
Differential Performance Fuzzing of
Configuration Options

Haesue Baik∗, Chenyang Yang†, Vasudev Vikram†, Pooyan Jamshidi‡, Rohan Padhye†, Christian Kästner†
∗University of Michigan, †Carnegie Mellon University, ‡University of South Carolina

Abstract—Highly-configurable software often includes
performance-sensitive configuration options. There are
performance expectations in different configurations, but
these expectations may not hold due to inaccurate mental
models, corner cases, or unanticipated interactions with other
options. We propose differential performance fuzzing of
configuration options, a fuzzing technique that uses differential
performance feedback to automatically identify inputs that
violate these expectations for specific configuration changes.
By guiding fuzzing toward scenarios where a supposedly
faster configuration performs worse, differential performance
fuzzing reveals unexpected performance behavior effectively. In
our preliminary evaluation, our method identified unexpected
performance gains in configurations presumed slower for 4
configuration options in Closure, demonstrating the potential
for detecting performance issues in real-world applications.

I. INTRODUCTION

Performance problems are prevalent in software but are
challenging to identify [1]. Configuration options in soft-
ware systems make this even more challenging [2], as the
performance of a software system may be (intentionally or
accidentally) influenced by configuration decisions. Many con-
figuration options are intended to drive performance tradeoffs,
for example, lower rendering quality for faster rendering
times [3] or invest more time in a compiler’s optimization
phase to produce faster programs [4].

Developers often have a mental model of how a config-
uration option will influence performance, and the expected
input may be explicitly documented. For example, in the
grep implementation in Unix4j [5], configuration option -F
(short for --fixedStrings) enables fixed-string matching
instead of regular expressions, which according to the official
documentation [6] is “usually faster than the standard regexp
version.” However, such performance expectations do not
necessarily hold in reality. They may be violated entirely or
only hold for certain inputs; they may be violated due to unre-
alistic assumptions, due to implementation problems, or due to
unexpected interactions with other options. Indeed, we found
that enabling -F is actually slower on many inputs, due to a
naı̈ve slow implementation of fixed-string matching (Figure 1).
Testing can potentially help reveal such inputs that violate
the performance expectation, and therefore help developers
identify potential performance bugs across configurations.

In this work, we propose differential performance fuzzing
of configuration options, a method that enhances coverage-
guided performance fuzzing [7] to automatically identify in-
puts that violate performance expectations of configuration

1 public final class Unix4j {
2 public static Unix4jCommandBuilder grep(
3 GrepOptions options,
4 String regexp,
5 java.io.File... files) {
6 return builder().grep(options, regexp, files);
7 }
8 }
9

10 public class GrepTest {
11 public void configTest() {
12 Unix4j.grep(input1, input2file);
13 // This should be faster than the regexp version.
14 Unix4j.grep(Grep.Options.F, input1, input2file);
15 }
16 }

Fig. 1. In Unix4j, grep has a configuration of --F (--fixedStrings).
This configuration uses fixed-strings matching instead of regular expressions.
In the official documentation, this is stated to be “usually faster than the
standard regexp version.” However, our fuzzer found that this configuration
is actually slower on many inputs, due to a naı̈ve slow implementation of
fixed-strings matching.

changes. The key idea is to introduce a new performance
feedback mechanism for fuzzing (Figure 2), that encourages
fuzzers to explore inputs that trigger violations regarding
expected performance difference between two configurations.
For our example above, differential performance fuzzing will
generate inputs and run them on two configurations, usually
differing in one performance-sensitive option. If the fuzzer
finds an input that violates the performance expectation (i.e.,
it runs faster on the supposedly slower configuration), the
input will be added for the future fuzzing loop. This way, the
fuzzer can efficiently identify inputs that violate performance
expectations of configurations.

We perform a preliminary evaluation of our method on
four compilation configuration options of a popular open-
sourced project, Closure [8] for Javascript optimization. The
assumption is that additional compile-time optimization will
make compilation time longer. From our evaluation, however,
we found that these configuration options, though adding
additional passes to the compiler, reduce compilation time for
many inputs. This demonstrated that (1) violations of perfor-
mance expectation do exist in practice, and (2) performance-
feedback-guided fuzzer can efficiently identify such violations.

To summarize, this paper makes the following contributions:

• Observations of performance expectations of software
configurations and their potential violations.

• A differential performance fuzzing algorithm that incor-
porates differential performance feedback across config-
urations to automatically identify violations of perfor-
mance expectations.



Algorithm 1 Differential configuration performance fuzzing
1: procedure DCPF(Program P , Set of inputs seeds, Budget T , Configurations slow config, fast config)
2: corpus← seeds ▷ Initialize saved inputs
3: repeat ▷ Fuzzing loop
4: x← PICKINPUT(corpus) ▷ Sample using heuristics
5: x′ ← MUTATEINPUT(x) ▷ Synthesize new input
6: if PERFORMANCE(P, x′, slow config) < PERFORMANCE(P, x′, fast config) then
7: corpus← corpus ∪ x′ ▷ Violations found!
8: if COVERAGE(P, x′) ̸⊆

⋃
x∈corpus COVERAGE(P, x) then

9: corpus← corpus ∪ x′

10: until budget T
11: return corpus ▷ Final corpus

• A preliminary evaluation that demonstrates our method’s
ability to identify violations in real-world applications.

II. BACKGROUND

Many software systems have hundreds or thousands of
built-in configuration options to allow users to make indi-
vidual tradeoff decisions, often involving performance and
other qualities, such as output fidelity, formatting, and so
forth [3, 4, 9, 10]. This allows developers to defer committing
to specific tradeoffs and allows users to customize a system for
their needs. In a nutshell, a system may have many configu-
ration options, whether assigned as command-line parameters,
in configuration files, or even at compile-time (e.g., #ifdef).
A configuration is a specific assignment of values for each
option [11].

Much past research has explored automatic performance
optimization by tuning options (also known as algorithm
selection) [9, 10, 12], automatic reconfiguration (e.g., in self-
adaptive systems) [3, 13], or developer support to predict the
performance influence of options to guide manual tradeoff
decisions [4, 10, 14] – usually using various machine learning
and optimization techniques to incrementally search for faster
configurations or to build models of the expected performance
influence of individual options [4, 15, 16]. Past work usually
uses benchmarks for optimization or optimizes the workload
in a running system, whereas our work aims to identify
specific inputs that violate performance assumptions, either
manually documented or learned using performance modeling
techniques.

To find inputs with extreme or surprising performance
behavior, fuzzing has been effective [17]. Performance fuzzing
specifically searches for inputs to a function or program that
maximizes its runtime, typically as a variation of coverage-
guided fuzzing [7], leveraging information about program
internals during the execution to drive input selection for
subsequent fuzzing rounds. Performance fuzzers often find
input that reveals bugs in implementations or provides insights
about performance behavior in unexpected corner cases. In the
former case, the implementation may be fixed, whereas in the
latter case expectations and documentation may need to be
adjusted (they could be considered documentation bugs [18]).
However, traditional performance fuzzing focuses on a single

Seed 
Inputs Input

Save?

Differential
performance 
feedback

Pick

Yes

Add 
input′

2

Mutate

New Branch 
Coverage?

Performance difference 
unexpected?

Mutated 
Input

Program with 
configuration B

Program with 
configuration A

Execute

Fig. 2. Approach overview. Our performance-feedback-guided fuzzer will run
each picked input on two configurations, with performance-sensitive options
on and off. Identified inputs that violate performance expectation will be added
to seed inputs for future selection and mutation.

program (in any specific configuration), not the influence of
configuration options.

Of course, performance optimization work to tune configu-
rations can also be applied to configuration in fuzzers them-
selves [19], but that is orthogonal to our work. In principle,
our work could be used to find configuration options in fuzzers
that change the fuzzer’s performance in unexpected ways.

Closest to our work is differential fuzzing [20], which runs
two different versions of a program on the same input to
maximize the difference in resource consumption such as iden-
tifying side-channel vulnerabilities, where resources can be
execution time, consumed memory or response size. Compared
to their work, we focus on different configurations of the
same program and aim to identify violations on performance
expectation, rather than maximizing resource consumption
differences.

III. DIFFERENTIAL CONFIGURATION PERFORMANCE
FUZZING

A. Algorithm

The core idea of our fuzzing algorithm is to use differential
performance as additional feedback for a coverage-guided
fuzzer, as presented in Algorithm 1. The algorithm makes
three modifications to a standard coverage-guided fuzzing
algorithm [7]: First, users need to choose two configurations
with expected performance differences to test against (line 1).
For each selected input, the algorithm runs it in two different
configurations – usually differing in a single option, but larger



1.001.02 1.04 1.06 1.08 1.10 1.12 1.14 1.16 1.18 1.20 1.22 1.24 1.26 1.28 1.301.32
Speedup on the slow configuration

0

50

100

Fr
eq

ue
nc

y
DeadAssignmentsElimination FoldConstant RemoveDeadCode RemoveUnusedLocalVars

configuration options

Fig. 3. We found a total of 513 inputs that violate performance expecta-
tion of configuration options. Half of the violations speed up the program
by more than 1.06x, while 23% of inputs speed up the program by at
least 1.1x. Most of these violations are identified for foldConstants,
followed by removeDeadCode, removeUnusedLocalVars, and lastly
deadAssignmentElimination, with only 3 violations identified.

configuration changes are possible too. One of the configura-
tions is expected to have worse performance as indicated by
the tester, based on their mental model or the option’s docu-
mentation. The algorithm then compares the performance un-
der both configurations and saves the input for future fuzzing if
it violates the expected performance, that is, when the slower
configuration turns out to be faster (line 7). The rest of the
algorithm is the same as in standard coverage-guided fuzzing.

B. Implementation

We implemented our algorithm as an extension of the JQF
library [21], a popular Java fuzzing framework. We track cov-
erage information and use the number of bytecode instructions
executed as an approximate measure of program performance,
which linearly scales with the number of instructions. We
chose this over CPU clock time because it can provide more
fine-grained information. As pointed out by prior work on
performance fuzzing [17], coverage information allows us to
count beyond just the number of lines covered but also which
lines are covered specifically (e.g., lines in a loop).

IV. PRELIMINARY EVALUATION

Our preliminary evaluation aims to understand:
• RQ: Can our differential configuration performance

fuzzing algorithm identify inputs that violate performance
expectations in real-world applications?

A. Experiment Setup

We selected a popular open-source project, Closure [8],
for evaluating our method. From Closure’s official
documentation of its compile method, we identified a
series of configuration options that apply different compile-
time optimization techniques. Since they each perform
additional work that may speed of the resulting program,
we expect that the compiler’s performance to compile a
program is slower with additional optimization options.
Specifically, we selected 4 options for our evaluation:
removeDeadCode, removeUnusedLocalVars,
deadAssignmentElimination, and
foldConstants. For each option, we ran our fuzzer
for 30 minutes, with the full SIMPLE_OPTIMIZATIONS
as the slow configuration, which turns on all the above

1 for (;;
2 ((n_0).i_1)) {
3 continue;
4 (!("WS(hm>/"));
5 throw (this);
6 continue;
7 }

Fig. 4. An examplar generated fuzzing input with dead code (line 4-6) for Clo-
sure. With removeDeadCode on, Closure is expected to perform additional
passes and hence slower for compilation. However, we found 98 inputs that
violate this performance expectation. This is because of interactions between
different passes: For some inputs with dead code, removeDeadCode can
reduce time for future passes, as they only need to analyze a smaller AST,
which reduces total compilation time.

configuration options along with many other options, and the
full SIMPLE_OPTIMIZATIONS with the selected option
turned off as the fast configuration. For all violations we
identified, we compute the speedups of using the number of
instructions executed.

B. Results

For all four configuration options tested, we successfully
identified inputs that violate performance expectations. Over-
all, we found a total of 513 inputs that violate the perfor-
mance expectation of the configuration options. Half of the
violations speed up the compiler by more than 1.06x, while
23% of inputs speed up the program by at least 1.1x. Most of
these violations are identified for foldConstants, followed
by removeDeadCode, removeUnusedLocalVars, and
lastly deadAssignmentElimination, with only 3 viola-
tions identified. This establishes the feasibility of identifying
inputs that violate performance expectations using our method.

Upon closer inspection of the generated inputs, we found
that this happens because of interactions between differ-
ent compilation options. This is exemplified in Figure 4:
For some inputs with dead code, an additional pass from
removeDeadCode can reduce time for future passes, as they
only need to analyze a smaller abstract syntax tree, which
reduces total compilation time. This explains the variances
in how frequently the speedups occur across configurations
(Figure 3), as foldConstants is likely to be applied more
frequently on generated inputs.

V. CONCLUSION

This work proposes the idea of differential performance
fuzzing of configuration options. Our preliminary evaluation
demonstrated the feasibility of this approach. We envision
there are several future directions that can be explored:

Identifying performance-sensitive configuration options. To
perform differential performance fuzzing of configuration op-
tions, we assume the knowledge of such performance-sensitive
configuration options, which is currently acquired by manually
reading through official documentation. Future work can ex-
plore how to automatically identify such configuration options
and their performance expectation from documentations using
large language models [e.g., 22] to fully automate the fuzzing
loop. With configuration options automatically identified, fu-
ture work can further conduct a larger-scale study on other



open-sourced projects. In particular, it would be interesting to
use our method to understand performance impact of options
of a fuzzer [e.g., 19].

More efficient differential performance fuzzing algorithm.
Our current fuzzing algorithm treats each configuration pair
independently. However, there is a lot of information that can
be reused across configuration pairs. Future work can explore
how to reuse coverage information from one fuzzing run for
another to improve efficiency.

ACKNOWLEDGMENT

The work was supported by NSF awards 2106853, 2107463,
2120955 and the NSF REU site REU-SE 2244348.

REFERENCES

[1] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu, “Un-
derstanding and detecting real-world performance bugs,”
ACM SIGPLAN Notices, vol. 47, no. 6, pp. 77–88, 2012.

[2] X. Han and T. Yu, “An empirical study on performance
bugs for highly configurable software systems,” in Pro-
ceedings of the 10th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement,
2016, pp. 1–10.

[3] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic,
A. Agarwal, and M. Rinard, “Dynamic knobs for respon-
sive power-aware computing,” ACM SIGARCH computer
architecture news, vol. 39, no. 1, pp. 199–212, 2011.

[4] N. Siegmund, A. Grebhahn, S. Apel, and C. Kästner,
“Performance-influence models for highly configurable
systems,” in Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, 2015, pp. 284–
294.

[5] “unix4j: An implementation of unix com-
mand line tools in java.” [Online]. Available:
https://github.com/tools4j/unix4j

[6] “Grepoptions.” [Online]. Available:
http://unix4j.org/javadoc

[7] R. Padhye, C. Lemieux, K. Sen, M. Papadakis, and
Y. Le Traon, “Semantic fuzzing with zest,” in Proceed-
ings of the 28th ACM SIGSOFT International Symposium
on Software Testing and Analysis, 2019, pp. 329–340.

[8] “closure-compiler: A javascript checker and optimizer.”
[Online]. Available: https://github.com/google/closure-
compiler

[9] H. H. Hoos, “Automated algorithm configuration and
parameter tuning,” in Autonomous search. Springer,
2012, pp. 37–71.

[10] P. Jamshidi and G. Casale, “An uncertainty-aware ap-
proach to optimal configuration of stream processing
systems,” in 2016 IEEE 24th International Symposium
on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS). IEEE, 2016,
pp. 39–48.

[11] S. Apel, D. Batory, C. Kästner, and G. Saake, “Feature-
oriented software product lines,” 2013.

[12] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential
model-based optimization for general algorithm config-
uration,” in Learning and Intelligent Optimization: 5th
International Conference, LION 5, Rome, Italy, January
17-21, 2011. Selected Papers 5. Springer, 2011, pp.
507–523.

[13] P. Jamshidi, M. Velez, C. Kästner, and N. Siegmund,
“Learning to sample: Exploiting similarities across envi-
ronments to learn performance models for configurable
systems,” in Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engi-
neering, 2018, pp. 71–82.

[14] M. Velez, P. Jamshidi, N. Siegmund, S. Apel, and
C. Kästner, “On debugging the performance of config-
urable software systems: Developer needs and tailored
tool support,” in Proceedings of the 44th International
Conference on Software Engineering, 2022, pp. 1571–
1583.

[15] P. Jamshidi, N. Siegmund, M. Velez, C. Kästner, A. Patel,
and Y. Agarwal, “Transfer learning for performance mod-
eling of configurable systems: An exploratory analysis,”
in 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 2017,
pp. 497–508.

[16] M. Velez, P. Jamshidi, N. Siegmund, S. Apel, and
C. Kästner, “White-box analysis over machine learning:
Modeling performance of configurable systems,” in 2021
IEEE/ACM 43rd International Conference on Software
Engineering (ICSE). IEEE, 2021, pp. 1072–1084.

[17] C. Lemieux, R. Padhye, K. Sen, and D. Song, “Perf-
fuzz: Automatically generating pathological inputs,” in
Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2018, pp.
254–265.

[18] A. Rabkin and R. Katz, “Static extraction of program
configuration options,” in Proceedings of the 33rd Inter-
national Conference on Software Engineering, 2011, pp.
131–140.

[19] Z. Zhang, G. Klees, E. Wang, M. Hicks, and S. Wei,
“Fuzzing configurations of program options,” ACM
Transactions on Software Engineering and Methodology,
vol. 32, no. 2, pp. 1–21, 2023.

[20] S. Nilizadeh, Y. Noller, and C. S. Pasareanu, “Diffuzz:
differential fuzzing for side-channel analysis,” in 2019
IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 2019, pp. 176–187.

[21] R. Padhye, C. Lemieux, and K. Sen, “Jqf: Coverage-
guided property-based testing in java,” in Proceedings
of the 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2019, pp. 398–401.

[22] Z. Wang, D. J. Kim, and T.-H. Chen, “Identifying
performance-sensitive configurations in software systems
through code analysis with llm agents,” arXiv preprint
arXiv:2406.12806, 2024.


