respective con-

texts and discussion types, and how the combination of the two can

help improve interpersonal conflict detection. The results reveal

connections between the two concepts.

LAY ABSTRACT
Software engineers often communicate with one another on plat-

forms that support tasks like discussing bugs and inspecting each

others’ code. Such discussions sometimes contain interpersonal

conflict, which can lead to stress and abandonment. In this paper,

we investigate how to automatically detect interpersonal conflict,

both by analyzing the text of the what the engineers are saying and

by analyzing the properties of that text.

1 INTRODUCTION
In online communities and offline workplaces alike, interpersonal

conflicts, understood broadly as including hostility, hate, aggression,

toxic language, bullying, etc, has been a major concern and topic of

research [3, 42, 47]. The consensus is not only that such forms of

interaction are antisocial, but also that they are all associated with

negative outcomes in the communities or groups where they take

place, including decreased well-being, job satisfaction, stress, and

turnover [35, 37, 50]. In addition, these outcomes tend to dispropor-

tionately affect members of underrepresented groups [4, 13, 62].
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In software engineering, the problem of interpersonal conflicts

is also well recognized. For example, in software development,

some communities and maintainers have a reputation for being

toxic [20, 55, 58]. Although relatively milder, impolite language is

seen as a barrier to newcomers [48, 59]. There are repeated anec-

dotes of sexist behavior, harassment, or contributors concealing

their identity to avoid abuse [22, 40, 56, 60, 61]. More broadly, ev-

idence is also starting to emerge about anger [21], negative emo-

tions [19], impoliteness [43, 46], pushback [18], or directly toxicity

in issue discussions [2, 12, 38, 50], code reviews [11], and Gitter

developer communication [53]. The programming-related Q&A

platform Stack Overflow is also notorious for being ‘toxic’ [9].

However, despite comparable agreement about the importance of

the problem, there is relatively less progress in software engineering

compared to other domains in terms of automatic detection for

prevention or mitigation [30, 32]. Several factors contribute to this

lag, including inherent difficulty of the problem, but also domain

specificity of some toxic interactions and scarcity of labeled data.

Prior research on automatic detection of toxicity and related

constructs in software engineering has room for improvement. In

particular, we note that approaches published previously in the soft-

ware engineering literature have generally all been based on textual

analytics [10, 50]. For example, Raman et al. [50] experimented with

different sets of features, all text-based, to train a classifier to detect

open-source software (OSS) toxic issue discussions, which is de-

fined as “rude, disrespectful, or unreasonable comment[s] that [are]

likely to make someone leave a discussion” – a definition of toxicity

used also in other public discussion forums such as Wikipedia or

the New York Times, originating from Google’s project Jigsaw [63].

However, follow-up work by Sarker et al. [53] showed that Raman

et al. ’s approach has limited generalizability.

Meanwhile, researchers have long been arguing that meta-infor-

mation can be very useful to refine inconclusive classification [54].

For example, people with a history of hate speech are more likely to

engage in such behavior again than people without any history [14].

In software engineering, Egelman et al. [18] showed that using only

meta-information can detect pushback, defined as “the perception of

unnecessary interpersonal conflict in code review while a reviewer

is blocking a change request.”

Notably, the two concepts – ‘toxicity’ as operationalized by Ra-

man et al. [50] and ‘pushback’ as operationalized by Egelman et al.

[18] – are similar, but distinct. For instance, while some types of

https://doi.org/10.1145/3510458.3513019
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Egelman et al.’s pushback could be considered toxic (e.g., personal
attacks), others would not (e.g., persistent nitpicking). Moreover,

the types of software discussions analyzed and the study settings

in the two studies are arguably very different — Egelman et al.’s

classifier was applied only on code reviews internally at Google

and Raman et al.’s classifier was applied only on public GitHub

issues (not code reviews). Despite these difference, it seems possible

that these two approaches could inform one another as a way to

improve detection of interpersonal conflict.

In this paper, we contribute: (1) a comparison of how toxicity

and pushback manifest in open source and in a company, and (2) a

systematic evaluation of our ability to predict toxicity and pushback

in different settings and using different approaches. To this end, we

use existing and new labeled datasets that capture both concepts

in open-source and corporate code reviews. We use 10-fold cross-

validation to evaluate and compare the two previous classifiers

and also develop a new combined classifier using features from

both. Our results provide insights on how these classifiers work

in different contexts. The comparisons and discussion also shed

light on the relationship between the two concepts, toxicity and

pushback, and the two settings, open source and corporate.

By improving the accuracy of automated approaches to detect

toxicity, pushback, and possibly other forms of interpersonal con-

flict in software discussions, this research paves the way for design-

ing tools to prevent, mitigate, and further study these phenomena,

including designing interventions to offer just-in-time guidance to

developers in such situations. A detector can also be a powerful

tool for researchers studying the effectiveness of tool design and

other interventions. More generally, this research offers an opportu-

nity to apply a technique to both open and closed source software,

possibly benefiting from synergies, a rarity in software engineering

research, in our experience.

2 RELATEDWORK
This paper builds directly on two recent approaches to detecting

interpersonal conflict in software engineering artifacts, by Egelman

et al. [18] and Raman et al. [50]. In Egelman et al.’s study at Google,

the authors conducted interviews to develop the concept of push-
back and designed logs-based metrics to detect pushback in code

reviews. These metrics were rounds of a review, active reviewing

time, and active shepherding time. Their logistic regression model

obtained high recall (93%–100%) and low precision (6%–11%).

The other approach that this paper builds directly on is that

of Raman et al. [50]. The authors manually annotated toxic issue

threads from projects on the GitHub platform, and experimented

with outputs from different sets of generic text-based classifiers

to train a new classifier to detect toxic issue discussions specific

for open source. They reported the highest 10-fold cross-validation

accuracy when combining Stanford’s Politeness Detector [15] with

Google’s Perspective API.
1
The present paper expands on Raman

et al. ’s text-based features, compares them with Egelman et al.’s

classifier [18], and experiments with combining the two classifiers.

In addition to the pretrained general-purpose linguistic tools

used by Raman et al., we also explore other linguistic techniques to

detect interpersonal conflict. Vocabulary-based approaches have

1
https://perspectiveapi.com/

been used for text classification. Open-vocabulary analysis extracts

features from the text being analyzed using statistical methods [45].

For example, Sood et al. [57] showed that an SVM classifier using

binary presence and frequency of n-grams as features can be used

to predict personal insults on social news sites. Monroe et al. [39]

showed that the log odds-ratio of an n-gram (the frequency of

being in one group of text divided by 1 minus the frequency) in

two different groups can be used to identify n-grams that are over-

represented in one group relative to the other. We build on Monroe

et al.’s work in Section 5 by attempting to find out if there is a set of

vocabulary that can distinguish between the positive labels (toxic

or pushback) and the negative labels (non-toxic or non-pushback).

Closed-vocabulary analysis relies on predefined lists of words

as features. Building on the classic linguistic theory of politeness

by Brown and Levinson [6], Danescu-Niculescu-Mizil et al. [15]

developed a computational parser for politeness strategies. Polite-

ness theory divides politeness strategies into positive politeness and
negative politeness. Positive politeness strategies encourage social
connection and rapport, such as gratitude, optimistic sentiment,

solidarity, etc. Negative politeness strategies try to minimize the im-

position on the hearer, for example, by being indirect or apologizing

for the imposition [6, 33, 34]. On the other hand, impolite behaviors

can be direct questions (e.g., “why?”) or sentences that start with
second-person pronouns, which may sound forceful. Prior studies

showed that the politeness strategy parser [8] is able to predict

if a conversation may turn awry [64] and can generalize well to

various contexts. We build on this work by using politeness strategy

features in our classifiers.

Finally, in the software engineering community, sentiment anal-

ysis [44] is a popular technique for analyzing issue discussions [21],

pull request comments [25], and forum discussions [7]. Prior work

has shown that sentiment analysis classifiers need to be trained us-

ing software engineering data because many traditionally negative

phrases may have neutral sentiment in the context of software en-

gineering [29], for example, “execute” (for a survey see Zhang et al.

[65]). Popular software engineering sentiment analysis tools in-

clude Senti4SD [7] and SentiCR [1]. Senti4SD, developed by Calefato

et al. [7], is trained on 4,000 posts extracted from Stack Overflow.

This dataset is part of the Collab Emotion Mining Toolkit [41]. Sen-

tiCR [1] is trained on 1,600 manually labeled code review comments.

In our study, we build on this work by using sentiment analysis

developed for code reviews as a feature in our classifiers.

3 RESEARCH QUESTIONS
Our overarching goal is to bridge the gap between the existing liter-

ature on toxicity [50] and pushback [18] in software development.

Besides the two concepts themselves, there are three fundamen-

tal differences between the prior work studies in this area, which

we systematically explore in this paper: (1) the context (open- vs.
closed-source), (2) the type of discussion (issues vs. code review),
and (3) the approach to classify (text-based vs. logs-based). Overall,
we answer the following research questions and sub-questions:

First, we explore how well the two classifiers generalize beyond

the respective settings in which they have been developed, while

maintaining their specific target concepts (toxicity and pushback)

and fundamental approaches to classification (text- and logs-based):
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RQ1. How well do existing classifiers generalize across context and
type of discussion?
To answer this question, for each classifier we explore one addi-

tional setting beyond the one in which they have been developed.

For the toxicity classifier [50], we experiment with open source

code reviews in addition to the original issue discussions. Similarly,

for the pushback classifier [18], we experiment with comments

on open-source pull requests, the approximate equivalent of the

original Google code reviews:

RQ1.1. How well does a text-based toxicity classifier designed for
open-source issues perform when classifying toxicity in open-source
pull requests?

RQ1.2. How well does a logs-based pushback classifier designed
for corporate code reviews perform when detecting pushback in
open-source code reviews?

Second, given the theoretical overlap between the concepts of

pushback and toxicity, we explore how well the two fundamental

approaches to classification, text-based (toxicity) and logs-based

(pushback) generalize to detecting the other concept if appropriately

trained on relevant data for that other concept:

RQ2. How well do existing classifiers generalize for both toxicity
and pushback?

RQ2.1.Howwell does a text-based (toxicity) classifier perform when
classifying pushback, in both open and closed-source code reviews?

RQ2.2. How well does a logs-based (pushback) classifier perform
when classifying toxicity in open-source code reviews and issue
discussions?

Finally, we explore to what extent using design insights from

one classification approach can be used to improve on the other:

RQ3. To what degree can combining existing approaches improve
detection of toxicity and pushback?

RQ3.1. How well can a combined text- and logs-based classifier
classify toxicity?

RQ3.2. How well can a combined text- and logs-based classifier
classify pushback?

For completeness, in addition to answering these questions, we

also replicate the original experiments on toxicity in open source

issues [50] and pushback in Google code reviews [18].

4 DATASETS
To answer our research questions, we used a mix of existing (when-

ever possible) and new datasets on toxicity and pushback. First, we

used the two existing data sets from prior work on issue toxicity

in open source [50] and code review pushback at Google [18]. Ad-

ditionally, we created two new datasets on code review toxicity

in open source and code review pushback in open source. Table 1

displays each of these four datasets as a row, labeled D1-D4, sum-

marizes how each of our research questions and the prior work

relates to each data set, and describes the size of the datasets.

4.1 Design Decisions and Tradeoffs
Before describing each dataset in detail, we note several impor-

tant high-level design decisions, assumptions, and tradeoffs we

had to make when creating the two new datasets, and in order to

meaningfully compare results across all four datasets.

Unit of labeling. In the original toxic issue comments dataset by

Raman et al. [50], ground truth labels are available for individual

comments and the issue thread-level toxicity labels are an aggrega-

tion of comment-level labels, i.e., if there is at least one comment

labeled as toxic, the entire discussion is labeled as toxic. In contrast,

the pushback code review dataset by Egelman et al. [18] contains

only thread-level labels. Since we are reusing these datasets without

relabeling, we maintain the same unit of labeling also in the two

newly created datasets of the same concept.

Unit of classification. Our experiments focus on classifying toxic

or pushback entities at the thread level, because the logs-based

metrics, such as the rounds of review, used by Egelman et al. are

not applicable for individual comments. However, because the text-

based classifier works at the comment level, for pushback datasets

where we only have thread-level labels, we had to assign each

comment the same label as the thread-level label. We will discuss

the limitation when we present the results.

The notion of code review. Our two new code review toxicity

and pushback datasets are extracted from open-source projects on

the GitHub platform whereas Egelman et al. ’s dataset [18] was

extracted from internal Google code reviews. In addition to the dif-

ferences between the corporate and open-source contexts in terms

of culture, process, and their observed consequences, the mechanics

of code reviewing also differ. Google uses a proprietary dedicated

code review management system [52] where all review comments

are associated with specific code changes. On GitHub, projects typi-

cally manage code reviews as part of pull request threads. However,

even though canonically code review comments on GitHub are ex-

pected to be attached to specific lines of code and can therefore be

distinguished from more general discussion comments part of the

same pull request thread, practices vary widely across projects [23].

For reasons of uniformity across projects when sampling candi-

dates for manual labeling, and since we expect that indicators of

pushback may occur across pull requests as a whole, not just re-

view comments attached to specific changed lines, we consider

the conceptual equivalent of a Google code review to be an entire

GitHub pull request thread, including all its general and line-specific

comments, i.e., an “open-source code review thread” hereafter.

Representativeness.When sampling toxicity and pushback pull

request candidates for manual labeling, we use several heuristics

to narrow down the search space (details below) instead of random

sampling. While this compromises the statistical representativeness

of our datasets, it is necessary to do this since the two phenomena

we study are relatively rare; random sampling is unlikely to discover

many, if any, instances of these phenomena. We note that this is not

only a limitation of the two prior work studies we build on, but also

of all similar work on hate speech detection etc. [49]. Alternative
approaches to building labeled datasets for hate speech detection

are, as of 2021, still actively being researched [49].
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Table 1: The relationship between our four datasets and their corresponding RQs.

Classifiers

Number of Data Points

Text-based Logs-based Combined

D1 Toxic Open-Source Issue Comments Raman et al. [50] RQ2.2 RQ3.1 80 toxic, 160 non-toxic

D2 Toxic Open-Source Code Review Comments RQ1.1 RQ2.2 RQ3.1 102 toxic, 204 non-toxic

D3 Pushback in Corporate Code Review RQ2.1 Egelman et al. [18] RQ3.2 493 pushback, 809 non-pushback

D4 Pushback in Open-Source Code Review RQ2.1 RQ1.2 RQ3.2 201 pushback, 323 non-pushback

Open source vs corporate metrics. While we try to replicate

Egelman et al. ’s pushback detection method, some measures are

unfortunately not observable on GitHub. For example, we cannot

replicate “shepherding time,” which in Egelman et al. ’s study is the

total amount of time an author spent actively viewing, responding

to reviewer comments, or working on the selected code change,

including looking up APIs or documentation. The public GitHub

trace data about pull request threads captures only wall clock times,

which is an overapproximation of the active shepherding time. We

are particularly interested in evaluating how well such approxima-

tion metrics, that are less precise but more widely available outside

of a corporate setting, can capture the same phenomena.

4.2 Toxic OSS Issues (D1; pre-existing)
This dataset, originally created by Raman et al. [50], consists of 80

GitHub issue discussions labeled as toxic by the authors. Starting

from the GHTorrent database [24], Raman et al. [50] identified

potentially toxic issue comments using the keyword “attitude” (the

authors of the toxic comments are often criticized in the same

thread by others, typically the project maintainers, about their

attitude), and from issue threads “locked as too heated”—one of the

mitigation strategies afforded by the GitHub platform. Raman et al.

then manually reviewed a sample of candidate issue threads from

this initial list and assigned ground truth toxicity labels.

We decided to replace the control group in Raman et al.’s dataset

[50] because we noticed that those non-toxic comments’ total num-

ber of characters is significantly shorter than for the toxic com-

ments. Since a priori we have no reason to expect that toxic issues

are generally longer than non-toxic issues, and we want to cap-

ture other aspects of toxic comments, we compiled a new set of

non-toxic issues. Inspired by Egelman et al. [18], we constructed

stratified samples by propensity score matching on the length of all

comments within an issue thread (which is not used in any of our

prediction models), after excluding code segments and comments

from obvious bots [46], e.g., a continuous integration tool. Our new

set of non-toxic issues contains two non-toxic issues for every toxic

issue.

4.3 Toxic OSS Code Review (D2; novel)
We compiled a dataset of 102 toxic open-source code review threads

(i.e., pull request threads with all their associated comments) and

a separate corresponding control group of non-toxic open-source

code review threads, using a similar approach to the one originally

taken by Raman et al. [50] for issues. Specifically, we use three

heuristics to narrow down the search space for candidates in the

GHTorrent [24] database, followed by manual review and label-

ing. Egelman et al. [18] showed in their study of pushback that

inter-rater agreement is very high when using multiple annotators,

implying that a single annotator is sufficient. One author of the

paper carried out the labeling independently, assigning “toxic” and

“non-toxic” labels to the threads as a whole if at least one of the

comments was considered to be toxic; when in doubt, we discussed

the respective examples as a group and assigned labels collectively.

The three heuristics were:

• Locked as “too heated”—this built-in GitHubmitigationmech-

anism is available for both issues and pull requests; or

• Containing the keyword “attitude”; or

• Containing “code of conduct”, a novel addition relative to

Raman et al. ’s heuristics [50]. We anecdotally observed that

a project’s code of conduct, when present, is invoked by

maintainers when responding to a toxic comment.

Then, as in dataset D1, we performed propensity score matching on

the total length of comments to assemble a control group containing

two non-toxic open source code reviews for every toxic one.

4.4 Pushback in Corporate Code Review (D3;
pre-existing)

We used the collection of code reviews gathered by Egelman et

al. [18] from Google’s internal corporate repository. The authors

collected these using two methods:

First, Egelman et al. [18] pulled a stratified random sample of

code reviews, then surveyed authors, reviewers, and other engi-

neers about whether they perceived each code review as having

elements of “pushback.” The authors then labeled a code review

as containing pushback if at least one respondent noted that the

review contained at least one element of pushback. Code reviews

are labeled as not containing pushback if (a) at least one person re-

sponded to a survey about it, and (b) all survey responses about that

code review indicated that no elements of pushback were present.

Second, those same respondents could report a code review that

they thought contained pushback. They labeled these reported

code reviews as “containing pushback”, except that we discarded

those that participants indicated were problematic only because

of excessive review delays, which are not part of Egelman et al. ’

definition of pushback [18].

4.5 Pushback in OSS Code Review (D4; novel)
To construct an open source counterpart to the corporate code

review pushback dataset, we replicated the survey instrument used

by Egelman et al. [18], with only surface-level modifications to
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adapt to pull requests and their specifics on the GitHub platform

instead of Google-specific terminology.

We then compiled a sample of GitHub code reviews that each:

• had at least 10 comments, to ensure that at least some amount

of interpersonal interaction was present, and

• had no more than 50 comments, to limit the reading effort

expected from survey respondents.

Additionally, to ensure some diversity in code review outcomes,

half of the sampled code reviews were merged pull requests and half

were closed without being merged. We emailed survey invitations

to the authors and reviewers who display their emails publicly.

As with Egelman et al. ’s survey [18], we also asked participants

to report other code reviews that they thought contained pushback;

63 were reported this way. The reasons that these code reviews

were reported as pushback are shown in Figure 7 in Appendix.

We then labeled these discussions using the survey data in the

same way as in Dataset D3. As a result, this dataset contains only

conversation-level labels.

Since one can maximize the recall of a classifier by predicting

all data points as positive, the minimum precision score is the

percentage of positive data points. Therefore, to make D3 and D4

more fairly comparable, we downsampled D4’s negative data points

to match the positive-negative ration in D3. In the end, D4 contains

201 pushback threads and 323 non-pushback threads.

5 EXPLORATORY ANALYSIS
As a first step, before applying machine learning, we explored

how well a more basic word-frequency approach could distinguish

discussions with one label compared to the other (e.g., toxic vs.
non-toxic) in each of the four datasets. To this end, we used an

open-vocabulary analysis [39] to automatically identify words and

phrases that are used distinctly more often in one label than the

other, and then manually reviewed these looking for themes. This

analysis serves two purposes. First, it helps to triangulate that the

manually assigned labels are meaningful, if “obvious” differences

between the two classes are detectable using this independent ap-

proach. Second, it informs the design of more sophisticated auto-

mated classification, by identifying promising features.

Concretely, for the automated part we used log odds-ratio with

Dirichlet prior [39] to identify n-grams that are significantly over-

represented in positive labels, i.e., those labeled as toxic or pushback,
compared to the negative labels, i.e., those labeled as non-toxic or

non-pushback. Since our data sets do not have an equal volume

of text, we measured frequency using the log of an n-gram’s odds-

ratio. Because some n-grams may appear only in one label and not

the other, we added a smoothing Dirichlet to the vocabulary. We

pre-processed the text by removing URLs and numbers. We did not

remove stopwords before performing the analysis because remov-

ing them can interrupt sentences and potentially eliminate some

meaningful n-grams. We then ranked n-grams by z-scores and kept

those with absolute z-scores above 2.326, which corresponds to the

statistical significance cutoff of p < 0.01. Finally, we kept the 10

unigrams, bigrams, and n-grams with the highest positive z-scores

(from positive labels) and 10 with the lowest negative z-scores (from

negative labels).

Table 2: N-grams that are over-represented in either class in
D2 Toxic OSS Code Review Comments. N-grams with second-
person pronouns are in bold. N-grams with software engi-
neering terms are underlined.

unigram z-score bigram z-score ngram z-score

you 12.172 it is 5.555 if you want 3.397

people 7.292 you want 4.81 it is not 2.712

even 7.097 that is 4.272 do you think 2.576

do 6.71 going to 4.256 you need to 2.397

what 6.644 you are 4.187

is 6.373 trying to 4.053

want 6.078 if you 3.682

your 5.796 to do 3.668

because 5.657 do not 3.556

Toxic

why 5.547 you think 3.539

tests -4.773 could you -2.815

unit -4.858 the pull -2.889

vs -4.982 as the -3.137

file -5.15 and the -3.143

files -5.165 of files -3.296

for -5.574 we can -3.48

test -5.76 pull request -3.668

from -5.872 code to -3.856

at -6.732 to the -4.031

Non-toxic

line -6.782 instead of -5.004 the pull request -2.276

We then manually examined the usage of these n-grams in our

data sets by sampling comments containing them. We looked for

patterns in these comments that could help us distinguish toxic or

pushback comments from non-toxic or non-pushback ones, respec-

tively. That is, we applied this process to all four of our datasets

To illustrate the results of this exploratory analysis, consider the

results for dataset D2 Toxic Open-Source Code Review Comments

in Table 2. In the table, empty cells indicate that no more n-grams

were above or below the z-score cutoff. Due to space constraints,

the tables (Tables 3, 4, and 5) for the remaining three data sets are

shown in Appendix. Below, we describe several patterns that we

observed from this analysis.

Second Person Pronouns.One clear pattern we can observe from
the word frequencies is the use of the second person pronoun “you”

in toxic text, including phrases like “you are”, “if you want”. “You”

is the unigram with the highest z-score in both D1 (Table 3) and

D2. In Table 2, n-grams with second-person pronouns are in bold.

To investigate further, from D1 and D2 we randomly sample

10 toxic comments and 10 non-toxic comments that include “you.”

Some of these comments involve direct attacks on the second person

recipient, such as “[y]ou don’t care to be a part of the project,” “[y]ou

are expected to comply,” “[y]ou decided to insult [...].” This echoes

what Danescu-Niculescu-Mizil et al. [15] found: the use of second-

person pronouns at the beginning of a sentence is more likely to

be impolite. The same pattern is observed In D3 (Table 4).

In non-toxic comments in D2, the only n-gram that contains

“you” is “could you”, which is a negative politeness strategy that

tries to minimize the imposition on the hearer by being indirect. The

counterfactual form “could” is more polite than the future-oriented
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variant “can” [15]. This is also true in D3, where we again see some

hedge words and other politeness strategies, such as “could you”,

“should be”, and “seems” among non-pushback code reviews.

Gratitude. Gratitude is another common theme in non-pushback

text, both in open and closed source code reviews (D3 and D4

(Table 5)). These n-grams included “thanks” and “thanks for” that

appear among non-pushback code review comments.

Technical Discussion. In D1 and D2, we see many software engi-

neering-related n-grams, e.g., “tests” and “the pull”, among non-

toxic comments but almost none among toxic comments. In D3 and

D4, we likewise see more technical terms among non-pushback

comments. In Table 2, n-grams with software engineering terms

are underlined.

Code of Conduct.We occasionally see “code of” and “the code of”

appear in the top-10 lists. Typically, these two n-grams appear when

referring to “the code of conduct”, often as a reminder that someone

violated the code of conduct. For example, one contributor wants the

maintainer “to enforce the code of conduct [...].” Interestingly, we

observe this pattern in D4 (pushback in open source code reviews),

which was sampled without using this as a search term.

No Pattern and Overfitting. Finally, among all four datasets, we

see some n-grams with no discernible rationale for why they might

be indicators or contraindicators of toxicity or pushback. For in-

stance, in Table 2, the bigrams consisting of only stop words, e.g.,
“as the”, “and the”, and “to the”, appear to just be noise, rather than

true indicators of non-toxic open-source code review. As an exam-

ple of overfitting, the top unigram in D3 (“<tech1>”) indicates a

widely-used, Google-specific piece of technology.

Overall, this exploration confirms that discussions in the pos-

itive labels, tend to shift focus away from the technical aspects

themselves and onto interpersonal issues. The ground truth labels

on all four datasets appear meaningful, since there are noticeable

differences in the relative frequency of words and phrases between

discussions with presence and absence of toxicity and pushback.

Moreover, the analysis implies that there is substantial overlap be-

tween the two concepts of pushback and toxicity, suggesting that

incorporating text-based features into classifiers for both concepts

is worthwhile. However, the absence of a clear pattern for many

n-grams suggests that a purely frequency-based approach would

be insufficiently discriminatory for an accurate classifier. In what

follows, we introduce more sophisticated classification approaches.

6 METHODS FOR CLASSIFICATION
6.1 Building classifiers for toxic comments and

pushback in code reviews
Text-based features. In this paper, we reuse and improve the clas-

sifier developed by Raman et al. [50], which takes outputs from

several text-based pretrained classifiers as features. We first prepro-

cessed the text by removing URLs, quotes, numbers, etc. Then we

feed the text into the following three pre-trained NLP classifiers,

and use the outputs as features.

Following Raman et al. [50], we collect (1) the toxicity score and

identity attack score from the Perspective API ([0, 1] range, with

1 being the most toxic/aggressive) and (2) count the occurrences

of different politeness strategies using the politeness parser [8, 15]

(normalized to [0, 1]). In addition, we used (3) a sentiment analysis

tool developed for software engineering code review comments,

SentiCR [1], with reportedly better performance on GitHub data

than other sentiment analysis tools [65]. The output from SentiCR

is either positive sentiment (1) or negative sentiment (-1).

Logs-based features. Because we are interested in answering

whether the pushback classifier by Egelman et al. [18], which uses

logs-based features, can be applied to open-source code review

comments (RQ1), we calculated logs-based metrics for D2 and D4,

the two novel datasets. Egelman et al.’s work on code review in the

company used rounds of review, active reviewing time, and active

shepherding time to build a classifier for pushback. They defined:

• Rounds of review as the number of batches of contiguously

authored comments, as it “captures the extent to which there

was back-and-forth between the author and reviewer.”

• Active reviewing time is “the time invested by the reviewer in

providing feedback,” which includes actively viewing, com-

menting, or working on code review.

• Active shepherding time is the time “the author spent actively

viewing, responding to reviewer comments, or working on

the selected CR, between requesting the code review and

merging the change into the code base.”

The above “active” times may include time outside of code review,

e.g., editing files, but does not account for in-person conversations.

As discussed in Section 4, for GitHub data we could not exactly

replicate all three logs-based metrics used by Google, because of

differences between Google’s code review tool and the GitHub

pull request workflow. Therefore, by necessity we operationalized

these metrics for open-source code review comments (D2 and D4)

differently:

• We approximated Rounds of review as the number of com-

ments on a pull request, since GitHub code review comments

are not always grouped into batches the way Google’s are.

• We approximated Active shepherding time as the time differ-

ence between the initial PR post and the last comment. Note

that the difference between our shepherding time and the one

by the company is that the company uses the actual amount

of time an author spent on a code change, whereas ours is

the wall-clock time of the entire review process, which may

result in longer shepherding time overall.

• We did not attempt to approximate Active reviewing time,
because we could not distinguish how much of the time

between the submission of code and the last comment was

taken by reviewers or by the author.

Training. We trained a random forest [5] classifier for each classi-

fication task because of its accuracy and robustness against overfit-

ting [28, 31].

Following Raman et al. [50], we performed 10-fold nested cross

validation to find the best model and reduce bias from random data

splits. We first randomly split our labeled data into a training set

(67%) and a test set (33%). We used stratified sampling to preserve

the ratio between labels and ensure that each set contains both

positive and negative labels.

We then fit and cross validate a random forest model using the

training set for 10 trials. In each trial, the training set is further split
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(b) Logs-based classifier P-R curves on D3 and D4.

Figure 1: Text-based classifier P-R curves

into 10 folds randomly. Each fold is used once as a cross validation

set, while the remaining 9 folds are used for training. The ran-

dom forest model learns the best combination of hyperparameters,

such as n_estimators and max_depth, optimizing for F1 score, the

harmonic mean of precision and recall.

After each trial, we tested the random forest model with the

combination of hyperparameters that produced the highest F1 score

during training (67% of the entire labeled dataset) on the held-out

test data (33% of the entire labeled dataset).

For the text-based classifier, the classification is performed at

comment level. Thenwe aggregate the classifications to form thread-

based labels. For pushback datasets (D3 and D4) where we only

have thread-level labels, we assign all comments the same label as

the thread-level label. For the logs-based classifier, the classification

is performed at thread-level.

6.2 Classifier Performance Analysis
To evaluate the performance of our classifiers, we computed and

compared the Areas Under the Precision-Recall (P-R) Curves, i.e.,
the P-R AUC scores. Precision tells us how many comments la-

beled by our classifier as toxic/pushback are in fact toxic/pushback,

and recall tells how many toxic/pushback comments in our test

dataset are classified as toxic/pushback. P-R curves explore the

classic precision/recall tradeoff in applications where the data is im-

balanced [16], as is ours — toxicity and pushback are both relatively

rare. P-R curves are also commonly used to evaluate classifiers

when researchers care more about positive (toxic or pushback)

than negative labels. This is also the case in our work — for down-

stream prevention, mitigation, and future research on toxicity and

pushback, we believe that it is more important to identify true in-

stances of toxicity and pushback than it is to identify that some

comment or conversation is not toxic or pushback. A P-R AUC

score summarizes the performance of a classifier into one value

and can be interpreted as the average of precision scores calculated

for different recall thresholds, with higher values (closer to 1) being

preferable.

To compute the P-R curves, we uniformly vary the classifier’s

probability threshold for predicting the positive class, which cor-

responds to exploring the precision-recall tradeoff. To compare

classifiers, we performed pairwise t-tests on their P-R AUC scores

computed after the 10 cross-validation trials. At each trial, we ap-

plied the random forest classifier with the best hyperparameter

combination on the held-out test data and computed an AUC score.

As a result, from our 10-fold nested cross validation training pro-

cess, we obtained 10 AUC scores (one per trial). For each t-test, we

also report Cliff’s delta measure of effect size.

In addition, we estimate the importance of each feature [31] in

our random forest classifiers during the training phase, using a

standard approach based on the mean overall improvement in a

tree’s impurity. The impurity, in classification tasks, is measured

by the Gini index, interpreted as the probability of an item being

incorrectly classified if it was randomly labeled according to the

distribution of a specific feature [28].
2

7 RESULTS
RQ1: Howwell do existing classifiers generalize across context
and type of discussion?

To answer this question, we plot the P-R curves by the classifiers

using the same features on different datasets and compare the aver-

age AUC scores. Figure 1 shows one of the curves from the 10 trials.

We start by comparing the P-R AUC scores for the text-based

toxicity classifier on D2 (open-source code reviews) relative to the

benchmark D1 (open-source toxic issues), answering RQ1.1. The P-

R curves are shown in Figure 1a. We find that at the thread level, the

text-based classifier performs better on D1 than on D2 (𝑡 = 7.977,

𝑝-value = 3.164𝑒 − 7; Cliff’s 𝛿 = 0.98 / large effect; the AUCs are

0.820 and 0.692 respectively).

2
Our code is available at https://doi.org/10.5281/zenodo.6051070
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Figure 2: P-R curves on pushback classification

We manually checked some randomly sampled toxic comments

from D1 and D2 that our text-based classifier failed to identify.

We found that some of them are responding to toxic behavior. For

example, phrases like "you spent a long time insulting people" are

responses to someone else’s insult and are clearly a signal of the

presence of toxicity. Some other ones contain covert toxicity, such
as sarcasm, entitlement, or the use of “?!” or emojis. Covert toxicity

is difficult for language models to detect in general [36]. These

comments also have a low predicted toxicity score by our classifier;

some even use the word “please” as in “Please consider that this

thread [...] is so problematic. [...] get this PR closed ASAP.”

The impurity-based feature importance analysis (Figure 4a in Ap-

pendix) provides some explanations on what features are important

in both datasets. The x-axis is the importance score of the features.

The sum of importance scores of all features is 1. The two most im-

portant features during the training phase are from the Perspective

API. They are followed by three politeness features: second person

pronouns, the presence of negative words, (e.g., “begging for com-

plete code review” and “many bugs documented and unresolved”),

and the use of first person pronouns. The use of second person pro-

nouns echoes our findings of the word frequency analysis, where

we see the use of “you” overrepresented in toxic text.

Reflecting on differences between the issue conversations and

code review conversations that could cause the performance degra-

dation when detecting toxicity in the latter case, we speculate two

reasons based on exploring the two labeled datasets. One is that

many code-specific comments are much shorter than discussion

comments, yielding less linguistic information. The other possi-

bility is that the code review conversations in our dataset more

often include code chunks and removing inline codes may reduce

information for the text-based classifier.

Next we compare the P-R AUC scores for the logs-based classifier

on D3 (pushback in corporate code review) and D4 (pushback in

open-source code review), answering RQ1.2. The P-R curves are

shown in Figure 1b. Our results show that the logs-based classi-

fier has a lower performance when transferred to the open-source

context, despite being retrained (𝑡 = 21.389, 𝑝-value = 1.308𝑒 − 13;

Cliff’s 𝛿 = 1; the average AUC scores are 0.453 and 0.630).

We speculate that there are two main reasons for the lower

performance. First, limited by the information publicly available on

GitHub, we could only compute measures for two of the three logs-

based features used originally inside Google. Therefore, we have

less information. Indeed, in D3, reviewing time, the feature missing

in D4, ranks as the most important (Figure 5 in Appendix). Second,

our measure of shepherding time computed for open-source code

reviews is only an approximation, using wall-clock time rather

than the amount of time spent actively working on code in review.

Therefore, the logs-based features we computed for open-source

data are not as accurate as those on corporate data.

Summary: Both the text-based classifier and the logs-based clas-
sifier have performance degradation when generalizing to other
contexts.

RQ2:Howwell do existing classifiers generalize for both tox-
icity and pushback?

To answer this research question, we compare the performance

of the classification approach originally designed for one construct

(toxicity or pushback) to the classification approach originally de-

signed for the other construct.

We start by evaluating the performance of the text-based clas-

sifier on datasets D3 and D4, compared to the performance of the

logs-based classifier as a benchmark, answering RQ2.1. Figure 2

shows one of the P-R curves from the 10 trails.

On D3 Pushback in Corporate Code Review, the text-based clas-

sifier outperforms the logs-based classifier on average (𝑡 = 2.527,

𝑝-value = 0.022; Cliff’s 𝛿 = 0.58 / large effect; the mean AUC scores
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Figure 3: P-R curves on toxicity classification

are 0.652 and 0.630 for the text-based and logs-based classifiers

respectively); note, this logs-based classifier is the one using all

three measures of pushback, available inside the company Google.

This suggests that pushback as a construct shares many linguistic

similarities with toxicity. In addition, the better performance of

the text-based classifier suggests that, in a corporate setting, in-

terpersonal conflicts can be more subtle than delay of reviews or

excessive comments.

For D4 Pushback in Open-Source Code Review, comparing the P-R

AUC scores shows that, unlike previously on D3, the text-based

classifier and the logs-based have a similar performance (𝑡 = 0.495,

𝑝-value = 0.629; the average P-R AUC scores are 0.467 for the text-

based classifier and 0.462 for the logs-based one); note, the logs-

based classifier in this case contains only the measures available

publicly on the GitHub platform.

One possible explanation is that in contrast to the previous cor-

porate dataset, there are relatively fewer examples of open-source

pushback code reviews in our sample that could be traced back to

reasons with linguistic markers. Therefore, there is less for the text-

based classifier to discern. To test this hypothesis, we compiled a

subset of D4, D4-1, containing as positive examples all the reported

pushback open-source code review threads that are linked to lin-

guistic markers (Figure 7 in Appendix), such as “harsh comments”

(39 out of 63 self-reported pull requests), and as negative examples

the remaining self-reported pushback open-source code review

threads with only likely non-linguistic markers, such as “exces-

sive review delays.” Comparing the performance of the logs-based

and text-based classifiers on D4-1 does not support our hypoth-

esis: the text-based classifier underperforms the logs-based one

(𝑡 = −5.072, 𝑝-value = 0.0002; Cliff’s 𝛿 = −0.86 / large effect; the
average AUCs are 0.566 and 0.679 respectively). The reason could

be that pushback threads labeled with linguistic-related reasons

are often labeled with non-linguistic ones too, e.g., “requesting a

change without justification.”

Another possible explanation is that since pushback classification

is done at the thread level, within a thread the actual comments

indicative of pushback are too rare for the whole text of the threads

to be significantly different on average between the pushback and

non-pushback classes. To test this, we created dataset D4-2, inwhich

we assigned pushback labels at the comment level. Specifically, we

used the responses to our survey asking participants to copy-paste

the text fragments indicating pushback, in addition to offering

pushback pull requests as a whole, to identify which comments

in the thread contained those exact fragments. We then labeled

those comments as pushback and all other comments in the same

threads as non-pushback. Then we performed the classification and

thread-level aggregation as usual. Comparing the performance of

thread-level text- vs logs-based classification on D4-2, we observe

that the text-based classifier now outperforms the logs-based one

(𝑡 = 2.591, 𝑝-value = 0.026; Cliff’s 𝛿 = 0.54 / large effect; the average

AUCs are 0.534 and 0.471 respectively), supporting our hypothesis.

The feature importance analysis (Figure 4b in Appendix) for the

text-based classifier on both pushback datasets D3 and D4 present

some insights into what linguistic features are associated with push-

back comments. On both datasets, the toxicity score and identity

attack score from the Perspective API have the highest importance.

They are followed by several politeness strategies. The third most

important feature in D3 is the presence of positive lexicons whereas

in D3 is the number of hedge words, such as “likely”, “maybe”,

“seems”. Having second person pronouns is also an important fea-

ture to classifying D3 Pushback in Corporate Code Review but less

so to D4 Pushback in Open-Source Code Review.
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Summary: When detecting pushback, the text-based classifier
performs better than the logs-based classifier for corporate code
review comments, but they have a similar performance for open-
source code review comments

Next we compare the performance of the logs-based classifier

against the performance of the text-based classifier on detecting

toxicity, answering RQ2.2. We plotted the P-R curves for the text-

based and the logs-based classifiers on D1 and D2, shown in Figure 3.

We find that the text-based classifier performs better than the logs-

based one on both D1 (𝑡 = 45.515, 𝑝-value < 2.2𝑒 − 16; Cliff’s 𝛿 = 1;

P-R AUC scores are 0.898 and 0.516 respectively) and D2 (𝑡 = 17.853,

𝑝-value = 1.425𝑒 − 08; Cliff’s 𝛿 = 1; P-R AUC scores are 0.693

and 0.372, respectively). The good performance of the text-based

classifier implies that toxicity is more of a linguistic phenomenon.

Meta-data, such as the logs-based features we computed, could not

capture enough information to distinguish toxic language.

Summary: The logs-based classifier does not perform as well as
the text-based one when detecting toxic open-source issues and
code review comments.

RQ3: To what degree can combining existing approaches
improve detection of toxicity and pushback?

We start by comparing P-R AUC scores of the text-based and the

logs-based classifiers against that of the combined classifier when

detecting toxicity, on both D1 and D2, which answers RQ3.1. The P-

R curves are shown in Figure 3. Overall, we find that the combined

classifier has better performance than the logs-based classifiers but

is similar to the text-based classifier. On D1, the combined classifier

outperforms the logs-based one (𝑡 = −51.975, 𝑝-value < 2.2𝑒 − 16;

Cliff’s 𝛿 = −1; the AUC scores are 0.895 and 0.516 respectively)

but is indistinguishable from the text-based classifier (𝑡 = 0.376,

𝑝-value = 0.712, the text-based classifier’s AUC is 0.898). Similarly,

on D2, the combined classifiers outperform the logs-based classifier

(𝑡 = −16.55, 𝑝-value = 9.846𝑒 − 10; Cliff’s 𝛿 : −1; AUCs are 0.729
and 0.371), and the performance of the text-based and the combined

classifiers are indistinguishable (𝑡 = 0.712, 𝑝-value = 457; the AUC

of the text-based classifier is 0.702).

The feature importance analysis (Figure 6a in Appendix) shows

that text-based features are more important in detecting toxicity

than logs-based features. This suggests that, again, toxicity is more

about the language than the logs-based metrics. The toxicity score

and identity attack by the Perspective API have the highest impor-

tance. They are followed by the two logs-based features, which are

followed by several politeness strategies. The use of second-person

pronouns is also among the top 5 most important features, which

echoes our findings in the word frequency analysis.

Summary: For toxicity, the combined classifier has similar per-
formance to the text-based one, but better performance than the
logs-based one.

Finally, we compare the AUC scores between the text-based

and the combined classifier and between the logs-based and the

combined classifier when detecting pushback (D3 and D4), which

answers RQ3.2. The P-R curves are shown in Figure 2.

On D3 Corporate Pushback Code Review Comments, the combined

classifier performs better than the logs-based (t-test between the

logs-based and the combined classifier: 𝑡 = −2.7069, 𝑝-value =

0.015; Cliff’s 𝛿 = −0.82; AUC are 0.529 and 0.567) but worse than

the text-based ones (t-test between the text-based and the combined

classifier: 𝑡 = 6.261, 𝑝-value = 5.303𝑒 − 05; Cliff’s 𝛿 = 0.98).

On the contrary, on D4 Open-Source Pushback Code Review Com-
ments, the performance of the logs-based classifier is better than the

combined classifier (𝑡 = 2.817, 𝑝-value = 0.013; Cliff’s 𝑑𝑒𝑙𝑡𝑎 = 0.64;

the average AUC scores are 0.462 and 0.448 respectively). However,

the combined classifier’s performance is indistinguishable from

that of and text-based classifiers (𝑡 = 2.171, 𝑝-value = 0.052, the

text-based classifier’s AUC is 0.467).

From the feature importance analysis on the combined classifier

on our two pushback datasets D3 and D4 (Figure 6b in Appendix)

shows that the logs-based features have higher importance than

the text-based ones. Among the text-based ones, toxicity score and

identity attack have the highest importance, followed by several

politeness strategies.

Summary: For classifying pushback in code reviews, the combined
classifier performs better than the logs-based classifier but worse
than the text-based classifier in a corporate setting, and it is worse
than the logs-based classifier but about equivalently to the text-
based classifier in an open-source setting.

8 DISCUSSION
Classifiers’ cross-domain application. For RQ1, we found that

prior classifiers’ performance [18, 50] degrades when applied to

new datasets. For open-source code review comments, one reason

may be that, compared to issues, discussions in PRs are generally

more technical, and hence, less personal. One reason the logs-based

classifier performed relatively poorly in open-source code review

may be that we were not able to accurately reproduce one of the

corporate pushback features, active shepherding time.

Relationship between toxicity and pushback. By answering

RQ2, how well can the classifiers generalize across domains and

datasets, we can conclude some relationship exists between the

two concepts. Pushback is initially centered around delays in code

review, which is associated with lower productivity [18], whereas

toxicity is centered more around the negative interactions among

contributors during code review [50]. However, Egelman et al. [18]

reported that, in addition to lengthy reviews, pushback is also

characterized by interpersonal conflict. This is supported by our

finding that the text-based classifier has a better performance than

the logs-based one on pushback detection in a corporate setting,

suggesting that pushback in a corporate setting is more subtle

than lengthy discussions or delayed reviews. Similarly, in open-

source, toxic language is also a significant part of pushback. Among

the pushback code review comments users reported, more than

half of them have reasons related to communication (Figure 7 in

Appendix). However, we found that the logs-based features did not

improve toxicity detection. This suggests that toxicity is mostly

about language, and meta-data cannot capture the nuance.
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Corporate vs. open-source settings. When answering RQ2, we

were also able to compare the two contexts, corporate and open

source. We found that the text-based classifier works better when

classifying corporate pushback, but the logs-based classifier works

better when classifying open-source pushback. The distributive

and volunteer-based nature of open source could contribute to

the fact that the logs-based features are more predictive. From the

survey responses, we observed a lot of complains on maintainers

delaying the review process. When looking at some of the PRs, we

saw that many of the maintainers mentioned having a holiday or

busy with day job as reasons for the delay. One comment from the

open-source pushback survey reflected that “It’s not PR and not

about code review, but it’s about open source world.”

Moreover, both the text-based and the logs-based classifiers have

better performance on corporate pushback code review comments

than on open-source ones. This suggests some differences between

the two datasets. Perhaps these differences arise from uniformity

in Google’s code review practices [52] compared to the multitude

of practices used on GitHub [23].

This also raises the issue of transferring our results to other set-

tings. When answering RQ1, we found that using the same set of

features on a data from a different context resulted in lower perfor-

mance. However, the multiple levels of comparisons we conducted

in this study can act as a guideline while developing a system for

toxicity and pushback detection in other contexts.

Prediction vs. classification. In this paper, we performed classifi-

cation on conversations after they have concluded, largely because

logs-based features are not applicable to individual comments. As

a result, our current models cannot yet be applied to all scenarios

where automated detection of toxicity or pushback are of inter-

est, e.g., comment-level classification for just-in-time intervention.

Instead, we target primarily scenarios where thread-level classifica-

tion is needed, e.g., to reflect on when discussions have gone awry

(of interest to practitioners) or to detect and study when, how, and

why toxicity and pushback occur (of interest to researchers).

Future work can explore how to use text-based features to do real-

time detection and offer editing suggestions. Cheriyan et al. [10]

proposed a Conflict Reduction System that can rephrase offensive

sentences. However, their datasets are heavily focused on swearing

and profanity. Our findings can greatly enrich the set of text features

that can be used to detect and prevent potential toxic comments.

Text analytics improvements.Our text classifier combined three

different NLP techniques, but other NLP techniques on larger datasets

is a future research direction. Some paths that can be explored in-

clude using text embedding [17] or conversational structure [64].

One could also use Snorkel [51], a weak supervision model, to help

augment our labeled dataset.

Prior studies have shown that general NLP models may not

be directly applicable to software engineering corpora [27, 29].

For example, “error” and “test” are mostly neutral in the software

engineering context but have negative connotations in general

English. Han et al. [26] report that Perspective API can misclassify

toxic inputs due to a domain mismatch or novel lexicon of toxicity.

Therefore, some fine-tuning is needed on top of the Perspective

API to attain better performance. Raman et al. [50] suggested fine-

tuning a classifier using a domain-specific lexicon. However, this is

a difficult task that needs careful design and evaluation. Thresholds

and datasets are all variables that can be explored. Moreover, when

evaluating the effectiveness of the domain-specific lexicon tuning,

how do we decide what words should be in the list and what should

not? These questions are worth exploring in the future.

9 THREATS TO VALIDITY
Internal validity. The data we used for training and testing our

classifiers is small in two respects. The first is from a machine

learning perspective, where more data often yields more reliable

conclusions. The second is from an ecosystem perspective; the data

we studied represents a small subset of all the discussions going

on within GitHub and Google, likely limiting the generalizablity of

our results.

Another limitation is that our data, both existing and newly col-

lected, rely on human raters to judge interpersonal conflict. While

Egelman and colleagues’ showed some degree of reliability across

different raters, nonetheless perceptions of interpersonal conflict

invariably differ from person to person. Such differences threaten

the true accuracy of our ground truth data.

External validity. Amajor threat to generalizability is the context

in which we collected our data. For corporate code reviews, we

used data from Google; classifying code reviews in other companies

would likely yield different results. Likewise, our other datasets are

from GitHub; data obtained from other platforms may also yield

different results.

Construct validity. The lack of comment-level labels in pushback

datasets D3 and D4 likely confused the classifiers using text-based

features. Because all comments within a pushback conversation

share the same label, some neutral or positive comments are also

labeled as pushback. Since our text-based classifier works on the

comment level, it can get confused when seeing comments associ-

atedwith polite strategies (e.g., indirect start) and impolite strategies

(direct questions) that are both labeled as pushback.

In our analysis, we bridged concepts and contexts in priorwork [18,

50], between open and closed source; and issues and code reviews.

However, we did not exhaustively explore this space. For instance,

we did not collect data for toxic corporate code reviews or is-

sues. Given the results that the text-based classifier works well

on Google’s pull requests, using it to detect or understand toxic

comments may be worthwhile future work.

10 CONCLUSION
In this paper, we cross-pollinated with two techniques designed to

detect interpersonal conflict. In applying these text- and logs-based

techniques to broader contexts than those for which they were orig-

inally designed, we uncovered several novel insights. For instance,

we found that prior work that detected code review pushback using

logs data [18] can be improved substantially by analyzing the text

contained in those code reviews. While the opposite was not true

– logs data did not improve issue toxicity detection – we nonethe-

less found that logs can be a useful feature in toxicity classifiers.

Building on these techniques, we envision a future where tools

can help software developers learn from or avoid interpersonal
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conflict, enabling projects to be more inclusive of a wider variety

of contributors.
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11 APPENDIX

Table 3: Over and underrepresented words in D1 Toxicity in
Open-Source Issues Comments. N-grams with second-person
pronouns are in bold. N-grams with software engineering
terms are underlined.

unigram z-score bigram z-score ngram z-score

you 30.77 this is 12.756 this is not 6.013

it 23.724 in the 11.822 you want to 5.217

that 22.437 you are 11.651 you need to 4.869

of 22.051 it is 10.608 there is no 4.303

and 21.318 you have 9.389 if you want 4.272

is 18.917 to be 9.371 you have to 4.036

this 18.524 that you 9.145 to do with 4.036

your 18.121 if you 8.727 if you want to 3.971

have 16.647 to do 7.535 part of the 3.94

Toxic

what 15.62 have to 7.514 the problem is 3.799

via -3.526 team and -2.825

unit -3.82 plenty of -2.838

team -3.871 of experi-

ence

-2.954

assigned -3.979 with our -2.972

returns -4.32 and provide -2.972

function -4.452 to remove -3.037

item -5.104 with an -3.042

ticket -5.121 issue was -3.263

duplicate-5.528 assigned to -3.44

Non-toxic

click -5.62 looking for -3.573

Table 4: Over and underrepresented words in D3 Pushback
in Corporate Code Review. N-grams with second-person pro-
nouns and gratitude are in bold. N-grams with software en-
gineering terms are underlined.

label unigram z-score bigram z-score ngram z-score

<tech1> 5.352 you want 3.04 you want to 2.792

tests 4.452 want to 2.849 on nov at pm 2.637

<tech2> 3.683 of these 2.849 nov at pm 2.577

our 3.599 of our 2.626

build 3.564 is to 2.575

libraries 3.362 if we 2.525

break 3.245 depend on 2.464

thing 3.197 we use 2.464

see 3.177 the cl 2.441

Push

back

rollback 3.152 this case 2.311

submit -5.338 to represent -3.831 make sure the -2.566

groups -5.485 to me -3.834 to do the -2.64

feature -5.514 how about -3.882 not sure if -2.69

<tech3> -5.64 to submit -3.96 seems to be -2.805

map -5.664 this function -4.106 in this cl -2.813

rate -6.042 the new -4.286 which is not -2.919

thanks -6.303 could you -4.363 do you have -3.189

section -6.336 for the -4.432 how do we -3.604

the -6.492 change the -4.439 to change the -4.009

Non-

push-

back

for -6.9 thanks for -5.291 thanks for the -4.891

Table 5: Over andunderrepresentedwords inD4Pushback in
Open-Source Code Review. N-grams with second-person pro-
nouns, gratitude, and “code of conduct” are in bold. N-grams
with software engineering terms are underlined.

label unigram z-score bigram z-score ngram z-score

runtime 17.511 is of 6.622 the code of 3.957

suggestion 9.676 the project 6.452 the new format 3.721

argument 9.32 code of 6.171 for the new 3.457

us 8.762 of type 6.006 the commit message 3.185

people 8.35 the linter 4.638 to the project 3.096

timer 8.218 read the 4.583 as long as 3.003

non 7.254 it is 4.313 the number of 3.003

high 7.068 social media 4.186 to read the 2.957

requirements 6.29 the old 4.13 just wanted to 2.874

Push

back

de 6.276 commit message 4.026 we dont want 2.874

access -5.923 the following -3.402

struct -5.992 an error -3.412

config -6.197 it seems -3.536 is going to -2.311

tests -6.282 the same -3.715 it would be -2.5

server -6.351 thank you -3.786 all of the -2.5

line -6.431 the server -4.021 this should be -2.802

field -6.632 did not -4.047 it seems that -2.872

build -7.262 the tests -4.12 thank you for -2.972

info -7.309 file line -4.287 let me know -3.111

Non-

push-

back

error -7.319 line in -5.301 file line in -4.287
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Figure 7: Reasons for pushback in OSS
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