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SUMMARY

Transparent environments and social-coding platforms as GitHub help developers to stay abreast of changes
during the development and maintenance phase of a project. Especially, notification feeds can help developers
to learn about relevant changes in other projects. Unfortunately, transparent environments can quickly
overwhelm developers with too many notifications, such that they loose the important ones in a sea of
noise. Complementing existing prioritization and filtering strategies based on binary compatibility and code
ownership, we develop an anomaly-detection mechanism to identify unusual commits in a repository, that
stand out with respect to other changes in the same repository or by the same developer. Among others, we
detect exceptionally large commits, commits at unusual times, and commits touching rarely changed file
types given the characteristics of a particular repository or developer. We automatically flag unusual commits
on GitHub through a browser plugin. In an interactive survey with 173 active GitHub users, rating commits
in a project of their interest, we found that, though our unusual score is only a weak predictor of whether
developers want to be notified about a commit, information about unusual characteristics of a commit change
how developers regard commits. Our anomaly-detection mechanism is a building block for scaling transparent

environments. Copyright ©) 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Collaborative development in open source, software ecosystems, and also industrial software systems
relies increasingly on decentralized decision making [[17,[20}27,/41]]. Interdependent components
evolve independently and often with little explicit collaboration. Backward-incompatible changes
that break modularity and produce rippling effects on downstream components are often necessary to
avoid opportunity costs (not fixing mistakes, stifling change in the face of evolving requirements) and
common in practice [[10L14}/19}25}129,35|/38H40L43}/47]]. In addition, components may change to add
new functionality that developers might want to adopt. Identifying relevant changes and reacting to
them if needed can create a significant burden on developers during maintenance [3}4}6124,[35/42./47]].

Seeds of a solution can be found in today’s transparent environments or social-coding platforms
such as GitHub, LaunchPad, and Bitbucket. These environments provide mechanisms for notification
and exploration, that help developers to stay abreast of activities across collections of projects
without central planning [11}{12]]. For example, on GitHub, developers can watch projects and receive
a notification feed of activities in watched projects, such as push events or bug reports. These tools
work well at small scales, but break down for large projects where imprecise and insufficiently rich
notification mechanisms lead to information overload from notification cluttering. By inspecting
publicly available events on GitHub, we found that active developers typically receive dozens of
public event notifications a day and a single active project can produce over 100 notifications per
day (and many more when including notifications of indirect dependencies). When we previously
interviewed active GitHub users, many reported drowning in change notifications, for example
stating “I stopped with the email — now I use the GitHub notifications page. And the volume is a
problem” and “I just wander through GitHub activity streams occasionally. [But] it is very much

a crap shoot to actually get useful information from the feed” |3, 11].
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A key to scale transparent environments is to identify relevant notifications and route them to
affected or interested developers. There are many possible reasons why a change might be relevant
for a developer, including the following explored in prior work:

o Identify breaking changes: Typically most changes are backward compatible. Notifications
about the rare breaking changes are of especial importance to maintainers of affected
downstream projects. Continuous integration platforms can help to highlight changes that
break the system. In addition, Holmes and Walker designed a system that statically detects
certain incompatible interface changes in Java to filter notifications correspondingly [24].

o Identify critical fixes to vulnerabilities: Patched vulnerabilities in upstream projects are typically
of high importance to update the dependency to a newer version. The service Gemnasium
tracks dependencies among Ruby packages and notifies registered package maintainers if an
upstream dependency has a known vulnerability (CVE). In addition, several simple heuristics
and learning approaches can identify bug fixing commits [221|55].

o [dentify relevance based on prior activity: In large code bases, developers may be interested
only in notifications about code that relates to their own activities, such as notifications
about changes in code that they have written. Padhye et al. model relevance based on simple
heuristics regarding prior modifications, code ownership, and commit messages to similarly
reduce information overload [42]].

In this paper, we explore a different, complementary strategy to identify another class of relevant
notifications:

o [dentify unusual changes: We identify changes that are unusual or stand out with respect to
other changes in the repository. For example, commits that are particularly large, changes to
artifacts in a programming language not commonly used in the project or by that developer, or
changes with exceptionally long commit messages might be worth noting. We developed an
programming-language-independent anomaly detection mechanism that identifies outliers with

regard to other changes in the same repository or other changes by the same developer.
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We detect outliers using statistical models capturing common characteristics of commits within a
project or by a developer. Based on those models, we provide an anomaly score for each commit. The
anomaly score can be used to prioritize and filter notification feeds, in concert with other detection
approaches, such as detecting breaking changes. In addition, anomaly scores can highlight unusual
commits in the revision history to support exploration and inspection and to point out unusual
characteristics during code reviews to focus the reviewer’s attention. We implemented a prototype
of our anomaly detection mechanism and provide a frontend through a browser plugin that injects
anomaly scores, including an explanation, into the commit history on GitHub pages.

In an evaluation, we analyze to what degree our model can predict changes developers will identify
as unusual and to what degree we can identify commits about which developers want to be notified.
We design an online survey with which participants rated commits in a repository of their choice. In
each selected repository, we select five random commits with different anomaly scores (stratified
sampling) and ask participants whether they judge the commit as unusual and whether they would
want to be notified. We found that our unusual score only weakly reflects our participants’ notion
of unusualness and is also only a weak predictor of whether developers want to be notified (to be
expected as we capture only a subset of characteristics of important commits), but we also found
that information about unusual characteristics about commits are actionable. When provided with
additional information about why a commit is a statistical outlier, participants often revisited their
position and identified commits as relevant for a notification.

Overall, we make the following contributions: (1) We design an anomaly model based on commit
characteristics to identify unusual commits in a repository and by a developer. (2) We tailor statistical
learning methods to build such models for Git repositories. (3) We integrate anomaly scores and
explanations into the GitHub web page using an implementation based on a browser plugin. (4) We
design an experimental setup to learn about the importance of unusual commits in a repository of the
participant’s choice. (5) We evaluate our anomaly model with 173 GitHub developers, showing that

despite weak predictive power, information about statistical outliers is actionable.
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2. INDICATORS FOR IMPORTANT COMMITS

There are many reasons why a commit might be considered ‘unusual’ or important. In this work,
we refer to commits as unusual if they are statistical outliers according to some criteria, such
as commits that are substantially larger or were committed at an unconventional time of day. We
intentionally used a broad and subjective term to cover a wide range of different outlier characteristics.
Our mechanism is flexible enough to incorporate additional characteristics and select and weigh
characteristics depending on developer preferences.

As part of a presurvey of our evaluation, which includes demographic questions about the
participants’ experience and knowledge about the selected repository, we asked our participants
(professional and academic GitHub users, see Sec. ] for details) two open questions:

o Some commits stand out among all commits in a repository. What characteristics make commits
stand out?
o What kind of commits do you usually pay attention to?
With both questions, we elicit commit characteristics that developers use to distinguish important
commits from unimportant ones.

Among our participants, the following indicators for important commits were very commonly
mentioned (at least by 30 developers):

o Commits that introduce new features (often associated with feature requests); for example, one

1

participant claimed interest in “commits that adds nice features to the project.”

o Commits that signify major development steps, usually related to merging, milestones, and
releases.

e Commits that are large in size (in terms of lines of code or files changed); for example, one
participant wrote that changes stand out if they include “extensive changes, lots of churn.”

e Commits that fix bugs or security issues.

e Commits that change code about which the developers have particular knowledge or that could

affect their current tasks (code ownership, dependencies).
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e Commits with poor (nondescript, short) or overly complicated commit messages; for example,
one participant expressed to pay particular attention to “commits that have very detailed
commit messages.”

Many developers (at least 10) also mentioned the following indicators:

o Commits with lengthy and controversial discussions, including discussions on GitHub, in
mailing lists, on IRC, and on social-media sites.

e Commits that perform major restructuring of systems or subsystems such as major shifts in
an API, modifications to core functionality or abstractions, or changes affecting platform
integration.

e Commits that are contributed by developers outside the regular team members or by
inexperienced developers; in this case, the major concern is with the quality of the commit and,
consequently, with the longevity of the project; for example, one participant expressed “I look
at the author, lines changed and description, in that order.”

o Commits that break code, as identified by continuous integration tooling.

Other, but less frequent answers included:

e Commits addressing non-functional properties such as performance.

e Commits that affect essential project dependencies, potentially breaking compatibility.

o Commits made by the owner of the repository.

e Commits that use specific label, tags, or prefixes in their messages.

Overall, we can see that the reasons for paying closer attention to commits can vary widely.
Several facets can be addressed with simple checks (e.g., highlighting merge commits, identifying
keywords in commit messages, counting comments on GitHub); others have already been addressed
by alternative strategies (bug fixes, code ownership, breaking changes); but many indicators align
well also with our strategy of modeling statistical outliers regarding commit characteristics, making
it worth exploring those as a complementary detection mechanism. One can directly or indirectly

relate statistical outliers to some of the indicators given by developers: for example, large commits
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Figure 1. Commit sizes in lines of changed code in the node.js repository: (a) Histogram, (b) empirical and

fitted cummulative distribution functions

(indicating also new features [23] or major restructuring), commits with short or long commit

messages, changes in rarely changed files, and changes untypical for a developer.

3. DETECTING UNUSUAL COMMITS

3.1. Overview

We detect unusual commits as statistical outliers regarding various commit characteristics. That is, we
compare characteristics of a specific commit to common characteristics of other commits in the same
project or by the same developer. We build on a large body of work on anomaly detection [9}{15/{31,44],
typically used for detecting inconsistent inputs, detecting credit-card fraud, and similar tasks.
Specifically, we build profiles that characterize statistical distributions of various commit
characteristics (metrics). We learn concrete profiles from past commits and use the profiles to
calculate an anomaly score for a new commit that describes how representative the commit is with
regard to that profile. For example, we build a profile that describes the size of all past commits
in a project (measured in lines of code), as the one for node.js shown in Figure [Ip — from that
distribution, we can learn that a commit with 500 changed lines of code is larger than 92 percent of
all previous commits. We normalize and aggregate the anomaly scores from multiple profiles for
various characteristics and derive an overall anomaly indicator. For each individual anomaly score,
we can provide an explanation for why a commit receives a high score as exemplified in Figure 2]
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v8: don't busy loop in cpu profiler thread

Reduce the overhead of the CPU profiler by replacing sched_yield() with
nanosleep() in V8's tick event processor thread. The former only yields
the CPU when there is another process scheduled on the same CPU.

Before this commit, the thread would effectively busy loop and consume
100% CPU time. By forcing a one nanosecond sleep period rounded up to
the task scheduler's granularity (about 5@ us on Linux), CPU usage for
the processor thread now hovers around 10-20% for a busy application.
PR-URL: https://github.com/joyent/node/pull/8789

Ref: https://github.com/strongloop/strong-agent/issues/3
Reviewed-by: Trevor Norris <trev.norris@gmail.com>

b

bnoordhuis authored on 2014-11-27 1 parent fe20196 commit 6ebd85e10535dfaa9181842fe73834e51d4d3e6c

Show Details

Use "Show details" button to show commit details.

ADDITIONAL INFORMATION FOR THIS COMMIT

« Changes were commited at 6am UTC -- bnoordhuis rarely commits around that time. (fewer than 0.7% of all
commits by bnoordhuis are around that time)

« .gyp files were changed -- such files are rarely changed in this repository. (fewer than 2% of all file types changed)
« .cc and .gyp files were changed in the same commit -- this combination of files is rarely changed together. (in
fewer than 2% of all commits)

« .cc and .gyp files were changed in the same commit -- this combination of files is rarely changed together by
bnoordhuis. (in fewer than 3% of all commits by bnoordhuis)

« .gyp files were changed -- such files are rarely changed by bnoordhuis. (fewer than 3% of all file types changed by
bnoordhuis)

Figure 2. Node.js commit with textual explanation about its unusualness

Based on the use case, we then rank the commits within a time frame by their anomaly indicator, filter
commiits in a notification feed with a given threshold, or merely show the indicator and explanation
to developers.

In the following, we describe the analyzed characteristics, as well as the modeling and learning
approaches used to build statistical models for these characteristics, and the derivation and aggregation

of anomaly scores.

3.2. Commit Characteristics (Metrics)

While the measured commit characteristics can easily be extended, we selected 10 initial easy to
measure characteristics regarding size of the change, size of the commit message, time committed,
and changed file types. We summarize all measured commit characteristics in Figure[l]

Copyright © 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)

Prepared using smrauth.cls DOI: 10.1002/smr



Size of the commit Size of the commit message
Lines of code added Length of the commit message (in words)
Lines of code removed Time

Lines of code added or removed (sum) Time of day of the commit (hours since midnight/UTC)

Number of files added File types changed
Number of files removed List of file types changed (file extensions)

Number of files changed per file type

Table I. Commits characteristics

Size metrics measure the size of a change (a) in terms of added or removed lines, according to
a text-based diff between the two revisions, and (b) in terms of files added, removed, or changed.
Renamed files are considered both as removed or added in our current implementation. We use these
simple size metrics, because very large commits tend to stand out as also indicated by participants in
our study. Furthermore, Hindle et al. found in a manual investigation of commits that large commits
tend to perform rare architectural changes and tend to signify perfective rather than corrective
changes [23]]. We specifically distinguish between adding and removing code, as they cover different
change scenarios (e.g., new feature or cleanup) that may be more or less representative of change
in a repository or by a developer.

We measure the size of the commit message in words. Our intuition is that exceptionally long
commit messages tend to explain non-routine commits. At the same time, in projects with strong
commit message discipline, short or missing messages may be considered as outliers.

We measure the time of day of a commit to detect commits at an unusual time (for that developer
or that project). This might, for example, identify unusual late-night commits for a developer with
regular working hours, which could be an indicator for an urgent change or a change under time
pressure. Since we compare the times only against other commits by the same developer or in the
same repository but not against external policies or expectations, we can ignore time zones and
simply measure the time since midnight in UTC.

Finally, we track the types of files changed (as detected by their file extension) and the number
of files changed per type in a commit. The intuition is that commits may change files of types that
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are rare in that repository (such as .c files in a project focused on JavaScript) or that are rarely ever
changed (such as license files). Similarly, for a developer typically working on .html and .css files, a
change to the Java part of the repository might be unusual. We build profiles both with regards to the
distribution of file types in the repository and the absolute and relative distribution of file types in

typical commits.

3.3. Profiles

For each of the metrics described in Table El, we build one or more profiles. For most metrics, we
build a profile per project and a profile per developerm We skip developer profiles if the number
of prior commits by that developers does not exceed a configurable threshold (set to 20 in our
evaluation). Depending on the commit characteristics and their typical distributions, we use different

kinds of statistical models with different learning and detection steps, as we will explain next.

Size-Based Profiles. Sizes of commits and commit messages tend to follow a long-tail distribution
with most commits being fairly short and only few very large commits. For example, we show the
distribution of commits in the node.js repository in Figure[I] As most commits are short, we only
detect anomalies at the long end of the distribution. We sampled over 100 popular GitHub repositories
and, after our evaluation, we also checked the commit sizes of the 173 repositories we investigated,
confirming that all follow such long-tail distribution.

Given a learning set of commits, a simple profile could consist of an empirical cumulative
distribution function (ecdf) that computes which percentage of commits is smaller than a given
commit. We could then consider a commit larger than, say, 95 percent of all commits as anomalous.
For example, we may learn in node.js that 97 percent of all commits in the learning set are smaller
than 2770 changed lines of code (see Figure [Ip) and thus report an anomaly score of 0.97 for a

commit changing 2770 lines. However, an empirical cumulative distribution function is based exactly

T At this point, we build developer profiles per project, but it would easily be possible to build developer profiles based on
their commits across multiple projects, e.g., collecting projects the developer contributes to from the developer’s public

events on GitHub.
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on the learning set (danger of overfitting) and cannot distinguish between two commits that are both
larger than the largest observed commit; for example commits with 600,000 and 6,000,000 changed
lines would both receive the same anomaly score of 1 in node.js.

Instead, we abstract the actual observation by fitting a cumulative distribution function (cdf)
that describes the observations in the learning set with few parameters. Specifically, we learn an

exponential probability distribution with a cdf in the form
(0%
Fz)=1-(—)"
(@) =1-(%)

We estimated the parameters « and § using linear regression on the ecdf (technically encoded
as log(1 —y) = B *log(a) — B *log(z), which has the form Y = A+ BX, such that we can
learn A and B and subsequently « and ). In our node.js example, we learn the cdf F(z) =
1 — (2.5597/x)%-44139 a5 plotted over the ecdf in Figure[lb, which yields two high but distinguishable
anomaly scores 0.9957 and 0.9984 for 600,000 and 6,000,000 lines respectively.

All size-based profiles return an anomaly score of 0.5 for an average commit and values close to 0

and 1 for outliers. Due to the long-tail distribution, we focus only on outliers at the long end.

Time-Of-Day Profiles. To build a profile of typical times at which commits are created in a
repository or by a developer, we build a histogram counting the number of commits per time of day
(in 1 h intervals since midnight/UTC): function tod(x) returns the number of commits in that hour.
We do not learn a function, but to avoid relying too much on noisy empirical data, we take a three
hour average and compare it to all commits to get the probability of a commit at that hour:

_ tod((x — 1) mod 24) + tod(x) + tod((x + 1) mod 24)
- 3+ Y202 tod(i)

If all commits were randomly distributed we would expect 1/24 of all commits per hour. As for

p()

size-based profiles, we want our anomaly score to report 0.5 for an average commit and 0 and 1 for
outliers. Again, we only care about outliers on one end: regarding commits at times with few other
commits. We therefore transform the probability value, such that the baseline 1/24 probability yields

a 0.5 anomaly score:
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# of commits

Time of the day (UTC)

Figure 3. Time-of-day distribution of commits in the atom repository

Further adjustment is possible in the aggregation and normalization process to give larger weight to
smaller outliers (see below).

In Figure[3] we show as example the time-of-day profile for the atom text editor repository. In this
repository, we can observe fairly regular commit times. In the past only 0.7 percent of all commits
were made around 10am UTC (3-hour average), yielding an anomaly score of 0.67, whereas commits

around 11pm UTC are common and yield an anomaly score of 0.40.

File-Type Profiles. In line with Herraiz et al. [21]], we observed that most repositories are dominated
by files of few types, for example in node.js, 76 percent of commits in the repository affect C/C++,
JavaScript, or HTML files, whereas Ruby files are only touched in 0.1 percent of all commits. We
consider changes to file types that are rarely changed in the repository as unusual. We distinguish
file types t € T' by their file name’s extension, but this could easily be refined by analyzing the files’
content or merging different file extensions describing the same class of file types (e.g., .c and .h).
We actually build multiple profiles based on file types, counting different aspects. Since we do not
have a null hypothesis of how file types would be distributed across random commits (the set of file
types T is open ended), we work directly with the empirical distributions and we do not have an
expected anomaly score for an average commit.

In a first profile, we collect how frequently files of a given type were changed across all commits
in a learning set. Function ft(¢) returns how many files of type ¢ have been changed in a commit,
summed over all commits in the learning set. We derive an anomaly score for each filetype based on

the relative frequency of changes to this filetype in the repository as follows:

ft(t)
2rer TH(1)
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For a given commit, we return the maximum anomaly score among all file types occurring in that
commit.

In a second profile, we collect the percentage of commits that modify a file of a given file type. The
anomaly score is simply the relative number of commits that do not modify a file of that type. That is,
in contrast to the previous profile, we do not distinguish how often files have been changed in those
commits. This profile is similar to the first, but less biased toward individual commits that change
many files of one type. For example, with Ruby files occuring only in 0.1 percent of all commits, a
Ruby file in a commit to the node.js repository would receive an anomaly score of 0.999.

In a third profile, we characterize which files are commonly changed together. This profile is
created by grouping list of file types changed. We derive an anomaly score for every pair of file
types (F'(t,u)). The intuition is that certain kinds of files may be common in the repository but are
rarely changed together, such as JavaScript and markdown files. The anomaly score is computed by
comparing the number of commits that change both file types against the number of commits of the
file type that is changed less often. For example, in node.js Javascript files are changed in 49 percent
and markdown files in 12 percent of all commits, they are changed together in only 4 percent of all
commits, yielding an anomaly score of 1 — 0.04/0.12 = 0.67. Again, the highest score for any pair

of file types contained in a commit is reported.

3.4. Normalizing, Aggregating, and Explaining Results

We described a number of profiles, and additional profiles can easily be added for other commit
characteristics, including more sophisticated and language-dependent ones (e.g., conformity with
the common vocabulary used in the project or with common syntactical structures [45]]). It is also
straightforward to learn profiles for other baseline sets, such as all commits of a developer (across
multiple projects) or all commits within a set of projects. Which profiles to use and how to weigh
them may be configured by personal preference. We design the anomaly detection system with
a general normalization and aggregation framework that combines the anomaly scores of several
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profiles into a single indicator. In addition, we provide facilities to explain the scores, which can help
user acceptance in many usage scenarios.

The aggregation function should support two scenarios: On the one hand, if a single high anomaly
score is found in the project, the aggregated anomaly indicator should have a high value. That is, it
should not be possible to hide an anomaly regarding one characteristic with typical parameters of
other characteristics. On the other hand, if several profiles indicate anomalous results, the aggregated
indicator should be higher than the individual scores. To that end, instead of an arithmetic mean,
we use an associative and commutative aggregation operator & : a @b = a + b — (a * b), which
supports both scenarios. Within the range [0,1], a ® b > maxz(a,b) and within the range ]0,1],
a ® b > max(a,b), i.e., two anomaly scores support each other. For missing profiles, e.g., when the
developer has not sufficient prior commits to build a profile, we substitute the default anomaly score
0.5 of an average commit in the aggregation process.

To adjust individual profiles with weights a;, we transform each anomaly score x; using the trans-
formation 1 — (1 — x;)®*. We use this transformation, since it produces well distinguishable values
especially for the high end range of anomaly scores between 0.95 and 1. In most profiles that gave high
end range of anomaly scores, we normalize values using the transformation to emphasize that range.
Without normalization, the aggregation operator ¢ leads to values close to 1 that are nearly indistin-
guishable, even for relatively low anomaly scores as 0.8. In our evaluation on the basis of preliminary
analysis, we uniformly normalize all profiles using « = 0.067 which maps anomaly scores in the
relevant range to much lower values, e.g., 0.95 normalizes to 0.18, 0.999 to 0.37, and 0.99999 to 0.53.

While an overall normalized and aggregated anomaly indicator may be used, among others, to
prioritize or filter notifications, in many scenarios an explanation may be even more useful than a
numerical score. In addition to a numerical score, every profile can offer a textual explanation, such
as “.yml files were changed — such files are rarely changed in this repository (fewer than 0.07 % of all
changes)” or “The number of files changed is in the normal range for commits by jauthor; (3 files).”

In our prototype, as shown in Figure [2|and |4} we highlight the explanations from the five profiles that
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have the highest individual anomaly scores. In addition, we can visualize the empirical distributions

in the profiles through graphs as exemplified in Figures [I)and 3]

3.5. Implementation

We have implemented the anomaly detection mechanism as a web-based system with a frontend that
injects results into the GitHub page through a browser plugin for Chrome.

The backend clones the repository and extracts characteristics of existing commits from the Git
database (including running diffs on all commits). If the repository was previously cloned, it pulls
new changes and collects the commit characteristics for those changes. Subsequently, it builds the
profiles as described above and computes anomaly scores on demand. The backend is implemented
as a Java servelet, interacting with Git through the JGit library and uses R for statistical computations.

The frontend is implemented as a browser plugin for Chrome that rewrites the GitHub pages within
the web browser. When a user browses a GitHub page of a repository, the plugin queries the backend
for anomaly indicators. On the commit history page of a project, the plugin injects the anomaly
indicator and its explanation into the page for every commit, as shown in Figure[d] In a similar way,
the plugin could rewrite the notification page and extend the settings page to customize weights and
thresholds of the anomaly detection mechanisms. Alternatively, one change the plugin design to
present a ranking of unusual changes in a period. There are man different forms of presenting this to
the user, but this discussion is outside the scope of this study.

Both backend and frontend are available as open-source project at github.com/goyalr4dl/

Unusual GitCommit and igithub.com/goyalr41l /Unusual CommitExtension.

4. EXPERIMENTAL VALIDATION

We anticipate that changes that are statistical outliers with respect to certain commit characteristics
are relevant to developers. Our hypothesis is two-fold: we can reliably and efficiently use statistical
outliers to detect unusual commits and developers want to be notified about unusual commits.
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GitHub This repository Explore Features Enterprise Blog C
ckaestne / TypeChef @ Watch 8 Star 25
9 branch: master ~
Commits on May 28, 2015
‘ update parameter list with genpages.sh e Pieesz | L ¢
ckaestne - =
‘ update readme file - t2 bsgssse | Ln ¢
ckaestne - 2t
Score: Normal (0.8156)
Commits on Apr 18, 2015 Reason: Not enough high-valued outiers, lead fo rate this commil as norr

fix test cases (by adding a break expression to infinite for loops) JEIEITEE EH BT T LR VAT R ERET
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Figure 4. Anomaly scores injected into the Github history page using a browser plugin. Anomalies on
commits are highlighted with background colors, tool tips show explanation, and a button links to additional

information on our server.

With an interactive survey among 173 GitHub developers, we evaluate accuracy, usefulness, and

practicality of our approach. Specifically, we investigate the following three research questions:

RQ1 Does our approach identify commits that developers consider as ‘unusual’? Our first goal is
to identify whether the developers’ notion an unusual commit can be approximated with our
notion of unusualness in terms of statistical models over commit characteristics. We expect
that developers have a broad notion of what makes a commit unusual (see Sec. [2), but that the

modeled commit characteristics play an important role.

RQ2 Do developers want to be notified about unusual commits? Our second goal is to identify
whether high anomaly scores are a good measure to filter or prioritize notifications, that is,
whether our anomaly scores highlight important commits and whether they are actionable.
We will also investigate to what degree providing additional information about commit
characteristics changes the developers’ perception and which commit characteristics they

consider as important.

RQ3 Can statistical outliers be computed efficiently? Our final question aims to investigate
practicality in everyday settings and measures the performance of our approach in terms

of time required to build and evaluate our models.
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Figure 5. Experimental setup - survey steps

4.1. Experimental Setup

To answer our research questions, we conducted an experiment in form of an interactive online survey
with GitHub developers as illustrated in Figure[5] In a nutshell, we ask each participant to select a
GitHub repository of their choice and we select 5 commits from that repository spanning a range of
anomaly scores about which we ask questions regarding unusualness and importance.

Our experiment intentionally deviates from the common setup with experimental and control
groups. We assess how our participants judge the unusualness and importance of commits without
revealing our judgment (no treatment). Subsequently, we ask our participants to assess the same
commits again with additional anomaly information provided to identify how such information
changes their view of the unusualness and importance of commits (within-subject design).

We complement that setup with a pre- and post-survey in which we ask additional questions
about demographics and about which commit characteristics are relevant to them. We conducted
the evaluation after a pilot run with 26 participants in which we ensured understandability and a
reasonable length and narrowed down relevant questions, see below.

At the beginning of the survey, we asked our participants to choose a GitHub repository with
which they are familiar, but to which they are not the main contributor. We suggest that the repository
should have multiple contributors (two or more) and at least 50 commits. When they provided their
GitHub username, we offered a selection of public repositories they watch. We designed these criteria
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Figure 6. Stratified sampling - division of commits in groups of different degrees of unusualness

to simulate the scenario in which a developer might watch another repository during development or
maintenance.

In the backend, we then clone that repository, build the profiles, and compute anomaly scores for
up to 200 most recent commits. Among those recent commits, we select 5 commits with different
anomaly scores (stratified sampling). We divide the commits into four groups by aggregated anomaly
indicator: the 5 percent with the highest anomaly indicator, the 5 percent with the next highest
anomaly indicator, the 60 percent with the lowest anomaly scores, and the remaining 30 percent.
Using stratified sampling, we then selected one commit of our sample from the first group (very high
anomaly indicator) as very unusual, two commits from the second group (high anomaly indicator)
as unusual, and two commits from the third group (low anomaly indicator) as normal (see Figure
[6). We decided to show a total of 5 commits, based on considerations regarding survey length and
feedback from the pilot survey.

While cloning the repository and computing profiles in the backend (in part to bridge the time,
typically below a minute, see RQ3 below), we show developers a presurvey with demographic
questions, questions about their relationship to the repository (e.g., whether they are familiar with it,
monitor it, or contribute to it) and open-ended questions regarding characteristics of commits that
make commits to stand out and regarding to which kind of commits they tend to pay extra attention.
We already discussed the key insights from the open-ended questions in Section 2}

In the main part of the survey, we show the sampled commits in a random order. We present
each commit separately in a page that closely mirrors GitHub’s view on a commit, followed by two
questions about this commit’s unusualness and importance on a 5-point Likert scale.

Copyright © 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)

Prepared using smrauth.cls DOI: 10.1002/smr



19

Q1a: This commit is important to me.
Q1b: I would want this commit to be brought to my attention.

Q2: It seems to be an unusual commit

Table II. Survey Questions

P1: I would want this commit to be brought to my attention.
P2: I would care about this commit.
P3: This commit is important.

P4: It seems to be an unusual commit

Table III. Survey Question in Pilot Study

Subsequently, we showed them each commit again in the same order, but this time with additional
information in the form of the textual explanations (see Sec. of the five highest anomaly scores
as illustrated in Figure 2] We again ask questions about unusualness and importance on the same
5-point Likert scale to assess whether the additional information changes their opinion.

After completing the main part of the survey, we asked final questions about which commit
characteristics (see Table|l)) they consider as useful indicators. We assess their opinion on a 5-point

Likert scale.

Question Selection. We used the questions shown in Table [Ll|in our survey. When showing the
commits for the first time, we asked questions Qla and Q2 and when showing them again with
additional information, we asked Q1b and Q2.

The selection of questions was influenced by several insights from the pilot study. Initially, we
considered more questions on each commit as shown in Table [[IIl We originally intended to capture
multiple facets of unusualness, but found that pilot questions P1-P3 all strongly correlate and
do not provide complementary insights. Therefore, we reduced the number of questions to two,
corresponding to our two research questions. The strong correlation (P1 and P2 correlated strongly;
correlation coefficient 0.67, p < 3.1e — 19) allowed us to ask two different questions to assess the
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same information about importance of the commits, reducing a possible consistency bias in our

participants (see also threats to validity).

4.2. Recruitment and Participants

As participants for our evaluation, we aimed to recruit active GitHub developers who could pick
a project of their interest with multiple contributors and at least 50 commits. We recruited active
GitHub developers on the web. We actively publicized our survey through social networks and sent
emails to active GitHub developers. We identified suitable candidates from publicly available activity
feeds (aggregated through the GHTorrent project [18]]). We selected 39,131 developers that have filed
or changed at least one pull request and that have started watching at least five repositories between
January 2015 and August 2015. We sent personalized emails to 2846 of them (randomly selected). In
total, 173 participants completed the survey, assessing 860 commits in 173 distinct repositories.

In Figure|7}, we summarize the demographic information about our participants and their selected
repositories, both presented to them as Likert scales. Over 63 percent have more than 5 years
of software engineering experience and 62 percent report to use GitHub for over 3 years. In
addition, 91 percent are familiar or very familiar with the selected project and 68 percent monitor
commits in that project at least occasionally. The median number of commits and contributors of the
analyzed repositories were 914 and 25, respectively. In addition, the repositories have median size of

414721 lines across all nonbinary files in the repository.

For the pilot study, we personally invited PhD students and researchers at a workshop on feature-
oriented software developmentE] We handed interested participants a tablet to complete our survey.

In total, 26 participants completed the survey in our pilot study.

thttp://www.fosd.de/meeting2015
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Figure 7. Demographics information about participants and repositories

4.3. Analysis Procedure

21

To answer our research questions, we analyzed 173 complete responses. Those do not include

21 incomplete responses or any responses from our pilot study. Since all our measures are ordinal, we

use Spearman’s rank correlation coefficient to assess correlations among ratings. For the open-ended

questions discussed in Section 2] we followed standard open coding practices [54].

Copyright © 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)

Prepared using smrauth.cls

DOI: 10.1002/smr



22

Unusualness
Unusualness
Unusualness

T T T I I 1 T T T
N V] VU N U \v] N U V]

Anomaly indicator Anomaly indicator Anomaly indicator
Figure 8. Comparison of agreement level between our notion and the developers’ notion of unusualness. The
x axis describes our anomaly judgment as normal (N; bottom 60 %), unusual (U; top 10 %), and very unusual
(VU; top 5 %); the y axis describes the participants rating regarding unusualness from strongly disagree (1) to
strongly agree (5) that the commit is unusual, resulting in 15 possible combinations. Data is jittered to show

frequency of answers; boxplots are overlayed to highlight the distributions.
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Figure 9. Changes in developer’s perception of commits’ importance: (a) normal commits, (b) unusual
commits, (¢) very unusual commits. Each plot shows the difference between two ratings (before and after
revealing additional information, rated on strongly disagree (1) to strongly agree (5) that the commit is
important) as arrow for all commits in a group of commits; commits are sorted by the change. Upward arrows
indicate that participants judged the commit as more important with additional information; longer arrows

indicate a larger change; dots indicate consistent ratings.

4.4. Results

RQ1: Predicting Unusual Commits. Regarding our first research question (Does our approach
identify commits that developers consider as ‘unusual’?), we found that our anomaly score is a very
weak predictor of whether developers rate a commit as unusual (correlation coefficient 0.10, p <
0.0033). As visible in Figure [8h, our anomaly score correctly predicts many of the commits that
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participants rate as highly unusual with high anomaly scores (high recall; 68 percent of commits
that participants rate with 4 or 5, we classified as unusual or very unusual), but developers do not
consistently rate commits with high anomaly scores as unusual (low precision; only 40 percent of
commits we selected as highly unusual were rated as 4 or 5 by participants).

The low predictive power can be explained by the broad notion of ‘unusualness’ that reasonably
includes many facets not covered by our models but that can be added from other sources, as discussed
in Sec. [2} In fact, if we perform the same analysis only for the 38 participants (22 percent) that
referred to some notion of size when asked about which commits stand out, we can predict unusual
commits more reliably for those developers (correlation coefficient 0.27, p < 0.00035; Figure ).

Finally, we evaluated how showing developers additional information about commits influences
their judgment of unusualness. We found that in general, developers tend to agree more with our
notion of unusual given additional information as shown in Figure8p, but the effect is again relatively
weak (correlation coefficient 0.21, p < 2.5e-10).

In summary, our model of unusual commits is only a weak predictor of how developers rate
“unusualness.” It explains to a large degree size-related criteria and is a better predictor for the many
developers who equate unusualness with size. When presented with additional information about

commits, developers tend to agree more with our notion of unusualness.

RQ2: Unusualness to Filter Notification. Whereas RQ1 only investigated whether our notion
of unusual matches the participants’ notion, RQ2 now investigates to what degree the results are
actionable.

The initial result is negative again: Developers do not consider unusual commits as important.
This holds both for our notion of unusualness in terms of our anomaly score (correlation 0.17;
p < 0.00000056) and even for the developers’ own rating of unusualness (correlation 0.068;
p <0.046).

However, we found that information that explains unusual aspects of a commit (see Fig. [2))
significantly influences developers opinions about a commit. That is, while being considered as
unusual is not actionable, considering information about why a commit is a statistical outlier is
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Figure 10. Developer’s opinions about the usefulness of specific indicators

actionable. As shown in Fig.[9] with additional information, developers more frequently changed
their judgment of importance to a higher value for commits we rated as very unusual, than they
downgraded their rating. The number of changes are also significantly higher than what we observed
in the pilot when we asked both questions for the same commit without additional information
(correlation dropped as expected from 0.67 in the pilot to 0.48 in our study). Similarly, the developers
unusualness ratings correlate stronger with their rating of importance given the additional information
(correlation 0.37 instead of 0.068).

Finally, we asked developers which kinds of statistical outliers or indicators would be useful to
them. Fig. [I0] summarizes their opinion expressed using a 5-point Likert agreement scale, showing
that the participants think that most of the profiles are useful; in fact only the time of day profile
received controversial opinions.

In summary, developers consider some commits as unusual, but those are not necessarily commits
that they consider to be important and want to be notified about. However, providing explanations
for why commits are statistical outliers in the context of a repository or for a developer provides
actionable insight in that developers often want to be notified about such outliers. Overall, this shows
that the anomaly score is indeed just one among many indicators that signify whether a commit is
important to developers (cf. Section[2). Nonetheless, the results also show that the anomaly score is
actionable and can be a useful contributor to filtering and prioritizing notifications (in concert with

other mechanisms), but that explanations are important and appreciated.

RQ3: Efficiency. Learning and evaluating profiles is relatively cheap. When learning a profile,
we need to clone the repository and gather commit characteristics for past commits, which is the
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Time required to compute profiles (in seconds):
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Figure 11. Time required to compute profiles for repositories in seconds (few outliers omitted)

dominant cost in the entire process. Building the profiles subsequently is fast; it involves computing
histograms and linear regression and data sets of moderate size (20-7974 commits for 90 percent of
all projects), whereas looking up the anomaly value for a commit requires merely evaluating simple
formulas and is essentially instantaneous. Incrementally refining profiles over time is similarly fast,
as we only need to pull new changes, collect commit characteristics for new commits, and update
existing profiles (incrementally or recomputing them). To this day, we have created profiles for
252 GitHub projects. For almost all repositories, profiles can be built within one minute as shown in
Figure[TT] Only very few outliers for very large projects require longer initial computation time of up

to 20 minutes for one 800MB repository of a game engine.

4.5. Exploratory Analysis

To understand more about how our profiles relate to the developers’ notion of unusualness, we per-
formed an additional ex-post exploratory analysis on our data. Specifically, we explore which profiles
had the strongest predictive power in our data set, which may provide insights for further research. To
that end, we use an automated model selection approach, specifically stepwise regression using the
glmulti R packageﬁ The algorithm exhaustively computes logistic regression models while trying to
minimize the set of profiles that maximize the explained variance of the outcome variable (developers’
notion of unusualness). We use the profiles standardized scores from the past commit data and the
developers judgment about each commit unusualness as input to the algorithm. We compute best mod-
els for their answers before and after we show them information about the unusualness of commits.

The best model for unusualness before showing additional information explains 7.06 percent of

the variance (p <1.86e-11) and is composed by six profiles (with decreasing predictiveness): number

Shttps://cran.r-project.org/web/packages/glmulti/
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of lines of code changed by developer, number of files changed (both at the repository level and
by developer), number of files removed by developer, time of commit, and the combination of files
changed. The strongest predictors, identified by the standardized regression coefficients, are: number
of lines of code changed by developer and number of files changed.

The best model for unusualness after showing information explains 11.9 percent of the variance
(p <2.2e-16) and is composed from the following seven profiles: number of lines of code changed
by developer, number of files removed by developer, size of commits messages, and the combination
of files changed (the last two computed both at the repository level and by developer).

The exploratory results confirm that our profiles can explain some aspect of unusualness, and that
especially size metrics are the strongest predictors. They also confirm that our profiles should not
be used in isolation, but in concert with other mechanisms. This aligns with the results from our

presurvey and also with prior research observations [33]].

4.6. Threats to Validity

Construct Validity: Our current implementation of the profiles have limitations that threaten construct
validity. First, we build developer profiles by grouping commits by email address; we currently
do not take additional steps to identify when two email addresses belong to the same developer,
which makes developer profiles potentially unreliable when the developer uses multiple email
addresses [57]]. Second, we currently consider renaming of a file as addition of one file and deletion
of other, which can lead to size-based outliers for large renaming operations. Third, we ignore merge
commits at this point. Fourth, in our evaluation, we used a simpler implementation of the time-based
profiles in which we set a fixed high anomaly score for commits at times that on average contain
fewer than 5 percent of all commits. Improving profiles, as well as additional profiles, will improve
the anomaly reporting, but we expect little impact on the overall results of our evaluation.

Internal Validity: There are several biases that may influence the results. First, there is a selection
bias in that developers who face problems with notification clutter may be more inclined to respond
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to our survey. This most likely inflates the number of monitored repositories in our evaluation (see
Figure[7), but we do not expect this to significantly impact ratings of unusualness and importance.

Second, as we ask developers to rate the same commit again with additional information there is
both a potential consistency bias (participants tend to stick to their answers) and an opposite potential
subject-expectancy bias (participants agree with suggestions). To reduce the consistency bias, we
pose two separate but correlated questions Q1la and Q1b regarding importance. To reduce subject-
expectancy bias, we always provide five explanations independent of our anomaly score. Using
separate questions Q1la and Q1b introduces the additional noise in our analysis, despite the strong
and statistically highly significant correlation between the two found in the pilot study. Although we
addressed these biases in our setup, we cannot entirely exclude their influence.

Third, our results might be biased by the aggregation method used to combine multiple indicators.
We kept it constant to keep the experimental design simple. It could be interesting to explore whether
other aggregation methods provide better predictive results.

Fourth, the visual representation of commits with all lines of changed code may bias developers to
focus overproportionally on size in their judgment. We did not quantify this effect, but rather decided
on a single visual representation that aligns closely with GitHub’s view of a commit.

Finally, the use of stratified sampling, with the majority of shown commits being unusual or very
unusual by our measure (three out of five commits shown), may affect developers’ perception of
unusualness and affect their judgments about the commits.

External Validity: We studied only commits in publicly available GitHub projects as assessed
by developers with a GitHub account. Although we expect generally similar characteristics, we
cannot generalize our results to other version control systems and especially not to other development
contexts with different cultures and expectations toward commits (e.g., end-user programming). In
addition, to prevent overfitting of data our approach is limited to repositories with a given minimum
size (50 commits in our evaluation) and developers with a given minimum number of commits (only

developers with at least 20 commits were considered for own profiles).

Copyright © 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)

Prepared using smrauth.cls DOI: 10.1002/smr



28

5. RELATED WORK

Change in software systems has been studied, measured, and modeled intensively for many
decades [8}|13}|14}/32,/37,/58L/59]. Change is inevitable; for example, Lehman postulated that software
“undergoes continual changes or becomes progressively less useful” [32]. Instead of assuming stability
or backward compatibility, transparent environments and social-coding platforms promote change
awareness by making information about changes transparent [|11,/12]]. In practice and more traditional
settings, developers often broadcast change announcements to others by email or through code
reviews to achieve transparency [1,/13]]. Examples of achieving transparency through notifications
reach back at least to Brook’s descriptions of the OS/360 development [6, Ch. 7] Similarly, awareness
mechanisms have been successful to notify developers about potential conflicts during concurrent
development to seek collaborative solutions [2}/7,[51H53].

Relying on notifications in transparent environments can quickly lead to information overload
though [3,4,/6L/11]]. Due to information overload important information may get lost in a sea of
noise. Several researchers and practitioners have attempted to identify those notifications that are
relevant to a specific developer. As described in the introduction, this includes detecting backward-
incompatible changes in used APIs [24], prioritizing notifications based on code ownership [42], and
highlighting commits that fix bugs or vulnerabilities [[22}/55]]. At a technical level, there are many
strategies that can identify the impact (and thus importance) of changes, typically referred to as
change impact analysis [5,|361/46,49]]. Similarly, there are many techniques that can detect potentially
defective changes, from static analysis [26}|50] to machine learning [[30]. Reiss furthermore explored
a technique to identify problematic code by detecting ‘unusual’ patterns in the AST when comparing
the code to a large corpus of known code [45]]. Our work addresses the same problem but from a
fundamentally different perspective. We do not envision our anomaly detection tool as a standalone
filtering mechanism, but as complementary building block to scale transparent environments. In
addition, anomaly scores and explanations could easily be integrated into a code review process,

similar to Google’s integration of static analysis tools [50].

Copyright © 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)

Prepared using smrauth.cls DOI: 10.1002/smr



29

The two previous approaches that directly target reducing notification overhead [241/42]] (based on
binary compatibility and code ownership, see above) evaluate their approach only on proxy metrics
without consulting developers, for example, approximating relevance by whether a developer has
subsequently modified a file. In contrast, we designed an experimental setup that allows to asses
to what degree automated judgments on commits actually match the developers’ perception of
importance for notifications by asking developers about commits relevant to them.

We use anomaly detection for a novel purpose. Chandola et al. provide a comprehensive overview
of the anomaly detection field [9]], which focuses on applications as diverse as intrusion detection,
fraud detection, industrial damage detection, image processing, and traffic monitoring, and which
uses techniques as diverse as machine learning for classification, nearest neighbor, and clustering
as well as various statistical and information-theoretic approaches. Given the lack of labeled data
(i.e., known anomalies), we use an unsupervised learning strategy based on both parametric and
non-parametric standard statistical techniques. As we do not focus on anomalies among dimensions
(e.g., commits with many changed lines but only few changed files), we detect anomalies separately
for each dimension and aggregate them subsequently. If developers were willing to tag commits as
unusual or important, there is a wide range of supervised machine-learning techniques that can be
used to detect anomalies [9L/16]].

Truede et al. interviewed GitHub developers about what kind of information should be summarized
in a development activity feed. The developers consistently mentioned unusual events as being
important [56]. In addition, they propose a dashboard to detect unusual events in commit histories
and perform a preliminary evaluation with six interviews within a Brazilian company [33]]. Their
interviewees mention similar reasons for what makes commits unusual and their examples of unusual
events align with the commits characteristics that we investigate in this paper. Our work complements
theirs with a substantially different model for detecting anomalies (e.g., not assuming normal
distributions, covering additional characteristics such as time of day) and a large-scale evaluation
with 173 developers. At a technical level, we integrate our results in GitHub’s interface with a browser

plugin, instead of building a separate SVN-based dashboard.
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In parallel to our research, Li et al. [34] investigate influential software changes and propose
categories to identify them in an automated fashion using machine learning classification techniques.
Although they propose similar metrics that could also help developers to reduce the amount of
changes they need to inspect, their goal, study design, and technical approach are different from ours.
First, their work aim at predicting influential changes, which they imply could affect many aspects
of a system later. They claim that detecting these changes at commit time could support developers
in making better-informed decisions about their potential effects before they happen. In our work,
we focus on unusual commits and aim at reducing the amount of commits that developers have to
review when changes occur. Second, both studies propose metrics based on intuition, but evaluate
them differently. Their work uses a survey to evaluate categories of influential commits provided
by the authors, while we survey developers to judge the unusualness of commits from repositories
they are familiar with. Along with finding unusual commits, we also try to find which of those
unusual commits are actionable. Finally, their machine learning model based on classifiers and cross-
validation and aggregation methods are distinct from ours. In order to create their classifier, they tried
out two standard techniques for classification tasks: Naive Bayes and Random Forest. In contrast, our
analysis based on established anomaly detection techniques [9}|15}31,/44]] aims at creating repository-
specific profiles based on outliers from past commits and at using these profiles to calculate anomaly
scores for commits in the repository. Our approach also provides human-understandable profiles
and thresholds that are useful for explaining why commits are marked as unusual. In contrast, many
machine learning techniques cannot provide the same explanatory evidence.

Rosen et al. [48] propose a tool named “Commit Guru” that provides developers and managers
with risk information of their commits. Similar to our prototype, their tool rely on change measures to
identify defect-inducing changes. Their measures have been validated against 11 large and long-lived
projects in a previous work [28]] and capture properties such as size, diffusion, purpose, history of
changes, but also incorporates information about developers’ experience. Our work complements
their study with a large-scale evaluation with 173 developers and reinforce the importance of some

their studied measures in characterizing important changes.
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6. CONCLUSION

Transparent environments and social-coding platforms support developers in staying abreast of
changes in projects of interest. However, the amount of information produced can quickly overwhelm
developers, making it harder for them to distinguish relevant changes from typical ones.

In this paper, we described an anomaly-detection mechanism designed to identify unusual commits
in repositories. We evaluated our mechanism using a survey-based strategy to measure to what degree
our model can predict changes developers judge as unusual and to what degree we can identify
commits that developers want to be notified about.

We learned that developers have distinct motivations when judging the importance commits and
statistical outliers have only little predictive power. However, once we present the reasons why
these commits are unusual, developers often revisit their position and consider these commits as
relevant for notification. Also, we found that some characteristics that developers pay attention to
(e.g, commits with lengthy discussions or made by not regular team members), can be profiled in
terms of statistical outliers and integrated to existing prioritization and filtering approaches to identify
relevant changes in maintenance tasks. Our anomaly-detection mechanism is a building block in

scaling transparent environments.
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