Splitting, Renaming, Removing: A Study of
Common Cleaning Activities in Jupyter Notebooks

Shurui Zhou
University of Toronto
shuruiz@ece.utoronto.ca

Helen Dong
Carnegie Mellon University
hldong @andrew.cmu.edu

ABSTRACT

Data scientists commonly use computational notebooks
because they provide a good environment for testing multiple
models. However, once the scientist completes the code and
finds the ideal model, he or she will have to dedicate time to
clean up the code in order for others to easily understand
it. In this paper, we perform a qualitative study on how
scientists clean their code in hopes of being able to suggest
a tool to automate this process. Our end goal is for tool
builders to address possible gaps and provide additional aid
to data scientists, who then can focus more on their actual
work rather than the routine and tedious cleaning work.
By sampling notebooks from GitHub and analyzing changes
between subsequent commits, we identified common cleaning
activities, such as changes to markdown (e.g., adding headers
sections or descriptions) or comments (both deleting dead code
and adding descriptions) as well as reordering cells. We also
find that common cleaning activities differ depending on the
intended purpose of the notebook. Our results provide a valu-
able foundation for tool builders and notebook users, as many
identified cleaning activities could benefit from codification
of best practices and dedicated tool support, possibly tailored
depending on intended use.

I. INTRODUCTION

The data scientist role has become increasingly important
for developing data-driven software systems. One type of
tool frequently adopted by data scientists is computational
notebooks, such as Jupyter or R notebooks, for conducting
the exploratory programming during the initial phase of model
development [1]. Notebooks allow data scientists to run small
chunks of code (organized in code cells) quickly and in
any order desired. Therefore, it is easy explore and compare
multiple options to select a high performing configuration
during machine learning model development. As observed
from previous work [2], such process tends to incremental,
i.e. data scientists may add new cells or small code blocks
gradually as they explore alternative methods. When the data
scientists need to share their models with other collaborators,
they must make explicit effort to clean the notebook to make
it easier to understand and reuse.

The meaning of a ‘clean’ notebook can be inherited from
what is generally considered to be ‘clean’ code, such as having
properly named functions, containing descriptive markdown
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and meaningful comments to explain the code’s intention, and
having no dead or irrelevant code. In Figure 1, we show
an example of an author (developer on Github with public
repository) who cleaned code with changes to markdown,
including adding titles and refactoring code, both of which
made the code visually more appealing, and in essence, aided
in readability.

Modern programming IDEs provide various functions and
plug-ins that supporting cleaning the source code [3]-[6].
However, current notebook environments provide little explicit
support for cleaning, making the cleaning process laborious
and tedious. Support is limited to a few academic projects that
focus on specific tasks, such as slicing the code used to repro-
duce a specific figure or result [7], generating documentation
[8], and code synthesis [9]. More importantly, we currently
do not have a solid understanding of the relevant types of
cleaning tasks data scientists most commonly engage in, which
would be needed to focus on tooling effort. In this paper, we
perform a qualitative analysis of a set of curated public Jupyter
notebooks, their version history, and related source code files
to identify which cleaning activities data scientists engage in,
which will be useful in understanding how to design effective
tools to support typical cleaning tasks. Specifically, we are
interested in what are the common cleaning activities, what
are the context of those activities, and to what extent could
they be automated.

Based on our observations, the most common activity in-
volved adding or deleting comments, such as adding comments
to describe the functions or commenting out sub-optimal code.
This is due to the nature of notebooks, in which developers can
write several functions or models, one being in each cell of
the notebook, and commenting out entire cells that run less
optimally. After finding the best one, they can just delete
the other commented out, less optimal functions. Another
common act of cleaning we saw was reordering cells. Because
notebooks can be executed in any order desired, it is possible
for the developer to write code sequentially, but then run them
or intend to run them in a different order. However, after
finalizing the code, the developer will ideally want to reorder
the cells so the reader does not have to figure out the intended
execution order.

In order to understand the context of the cleaning, we col-
lected the notebooks that are likely to serve different purposes,
i.e. personal notebooks (for mostly exploration purposes),
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Fig. 1: Example of a single iteration of cleaning. (I) represents
changes to markdown (adding descriptions); 2) represents an example
of code refactoring; and (3) represents the addition of titles to increase
readability and to help the reader understand the code.

sharing notebooks (notebooks that are meant to be used or
seen by others), and production notebooks (notebooks that
will be part of a larger project, such as creating a library).
While all notebooks embodied some of the cleaning activities,
such as the ones described above, we also discovered different
qualities for different types of notebooks. An effective cleaning
tool would have to consider what type of notebook the data
scientist is working with and clean accordingly. For instance,
the cleaning for personal notebooks can focus more at the
code level, with comments, and reordering cells whereas
the cleaning for sharing notebooks can focus more on the
comments, markdown, and overall understanding of how to
use the code. For production notebooks, there could be a
functionality where it takes in a notebook file and cleans it
up by removing commented out code and splits into separate
Python files with respective classes.

II. STUDY DESIGN

Given that we have little initial knowledge about different
forms of cleaning, we adopt a mostly qualitative research
strategy in which we carefully analyze the public history of
a sample Jupyter notebooks collected from GitHub public
repositories. Through this process, we identified and grouped
different kinds of cleaning activities.

A. Qualitative analysis of notebook version history

We identified cleaning activities in notebooks by manually
analyzing each notebook’s history in version control closely.
To this end, we cloned the notebook’s repository and examined
the diffs between all versions. Because notebooks are stored
in a format that does not lend itself to analysis with traditional
text-based diff tools, we used reviewNB [10], a notebook ver-
sioning and collaboration tool, which allows us to differentiate
the changes on both code and markdown cells.

We proceeded in two steps. In the first step, we analyzed
a small sample of notebooks to develop a coding frame of
different cleaning activities and in the second step, we used

this coding frame to analyze a larger and more representative
sample of notebooks.

To establish the coding frame, two authors manually an-
alyzed the changes between each commit from 28 differ-
ent notebooks (details about our data collection procedure
is in Section II-B) through an open coding process [11],
including reading the commit messages, analyzing the code
and markdown changes, and taking notes about observed
cleaning activities. After collecting initial coding as notes, we
collectively analyzed the codes and grouped them, resulting a
coding frame of different cleaning activities. We analyzed the
clarity of the coding frame on a set of 10 different notebooks
from our dataset to verify our coding frame. After establishing
the coding frame, we then analyzed the history of a larger
sample of notebooks and their histories, applying the coding
frame to identify instances of cleaning activities through axial
coding [11]; After creating our coding frame, we did not
observe any additional cleaning activities in the newly sampled
notebooks so we did not update our coding frame.

In Table I, we show the coding frame of cleaning qualities
that we created from our qualitative analysis.

B. Data Collection

For our analysis, we need to collect notebooks with publicly
available histories. There are millions of public notebooks
on platforms such as GitHub and Kaggle [12]-[15], many
of which have at least some history recorded with a version
control system. Due to the high manual effort in the qualitative
analysis, we curate relatively small samples of notebooks from
this large pool.

We fetched GitHub repositories that contained at least
one notebook and had at least 10 commits with changes to
the notebook(s). To observe the recent practice on notebook
cleaning activities and to make sure the notebooks under
study are complete (without receiving future cleaning steps),
we only considered repositories in which the last edit was
conducted between 18 and 30 months before the start of our
research. This step yields an initial dataset with more than 20k
notebooks.

To get a better understanding of what the developers con-
sidered as cleaning, we start with randomly sampling 20
notebooks from our initial dataset of 20k notebooks that had
the terms ‘cleaning’ or ‘refactoring’ anywhere in their commit
messages. After establishing the understanding of the scope of
cleaning activities, we then sampled another 28 notebooks with
the same filtering strategy from the dataset of 20k notebooks
for producing our coding frame as described in the previous
section.

While looking for patterns in cleaning activities, we found
that notebooks are used for different purposes, and the clean-
ing activities varied correspondingly. Based on the previous
studies [1] and our initial observation of 28 notebooks about
their characteristics, we classified notebooks into one of three
groups — sharing notebooks, production notebooks, and per-
sonal notebooks, which we describe in the next section. Due
to this distinction, we determined that a uniformly random



sample was not suitable for understanding the cleaning ac-
tivities for different types of notebooks. Instead, we decided
to perform a stratified sampling strategy to collect additional
notebooks for analysis using our coding frame.

Thus in our analysis of cleaning activities for different
categories of notebooks, we sampled another 30 notebooks
from our 20k notebook dataset — 10 from each of the three
groups we identified.

C. Categorization of Notebooks

We describe the three different types of notebooks below.
We note that these three groups cover a wide variety of public
notebooks found on GitHub but we excluded some groups,
such as notebooks meant for class projects, which include
either a course-number (i.e. CS-100) or keywords such as
“project” or “class” in the title.

« Sharing Notebooks are notebooks that are created with
an intended purpose to be shared with others, including
the general public. Examples of sharing notebooks in-
clude ones to be submitted to competitions or to be used
as a part of software documentation, textbooks, or other
the training materials. Such notebooks are characterized
by extensive README files that communicate the pur-
pose of the project to others. These notebooks also tend
to have less comments but more markdown describing
the notebook on a high level.

« Production notebooks are those that are used to prepare
models that are meant to be integrated in some software
system either as library used by other developers or as
a product by end users. While in some cases, notebooks
may directly be executed in production pipelines [16]—
[18], more commonly notebooks are used for prototyping
and development before the code is migrated into a code
infrastructure for production use [19]. For example, a ma-
chine learning model may be served to end users through
a web interface or REST API, or may be integrated into
a product. We are interested in cleaning steps in such
projects, including those extra steps that happen when
migrating to production code, as shown in Figure 2.

« Personal Notebooks are notebooks that are used for data
exploration and modeling but without taking apparent
steps to share the notebook or to use it for production
settings. Even though they were published publicly, such
notebooks are often used as playgrounds and for explor-
ing ideas or learning concepts; it is harder to understand
the purpose of the code as an outsider. These notebooks
tend to have little documentation in markdown cells,
though code comments may still be common.

D. Sampling Each Type of Notebook

Similar with how we created the initial notebook dataset,
we first selected all notebook repositories from GitHub with
at least 10 commits to a notebook file and no changes in
18 month prior to our research. We then randomly sample
notebooks from this set and categorize them to one of the
three categories based on the criteria described below. We
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Fig. 2: Process of cleaning notebooks. A box represent a state of
a notebook or Python file. An arrow indicates a transition to a new
state.

repeat the sampling process until we retrieve ten notebooks
for each category.

We categorize a notebook as a sharing notebook if the
notebook is in a repository (1) that had at least 10 stars on
GitHub (i.e., it has received some public recognition), (2) that
had an extensive README file, and (3) that did not contain
Python files (so that we can exclude libraries and production
notebooks).

For production notebooks, we used clone detection tech-
niques to identify similar code snippets between notebook
and Python files that are included in the same repository.
Specifically, we looked for Type-3 clones, which are defined as
code where ‘one or more statements can be modified, added,
or removed.” [20] To find the code clones, we used a tool,
namely Nicad [21]. With multiple rounds of testing the best
modes on Nicad, we decided to detect the Type-3 clones with
at least 75% similarity between the code in a notebook file,
which we extracted using nbcovert [22], and the code in a
Python file.

To find personal notebooks, we searched for notebooks
that did not fall under the sharing or production notebook
category. As long as it was not used for a class project, which
we manually filtered out, it was a viable personal notebook.

Using ten notebooks from each group, we carefully looked
through the commit history to identify common cleaning qual-
ities following our coding frame. The result will be discussed
in Section III.

E. Limitations and Threats to Validity

Our design restricts us to the observations of changes
between consecutive commits submitted to GitHub. We cannot
study the small and individual changes to notebook cell as
they are performed by a data scientist because they can-
not be distinguished in commit history. While it would be
possible to collect more fine-grained history information in
a lab setting [23], we decided to analyze public histories,
which allowed us to sample from a much larger pool of data
science projects, to observe real-world projects developed over



Cleaning Activity Description

Deletion of comments or commented
out code (dead/unused code or com-
ments).

Adding comments to describe code
functionality or commenting out code
that may not work.

Change the order of cells without mod-
ifying their content.

Adding descriptions in headings and
titles to sections of the notebook as
markdown cells.

Change variables names that are more
meaningful and informative.

Splitting up cells of the notebook into
different files.

Wrapping specific functions within a
class for easy understanding and putting
blocks of code within functions.
Removing entire cells from the code.
The commit fixes minor issues within
the code.

Adding temporarily values that are to
be changed later. For instance, making
the “else” case branch do nothing for
the commit.

Deleting commented block

Adding commented block

Reordering cells

Adding markdown cells

Renaming variables
Splitting the notebook

Reorganizing into functions

and classes

Removing cells
Fixing typos in code

Adding temporary values

TABLE I: Finalized Coding Frame: Summary of the common
cleaning traits we noticed listed in order of most common to least
common.

extended periods, and to not influence the data scientists with
our observations as they are working on their projects.

A drawback of our study design is that it provides limited
insights into why certain cleaning steps were performed. Since
our observation is during the commit time, the context of the
cleaning activities, i.e. the newly developed code before it is
committed, has been lost.

While we invested significant effort to stratify our sample,
our sample size is relatively small and does not allow for
statistical generalization. Additionally, we may have missed
other kinds of notebooks not explicitly represented in our strata
which may exhibit different cleaning characteristics.

ITII. RESULTS AND OBSERVATIONS

In our stratified sample of 30 notebooks, we found seven
different cleaning activities that were frequently used, as
summarized in Table I.

The most common cleaning activity, which we saw in
twenty-eight out of the thirty notebooks, is deleting com-
mented blocks, which includes deleting comments as well
as deleting commented-out code. This activity has to do with
removing obsolete code and comments that describing the
code, where the data scientists may have found a better version
of a model so they can remove the sub-optimal one when
cleaning. The high frequency of the occurrence of this category
is an expected given the exploratory nature of data science
work where data scientists often try multiple alternatives
before settling on one [24] and the frequent use of copy-and-
paste during exploration [1].

The second most common cleaning activity, which we
observed in twenty-two out of the thirty notebooks, was

adding commented blocks. For instance, after writing all
the code, the data scientists may want to go back and add
textual comments describing the code to aid in readability.
This is also an expected behavior for programming in both
the traditional IDE and in notebook environment when the
developer elaborates on the rationales of their code for the
readers, either themselves or others.

The third most common cleaning activity was reordering
cells, which we saw in fifteen of the thirty notebooks. Since
notebooks can be executed in whatever order desired, it is
possible for the data scientists to write code sequentially, but
to run them in a different order [25]. This leads to the difficulty
of reproducing the result from a certain run of the notebook.
After finalizing the code, the developer will ideally reorder the
cells to explicitly communicate the intended execution order
of the cells.

The fourth most common cleaning activity that we observed
within twelve out of the thirty notebooks was adding mark-
down. We mostly observed changes to markdown in sharing
notebooks (and sometimes personal notebooks). However, the
markdown differs for each type of notebook. The markdown
in sharing notebooks are visibly directed to an audience — for
instance, the comments often describe how to use the code.
Whereas in personal notebooks, the comments describe what
each part of the code does.

Another cleaning activity we observed was renaming vari-
ables — in eight out of the thirty notebooks. Renaming vari-
ables has to do with naming variables with more meaningful
names in later commits, for instance, changing the variable
“x” to “numberOflterations”. This is also an expected cleaning
activity because it helps in readability and maintainability of
the code.

We observed the notebook being split into multiple Python
files during cleaning for production notebooks. This occurred
in seven out of ten production notebooks in our dataset. In the
production notebook repositories, there would typically be a
few notebooks in early commits, with a lot of uncleaned code.
But in later commits, Python files would emerge that contained
parts of the notebook code. It is likely that the developers
used the notebook for writing experimental code, and then
converted the notebooks to Python files for integration and
deployment purposes.

Finally, the last common quality we observed was reorga-
nizing code into functions and classes. We observed this
in four out of the thirty notebooks, and solely in production
notebooks. We show an example of a function being wrapped
in a class below. In an earlier commit, the notebook looked
like the following:

# In[1]:
#image to rotate
image = cv2.cvtColor (image,

cv2.COLOR_BGR2RGB)
#angleTest = 180
angleTest = 90
#rotating at an angle
image = ndimage.rotate (image,
print (image)
return image

angleTest)



After cleaning, the notebook code was moved over to a
Python file with the dead code deleted and the code is put
into functions to improve the readability and modularity.
def rotate_image (image) :

:param takes in an image to rotate
:return: image that has been rotated

mwn

image = cv2.cvtColor (image,
cv2.COLOR_BGR2RGB)

angleTest = 90

image = ndimage.rotate (image, angleTest)

return image

Moreover, there are cases where the entire code from the
notebook was placed within a class.

Additionally, we saw instances where the notebook was
directly converted to a Python file, but we omit these cases
in our study because they don’t indicate any explicit cleaning
effort. Instead, it was likely that the developer used tools such
as nbconvert to convert the notebook to a Python file.

Beyond general observations about cleaning steps across our
sample, we also found noticeable differences among different
kinds of notebooks. First of all, personal notebooks contained
substantially fewer cleaning activities. We found that com-
menting out code to be much more common than full removal
in these kind of notebooks. In many of these notebooks,
commented out code still persisted until the final commit,
suggesting that cleaning actions have not been conducted, pos-
sibly because the notebook was not intended to be consumed
by others. Although moving cells around was a common
cleaning trait amongst all groups of notebooks, we saw it more
often in personal notebooks. In contrast, the cleaning steps
in sharing notebooks mostly related to markdown changes,
which persisted much more than in other kinds of notebooks.
Also, another major difference we noticed was that in sharing
notebooks, the cleaning steps occurred much earlier in the
commit history as compared to the personal notebooks. This
could be due to the fact that the author had intended audiences
early on, so they wanted to ensure the readability of the
notebook constantly. In production notebooks, splitting code
into multiple files was particularly common during the code
migration step, as was naturally wrapping notebook code into
functions and classes. During migration it is also very common
to remove code and obsolete comments, while adding extra
documentation as code-level comments and reorganizing code
into Python files neatly. Production notebooks also often had a
descriptive README, except rather than describing the code
on a high level, it describes how to download or use some
potential tool (often the tool provided by the notebook code).

IV. DISCUSSION

From our exploration, we saw that depending on the purpose
of the notebook, cleaning steps are implemented differently.
For instance, if the notebook is meant to be distributed, it is

usually nicely formatted, easier to understand, and cleaning
happens earlier in the commits. If the notebook is meant to
be eventually turned into production code via Python, it is
messier but is eventually cleaned up in the Python code. These
notebooks are used as rough drafts for the Python files. If
the notebook is for personal exploration use, there is less
cleaning observed. In these notebooks, we also notice there
are less commits. From these observations, we can come up
with suggestions for cleanup tools. For instance, ideally, the
tool will allow the notebook user to identify the purpose of
the notebook, and support cleaning the notebook depending
on the type. The cleaning for personal notebooks can focus
more at the code level, with comments, and reordering cells
whereas the cleaning for sharing notebooks can focus more
on the comments, markdown, and overall understanding of the
code. Then for production notebooks, the cleaning can focus
on how to organize the notebook into a python file or multiple
python files.

V. RELATED WORK

Researchers have recently explored how developers use
notebooks [26]-[28] and what pain points they face [29],
emphasising a very iterative and exploratory workflow that
is often not well supported by current tools. Many of these
studies mention that developers routinely clean code after ex-
ploratory steps, but they did not analyze further what activities
notebook users engage with for cleaning, which was the goal
of this paper.

Several recent studies have analyzed public notebooks on
GitHub [14], [15], [28], [30], on Kaggle [13], and within
corporations [15], finding that many are not reproducible [14],
[31], contain redundant code [28], and use poor coding prac-
tices [32]. We are not aware of any longitudinal analyses of
individual notebooks.

Tool support for computational notebooks is constantly
evolving and recent versions support many more features
developers might expect from integrated development envi-
ronments, such as auto-completion and code navigation. In
addition, recent academics have developed tooling for specific
tasks, such as slicing the code used to reproduce a specific
figure or result [7], generating documentation [8], and code
synthesis [9]. We are hopeful that our results help inform fu-
ture tool support that can help with specific cleaning activities.

VI. CONCLUSION

From this qualitative study, we concluded that cleaning
occurs in most notebooks and is an iterative approach that
occurs throughout the project. We used a set of heuristics
and tools to collecting notebooks for different purposes and
analyzed the occurrence of various cleaning activities. Our
study suggested that in personal notebooks, cleaning occurs in
later commits, and they mostly involve moving cells around
or adding markdown. In notebooks that are meant for shar-
ing, cleaning occurs much earlier, and a lot of it has to
do with changing markdown by adding headers or editing
the README file. In production notebooks, cleaning occurs



mostly between the transition from notebook to a Python
file or within the Python file itself. Our work indicates that
the cleaning additives taken for the notebooks share certain
similarity with coding in traditional IDEs but also have distinct
need due to factors that are unique to notebooks, such as
the flexibility of cell execution order and the explicit role of
a markdown cell. Our work also illustrates the necessity of
effective notebook tools that should support cleaning activities
of notebooks with different purposes.
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