
Enforcing Fine-Grained Security and Privacy
Policies in an Ecosystem within an Ecosystem

Waqar Ahmad Joshua Sunshine
Christian Kaestner

School of Computer Science
Carnegie Mellon University, USA

Adam Wynne
Bosch Research and Technology Center, USA

Abstract
Smart home automation and IoT promise to bring many ad-
vantages but they also expose their users to certain secu-
rity and privacy vulnerabilities. For example, leaking the in-
formation about the absence of a person from home or the
medicine somebody is taking may have serious security and
privacy consequences for home users and potential legal im-
plications for providers of home automation and IoT plat-
forms. We envision that a new ecosystem within an existing
smartphone ecosystem will be a suitable platform for distri-
bution of apps for smart home and IoT devices. Android is
increasingly becoming a popular platform for smart home
and IoT devices and applications. Built-in security mecha-
nisms in ecosystems such as Android have limitations that
can be exploited by malicious apps to leak users’ sensitive
data to unintended recipients. For instance, Android enforces
that an app requires the Internet permission in order to ac-
cess a web server but it does not control which servers the
app talks to or what data it shares with other apps. Therefore,
sub-ecosystems that enforce additional fine-grained custom
policies on top of existing policies of the smartphone ecosys-
tems are necessary for smart home or IoT platforms. To this
end, we have built a tool that enforces additional policies
on inter-app interactions and permissions of Android apps.
We have done preliminary testing of our tool on three pro-
prietary apps developed by a future provider of a home au-
tomation platform. Our initial evaluation demonstrates that
it is possible to develop mechanisms that allow definition
and enforcement of custom security policies appropriate for
ecosystems of the like smart home automation and IoT.

Categories and Subject Descriptors D.2.11 [Software Ar-
chitectures]: Domain-specific architectures; D.2.4 [Soft-
ware/Program Verification]: Model checking; D.4.6 [Se-
curity and Protection]: Access controls

General Terms Security, Design

Keywords Ecosystem, app store, app, security, privacy,
fine-grained policies, home automation, Internet of things,
Android

1. Introduction
Smart phone platforms, such as Android, are increasingly
being used on a variety of smart devices in addition to mobile
phones and tablets. For instance, Android devices include
TVs, cameras, glasses, watches, headphones, DVD players,
video and game consoles [11]. Increasingly, Android is con-
sidered as platform for smart home automation and IoT de-
vices.

Smart home automation and IoT bring a lot advantages
but they also expose their users to security and privacy vul-
nerabilities. For instance, an app on a smart home device
may upload user’s private data on a server that may use the
data for unintended purposes. Such data leakage may result
in serious security and privacy threats for users as well as
serious legal implications for providers of the home automa-
tion and IoT platforms. Since smart devices may be running
a variety of apps developed by a variety of developers, it will
be necessary to sandbox the apps in order to ensure privacy
and security.

We envision that an ecosystem within a smartphone
ecosystem will be the platform for distributing apps for
smart home and IoT devices. Considering that smart home
and IoT apps will have access to user’s sensitive private data,
it is necessary to implement security and privacy policies in
order to avoid data leakage to unintended recipients. App
stores, such as Google Play, are primary source of apps for
smart phones and tablets only. Google Play defines certain
standard policies for apps that are uploaded on the store and
the Android platform offers permission system [4] in order



to restrict what an app can do. However, these mechanisms
are coarse grained; for instance, if an Android app has Inter-
net permission, it can share a user’s data with anyone without
any constraints. Moreover, apps can maliciously collaborate
to circumvent security mechanisms in order to transmit data
to unintended recipients [8–10].

In addition to the above mentioned security and pri-
vacy concerns, home automation and IoT platforms also
present their own security challenges. Home automation and
IoT apps are different from common smart phone apps be-
cause they interact with physical world and therefore, cyber-
security problems can easily become physical security prob-
lems (e.g., unlocked doors). Additionally, communication
between apps on different devices is necessary to enable
the full rich possibilities of home automation and IoT but
we don’t want this communication to be malicious. There-
fore, we propose an ecosystem that enforces additional fine-
grained policies on top of existing policies of the smartphone
ecosystems for smart home or IoT platforms. This will en-
able home automation and IoT platforms to customize ac-
cess of their resources to certain apps only with stricter per-
missions.

To this end, we have designed a tool that relies on static
and dynamic analysis techniques to extract inter-app inter-
actions and permissions from Android apps and filters the
apps that do not comply with some pre-defined policies. We
have tested our tool on three proprietary apps developed by a
provider of an under development home automation ecosys-
tem. Our initial evaluation demonstrates that it is possible to
develop mechanisms that allow definition and enforcement
of custom security policies appropriate for ecosystems of the
like smart home automation. Moreover, such a tool can be
integrated with the ecosystem for automatic enforcement of
desired policies. Following are our specific contributions:

• We propose the idea of ”an ecosystem within an ecosys-
tem”, wherein fine-grained security and privacy policies
are enforced in the ecosystem within the main ecosystem.

• We build a tool that statically extracts inter-app interac-
tions and permissions from Android apps and filters the
apps that do not comply with pre-defined policies.

• We perform a preliminary evaluation of our concept on
three real Android apps developed by a provider of a
home automation ecosystem. The tool serves as proof
of concept for definition and enforcement of fine-grained
security and privacy policies appropriate for ecosystems
of the like smart home automation.

In the future, we plan to develop mechanisms for defini-
tion of fine-grained security and privacy policies and build
more sophisticated static and dynamic analysis techniques
to enforce more security and privacy properties for apps of
home automation and IoT ecosystems.

Figure 1. The Alarm Clock app needs Internet permission
for downloading weather data and needs to talk to Traffic
and Calendar apps for schedule and traffic information.

2. Problem Statement
Smart home devices often run on general purpose software
platforms such as standard or custom versions of Android.
These platforms provide built-in security mechanisms that
are generally coarse-grained and do not enforce fine-grained
security and privacy policies specific to platforms such as
home automation and IoT.

Android provides inter-app interaction mechanisms (hence-
forth ”inter-app APIs”) that enable apps to interact with each
other and exchange data during such interactions. Moreover,
Android apps can communicate with outside world using a
variety of APIs such as HTTP and SMS APIs. Android has a
built-in security system that enforces certain restrictions on
apps. For instance, Android’s security system controls ac-
cess to resources such as the Internet and user’s private data
(e.g., contacts) by requiring an app to declare permissions
for the resources it needs. Moreover, apps may define their
own permissions and thus restrict how they expose their own
functionality. App users need to approve these permissions
at the time of installation. However, this security system has
limitations in the sense that if an app has certain permissions
to perform some actions, there are no further constraints on
how that app uses those permissions. As a result, Android
apps having restricted permissions can maliciously collabo-
rate through inter-app APIs in order to circumvent the An-
droid security framework [8–10]. Therefore, two aspects,
i.e., an app’s permissions and its inter-app interactions are
important characteristics of an app to analyze its security
and privacy loopholes.

Security and privacy for home automation and IoT plat-
forms is of critical importance. In order to explain their sig-
nificance, we present here a scenario. Imagine an Alarm



Clock app, provided by an untrusted third party, installed
on a smart phone device connected to a home automation
system (see Figure 1). The app rings the alarm to wake up
the user and switches on the lights but only when the user is
at home. In order to make intelligent decisions about when
to ring the alarm, the Alarm Clock app makes adjustments
based on the user’s schedule and the weather and the traffic
conditions. Therefore, the Alarm Clock app communicates
with a Calendar and a Traffic app on the smart phone device
to access the user’s schedule and the traffic information re-
spectively, and connects with an online web service to down-
load the weather data.

The above example presents a simple case in the con-
text of broad and complex home automation ecosystems that
have started to appear or being envisioned for the future.
This system has obvious great benefits. However, there are
some security and privacy pitfalls associated with it. The
system has access to private data of the person at home,
which can be used for malicious purposes. For instance, the
app knows whether a user is at home; if this information is
leaked, it may instigate an intruder to perform a burglary at
a suitable time. The app has also access to the users’ daily
schedules, which is private information that users may want
to share with only a limited number of people in their cir-
cles. Moreover, the Alarm Clock app connects to the Internet
for accessing weather data, where it can easily leak this in-
formation to unintended recipients. Additionally, the Alarm
Clock app may not be doing anything that appears to be ma-
licious, but it may still be passing the user’s private data to
the Traffic app (some third party app) which then forwards
the information to malicious recipients.

The current Android security framework does not address
such security and privacy issues. For instance, the Android
app in the example above that downloads weather data from
a web service needs the Internet permission. The Android
platform only enforces whether the app has the Internet
permission and does not check how the app uses it [4].
Therefore, the very app that has got the Internet permission
for legitimate reasons, may misuse it to leak user’s private
data, resulting in security and privacy threats to the user.
There may also be other apps (e.g., the Traffic app) with
whom the Alarm Clock app can share user’s private data and
Android does not perform any checks on what data is being
exchanged across apps. Moreover, there could be a variety of
smart Alarm Clock apps with different features available in
an ecosystem for users to choose from and there may not be
any straightforward mechanisms to know which of the those
apps are malicious.

Therefore, additional mechanisms are required in order to
address potential security and privacy threats arising specif-
ically due to nature of home automation and IoT platforms.
We envision that there will be a home automation ecosystem
inside the Android ecosystem with stricter and more fine-
grained policies. We propose to build mechanisms for defin-

ing fine-grained security and privacy policies written by the
home automation ecosystem provider and develop static and
dynamic analysis techniques that guarantee enforcement of
those policies. This will empower the ecosystem owners to
define and enforce policies instead of leaving security and
privacy in the hands of app developers and deliver only cer-
tified apps to home automation and IoT devices from their
app stores.

We have chosen Android for our further research and
development because it is increasingly becoming popular
platform for smart home devices, in addition to phones and
tablets [11]. Moreover, instead of building a solution from
scratch, we plan to reuse existing security framework of
Android and build our solution on top of it, and this will also
let users to install all kinds of Android apps in addition to
those available from IoT and home automation ecosystems
only.

3. Proposed Solution
We propose a design for an ecosystem for home automation
and IoT platforms within the broad Android ecosystem. Fig-
ure 2 provides a high level view of the proposed solution.
The left hand side in the Figure 2 gives the home automa-
tion and IoT app store view and the right hand side gives the
runtime view of an app on a smart phone device.

All apps for the home automation or IoT ecosystem are
installed from its own app store, which follows stricter se-
curity and privacy policies defined by the home automation
or IoT ecosystem provider. The home automation or IoT
ecosystem policies will typically disallow access to security
and privacy sensitive Android APIs (e.g. HTTP APIs) by re-
stricting an app’s permissions. The policies are enforced par-
tially at the home automation or IoT app store using static
analysis techniques and partially at a smart home device us-
ing dynamic checking of runtime behavior of an app. Only
the apps that comply with home automation or IoT ecosys-
tem policies are published on the IoT app store. Moreover,
only an app that has been downloaded from the home au-
tomation or IoT app store gets access to the home automa-
tion and IoT Framework APIs; this is enforced using the app
signing mechanism available in the Android.

Protected versions of the sensitive APIs are made avail-
able through alternative home automation and IoT Frame-
work APIs (e.g. IoT HTTP APIs) with dynamic enforcement
of ecosystem policies. For instance, if an app needs to access
the Internet, instead of using the Android HTTP APIs, it uses
the HTTP APIs provided by the home automation and IoT
Framework that restricts, at runtime, the websites that can
be accessed or the data that can be exchanged with the web
server. Any direct attempt to access Android’s sensitive APIs
by an app is rejected by the Android operating system be-
cause the app does not have required permissions. A coarse-
grained policy such as the Android Internet permission does
not define constraints such as the websites an app is allowed



Figure 2. On the left hand side are the apps published on the main app store and the apps on the home automation or IoT app
store On the right hand side is a smart phone device where the Alarm Clock app, downloaded from home automation app store,
is installed. As an app on home automation platform, it is not allowed to access sensitive APIs but it can use alternative APIs
provided by the home automation and IoT Framework.

to talk to or the data it is allowed to upload or download. A
fine-grained policy, on the other hand, additionally specifies
the websites and data constraints e.g., URLs that an app is
allowed to access. These fine-grained constraints are dynam-
ically enforced by the home automation and IoT framework.

The interaction of a home automation and IoT app with
other apps is also restricted. An app is allowed to communi-
cate either with other apps from home automation and IoT
ecosystem or with a whitelist of trusted apps. Some apps
(e.g., a Calendar app from a trustworthy developer) may
not be in the home automation and IoT ecosystem but are
whitelisted because they are known to be not malicious. This
is enforced by requiring apps to use only the explicit intents
for inter-app interactions and is checked statically at the app
store level.

The left hand side in Figure 2 illustrates the idea of a sub-
ecosystem within another ecosystem for our running exam-
ple. A subset of the apps filtered through stricter security
policies has been published on home automation app store.
On the right hand side in the Figure 2 is a smart phone de-
vice (e.g., an Android device) where the Alarm Clock app
(the example App discussed earlier) has been installed from
the home automation app store. As an app on the home au-
tomation platform, it is not allowed to directly access sen-
sitive Android APIs (e.g., HTTP APIs) and sensitive home
information (e.g., if user is at home). In order to access such
information, it is, however, allowed to communicate with the
home automation and IoT framework APIs that dynamically
check the data being exchanged. The Alarm Clock app can
communicate with whitelisted apps (e.g. Calendar app) but
is not allowed to talk to untrusted apps (e.g. the Traffic app).



In order to enable access of the traffic information to home
automation and IoT apps, either a traffic app within home
automation and IoT ecosystem is needed or an app from out-
side the ecosystem needs to be whitelisted.

The prototype tool that we have developed implements
the proposed solution in the following way:

• Restrict an app to a limited whitelist of permissions or no
permissions at all.

• Restrict an app to a limited whitelist of other apps with
whom they can interact explicitly.

• Enable an app to access privileged resources, if required,
only through APIs provided by home automation ecosys-
tem framework.

4. Current Work
In order to realize our vision of fine-grained policy defini-
tions and enforcement in home automation and IoT ecosys-
tems, we have started building necessary tools and technolo-
gies. So far, we have built a tool that extracts inter-app in-
teractions and permissions from Android apps and filters the
apps that do not comply with some pre-defined policies. The
tool serves as a prototype for privacy and security policy def-
inition and enforcement in home automation and IoT plat-
forms.

Our current tool has two modules. One module is repos-
itory of policies. The other module comprises of programs
that statically analyze Android apps in order to check if they
comply with predefined policies and report violations, if any.
The current tool has support for the definition and enforce-
ment of two types of policies, i.e., permissions whitelist and
inter-app components whitelist.

The Permissions whitelist policy defines a list of permis-
sions that are considered safe and therefore, apps are permit-
ted to have them. Users of the tool can define a whitelist of
permissions in a configuration file. Our static analysis tool
identifies the apps that have permissions other than those de-
fined in the whitelist of permissions. A provider of the home
automation or IoT ecosystem can use this tool to statically
enforce this policy at its app store. At runtime, this policy is
enforced by the Android platform by disallowing an app to
access any APIs for which it has not declared permissions in
its manifest file.

The Inter-app components whitelist policy defines a list
of Android components (i.e., components that exist in other
apps) that are considered safe and therefore, apps are permit-
ted to communicate with them using the Android inter-app
APIs. Users of our tool can define a whitelist of third party
app components. Our static analysis tool extracts inter-app
interactions, i.e., which other apps an app may communicate
with and what data may be exchanged. If extracted inter-
app components do not exist within the current app or in the
whitelist of components or cannot be statically determined,
violations are reported. In order to control malicious data

flows from one app to another, an ecosystem provider may
want to restrict apps to communicate with only a predefined
whitelist of apps. This feature can help ecosystem providers
achieve this goal.

There are many ways inter-app interactions may occur
in Android. For instance, inter-app APIs, content providers,
shared preferences etc. In current work, we have focused
on inter-app APIs. There are a variety of methods in inter-
app APIs such as various overloaded versions of startActiv-
ity, startService, bindService, and sendBroadcast. Our static
analysis tool targets these methods and extracts data being
exchanged. Parameters that are exchanged across apps are
generally passed as instances of the Android class Intent.
We keep track of values of data members of interest (i.e.,
context and class) in Intent instances. Moreover, since In-
tent instances may be modified using a number of methods
in the Intent class, we maintain side-effects of each relevant
method of the Intent class in a file. Method side-effects refer
to the data members affected by a method call and how those
data member are affected (added, overwritten).

In order to extract inter-app interactions, we have imple-
mented our static analysis tool as an intra-procedural data
flow analysis program using the frameworks soot [2] and
FlowDroid [1]. We use FlowDroid [1] to build an app’s
call graph that respects the Android lifecycle and then use
the soot framework [2] to perform data flow analysis. In
Android, inter-app interactions may be implicit or explicit.
There is no straightforward mechanism to know which other
apps an app can communicate using implicit intents. There-
fore, we enforce that only explicit intents are used by an
app. We extract following data of an Intent instance being
passed to an inter-app API function: context and class. In an
explicit Intent call, context and class uniquely identify the
target component of an inter-app call. We perform conserva-
tive data flow analysis of Android apps. We keep track all
the intent instances that may possibly be passed to an inter-
app API function and if on any program flow, we are unable
to extract the target app of inter-app call, we report the app
as insecure. This might result in some false negatives but it
does ensure that only the trusted apps pass through the pol-
icy enforcement and are published on home automation or
IoT app store.

In order to ensure future extensibility of our tool, we have
made following configurable:

• List of methods of interest in Android inter-app APIs
(e.g. startActivity, startService, bindService etc.)

• Proprietary APIs. Apps may use some APIs that are
trusted by a home automation/IoT ecosystem provider.
An ecosystem provider may list such API methods here.

The current tool is in a prototype state and serves as a
proof of concept for our broad vision. In the future, we
plan to extend this tool with fine-grained policies that can
be checked statically at app store and enforced dynami-



cally at smart home devices. We may also use or extend
existing tools such as Epicc[9], FlowDroid[1], IC3[10], and
DroidSafe[5]. Though these tools have purposes different
from ours, they can be used to extract useful information
(e.g., inter-app parameters) about apps.

5. Related Work
Our work is related to existing work in static and dynamic
information flow analysis. There are quite a few tools that
perform static information flow analysis of an Android app
from a variety of perspectives. FlowDroid [1] is a static
taint-analysis tool that models the Android lifecycle meth-
ods and callbacks in order to extract information about data
that flows from a source (e.g. location APIs) to a sink (e.g.
SMS APIs) within an Android app. Epicc [9], IccTa [8], IC3
[10], and DroidSafe [5] perform information flow analysis of
Android apps from inter-component or inter-app interaction
perspectives. While aforementioned tools provide a variety
of useful information such as what data may potentially be
exchanged using Android APIs and in inter-component or
inter-app interactions, they do not define a way to distinguish
between malicious and non-malicious data exchanges. Our
strategy, on the other hand, is to take a step further by dis-
tinguishing between trusted and untrusted apps. We plan to
achieve this by defining security policies and enforcing them
at app store of the ecosystem provider through static analy-
sis techniques and at smart home devices through dynamic
techniques.

There is also some related work in the domain of dynamic
information flow analysis. Fragkaki et al. suggest a frame-
work for formally analyzing permission system in Android
and provide mechanisms to modify existing Android permis-
sions system to support rich security policies [3]. Jia et al.
proposes mechanisms for defining and enforcing informa-
tion flow policies for Android apps [6]. Their perspective,
however, is different from ours. While they suggest mak-
ing changes in existing security system of the Android plat-
form in order to enable developers define fine-grained per-
missions, we focus on detecting permission misuse by apps
by letting ecosystem providers define and enforce security
and privacy policies and restrict app developers to a whitelist
of safe permissions and inter-app interactions without any
modifications in the Android.

NaCl [12] combines static and dynamic techniques to en-
sure secure execution of untrusted x86 native code in a web
browser. NaCl validator statically analyses code to make
sure that it only uses code and data patterns that are safe
and NaCl sandbox serves as a runtime check. Our approach,
however, is to restrict apps to a whitelist of permissions and
inter-app interactions and force them to go though a frame-
work provided by ecosystem provider for accessing privi-
leged data and APIs at runtime.

6. Conclusion and Future Work
Smart home automation and IoT promise to bring a lot ad-
vantages but they also expose their users to certain security
and privacy vulnerabilities. We envision that an ecosystem
within broad smartphone ecosystem will be the platform for
distribution of apps for smart home and IoT devices. Such
a sub-ecosystems can enforce additional fine-grained cus-
tom policies on top of existing policies of the smartphone
ecosystems. In this paper, we have explained the importance
of security and privacy in home automation and IoT plat-
forms and proposed a solution to enforce custom security
and privacy policies. We have also built a prototype tool to
demonstrate that it is possible to develop mechanisms that
allow definition and enforcement of custom security poli-
cies appropriate for ecosystems of the like smart home au-
tomation and IoT. In the future, we plan to develop addi-
tional mechanisms for definition of fine-grained security and
privacy policies and build more sophisticated static and dy-
namic analysis techniques to enforce those policies. As part
of the custom policy definition, we intend to work on cre-
ation of a policy language that makes definition of sophisti-
cated fine-grained policies possible.

Acknowledgments
We are thankful to Dr. Jonathan Aldrich for his continuous
guidance throughout this research work.
This paper is based on the work supported by Stevens Grant
No. 33649.1.1042344 and Bosch Research and Technology
Center North America.

References
[1] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,

Y. L. Traon, D. Octeau, and P. McDaniel. Flowdroid: Precise
context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. In Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 14, New York, NY, USA, pages 259–
269, 2014.

[2] A. Einarsson and J. D. Nielsen. A survivor’s guide to java
program analysis with soot. page http://www.brics.dk/

SootGuide/sootsurvivorsguide.pdf, 2008.

[3] E. Fragkaki, L. Bauer, L. Jia, and D. Swasey. Modeling and
enhancing android’s permission system. Computer Security,
ESORICS 2012: 17th European Symposium on Research in
Computer Security, 7459 of Lecture Notes in Computer Sci-
ence:1–18, 2012.

[4] GoogleAndroid. System permissions. Android De-
veloper Guide, page http://developer.android.com/

guide/topics/security/permissions.html, 2015.

[5] M. Gordon, D. Kim, J. Perkinsa, L. Gilhamy, N. Nguyen, and
M. Rinard. Information-flow analysis of android applications
in droidsafe. Proc. of the Network and Distributed System
Security Symposium (NDSS), The Internet Society, 2015.

http://www.brics.dk/SootGuide/sootsurvivorsguide.pdf
http://www.brics.dk/SootGuide/sootsurvivorsguide.pdf
http://developer.android.com/guide/topics/security/permissions.html
http://developer.android.com/guide/topics/security/permissions.html


[6] L. Jia, J. Aljuraidan, E. Fragkaki, L. Bauer, M. Stroucken,
K. Fukushima, S. Kiyomoto, and Y. Miyake. Run-time en-
forcement of information-flow properties on android. Com-
puter Security, ESORICS 2013: 18th European Symposium on
Research in Computer Security, pages 775–792, 2013.

[7] W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer. An-
droid taint flow analysis for app sets. Proceedings of the 3rd
ACM SIGPLAN International Workshop on the State of the Art
in Java Program Analysis, 2014.

[8] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. L. Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, , and P. Mcdaniel. Ic-
cta: Detecting inter-component privacy leaks in android apps.
Proceedings of the 37th International Conference on Software
Engineering (ICSE 2015), 2015.

[9] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein,
and Y. L. Traon. Effective inter-component communication
mapping in android with epicc: An essential step towards
holistic security analysis. Proceedings of the 22Nd USENIX
Conference on Security, SEC’13, Berkeley, CA, USA, pages
543–558, 2013.

[10] D. Octeau, D. Luchaup, M. Dering, S. Jha, , and P. McDaniel.
Composite constant propagation: Application to android inter-
component communication analysis. Proceedings of the 37th
International Conference on Software Engineering (ICSE),
2015.

[11] Wikipedia. Android (operating system). page https://en.

wikipedia.org/wiki/Android_(operating_system),
2015.

[12] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar. Native client: A sand-
box for portable, untrusted x86 native code. IEEE Symposium
on Security and Privacy, 2009.

https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/Android_(operating_system)

	Introduction
	Problem Statement
	Proposed Solution
	Current Work
	Related Work
	Conclusion and Future Work

