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Abstract Stakeholders of configurable systems are often interested in know-
ing how configuration options influence the performance of a system to facili-
tate, for example, the debugging and optimization processes of these systems.
Several black-box approaches can be used to obtain this information, but they
either sample a large number of configurations to make accurate predictions or
miss important performance-influencing interactions when sampling few con-
figurations. Furthermore, black-box approaches cannot pinpoint the parts of a
system that are responsible for performance differences among configurations.
This article proposes ConfigCrusher, a white-box performance analysis that
inspects the implementation of a system to guide the performance analysis,
exploiting several insights of configurable systems in the process. ConfigCrusher
employs a static data-flow analysis to identify how configuration options may
influence control-flow statements and instruments code regions, correspond-
ing to these statements, to dynamically analyze the influence of configuration
options on the regions’ performance. Our evaluation on 10 configurable sys-
tems shows the feasibility of our white-box approach to more efficiently build
performance-influence models that are similar to or more accurate than cur-
rent state of the art approaches. Overall, we showcase the benefits of white-box

Miguel Velez
Carnegie Mellon University

Pooyan Jamshidi
University of South Carolina

Florian Sattler
Saarland University

Norbert Siegmund
Leipzig University

Sven Apel
Saarland University, Saarland Informatics Campus

Christian Kästner
Carnegie Mellon University



2 Miguel Velez et al.

performance analyses and their potential to outperform black-box approaches
and provide additional information for analyzing configurable systems.

Keywords configurable systems · performance analysis · static analysis ·
dynamic analysis

1 Introduction

Most of today’s software systems, such as databases, Web servers, processing
libraries, and compilers, provide configuration options to satisfy a large variety
of requirements (Apel et al., 2013; Jamshidi et al., 2017b; Kolesnikov et al.,
2018; Siegmund et al., 2015; Xu et al., 2015). To this end, stakeholders select
specific values for each option to obtain the desired functional properties and
quality attributes in the system. However, this configuration process is often a
difficult task, especially when lacking knowledge of how the configuration op-
tions influence the functionality and qualities of the system (Apel et al., 2013;
Siegmund et al., 2015; Xu et al., 2013). For this reason, users, developers, and
administrations typically resort to default configurations or change individ-
ual options in a trial-and-error fashion without understanding the resulting
effect (Hubaux et al., 2012; Jamshidi and Casale, 2016; Jin et al., 2014; Xu
et al., 2015).

Performance is one of the many interesting qualities of such systems. Un-
derstanding how individual configuration options and their combinations in-
fluence the performance of the system would facilitate the reasoning, debug-
ging, adaptation, and optimization processes of these systems (Han and Yu,
2016; Han et al., 2018; Kolesnikov et al., 2018; Siegmund et al., 2015; Wang
et al., 2018; Xu et al., 2013; Zhu et al., 2017). For example, users can find the
configuration that performs an execution the fastest, and developers can find
configuration options that cause excessive execution time when debugging the
system.

One research area has focused on understanding the influence of options
and their interactions on the performance of a configurable system by build-
ing a performance-influence model (Siegmund et al., 2015), which describes
the performance of a system in terms of its configuration options for a spe-
cific workload and in a specific environment (e.g., on given hardware). Most
prior work on deriving performance-influence models uses black-box approaches
(Hutter et al., 2011; Olaechea et al., 2014; Siegmund et al., 2012b, 2015), which
consider the system as a black box and measure for how long the system ex-
ecutes in different configurations. These approaches sample a subset of the
configurations of a system and extrapolate a model based on the correspond-
ing end-to-end measurements. The model’s accuracy and cost depend on the
approaches’ sampling strategy (i.e., which configurations to measure) and the
algorithm used for learning (Kolesnikov et al., 2018). Sampling is particularly
important: The accuracy of a model might be low if the sample set does not
capture performance-influencing interactions among options. Several different
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Fig. 1: Our conjecture on cost and prediction error comparison between state of the art
approaches.

sampling strategies with different cost-accuracy tradeoffs have been explored
(cf. Fig. 1).

We argue that a white-box approach that analyzes the system’s source
code can provide additional insights and guide the performance analysis to
relevant options and interactions. Where black-box approaches are blind to
the internals of an implementation, white-box approaches can, for example,
identify options interacting in control-flow statements, and thus focus mea-
surements on fewer, but more relevant configurations, thus promising to build
more accurate models at lower cost (cf. Fig. 1). In addition, analyzing the
implementation and performing measurements with regard to regions of the
system rather than black-box end-to-end measurements allows us to pinpoint
which regions of a system (e.g., set of statements influenced by the same set of
options) are responsible for performance differences among configurations (i.e.,
more informative models), which can further help in performance debugging
and optimization.

In this article, we introduce a novel white-box performance analysis ap-
proach for configurable systems, named ConfigCrusher. It combines static and
dynamic analyses to identify and efficiently measure configurations that are rel-
evant for accurate performance modeling. Specifically, ConfigCrusher (1) uses
static data-flow analysis to trace the effect that configuration options may
directly or indirectly have on a system’s control-flow statements (including
loops) and (2) instruments the system at configuration-relevant control-flow
statements to measure the performance per region in concrete executions in
a small set of selected configurations. One key benefit of measuring perfor-
mance per region is that, in a single executed configuration, we independently
measure the influence of multiple options on different regions, a process we
call compression. Overall, ConfigCrusher exploits multiple insights about con-
figurable systems, established in several prior studies (Jamshidi et al., 2017a;
Kim et al., 2011, 2013; Kolesnikov et al., 2018; Lillack et al., 2018; Meinicke
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et al., 2016; Nguyen et al., 2016; Reisner et al., 2010; Siegmund et al., 2012a,
2013):
(a) Irrelevance: Not all options influence the performance of a system on a

given workload. ConfigCrusher’s data-flow analysis identifies options that
do not influence the execution, reducing the number of configurations to
sample.

(b) Orthogonality : Not all options interact with each other. ConfigCrusher’s
data-flow analysis identifies options that are orthogonal and can thus be
measured together in a single execution, reducing the number of configu-
rations to sample.

(c) Low Interaction Degree: Considering interactions is essential for accurate
performance-influence models, but most options tend to interact only with
few other options. ConfigCrusher’s analysis identifies which interactions can
occur, focusing the sampling towards performance-relevant configurations.

Compared to state of the art black-box approaches, ConfigCrusher reduces the
cost of performance modeling while preserving or increasing the accuracy of
the resulting models. Guided by program analysis, it will often measure fewer
performance-relevant configurations, and, with instrumentation and compres-
sion, each measurement can provide information about multiple options and in-
teractions. Furthermore, in addition to traditional performance-influence mod-
els, ConfigCrusher builds a local performance-influence model for each region
of a system. These models can provide additional fine-grained information
and insights to developers, for enhanced debugging and understanding of the
performance behavior of a system.

To demonstrate the potential of our white-box approach, we implemented
ConfigCrusher for Java systems. using the static taint-analysis engine Flow-
Droid (Arzt et al., 2014) for tracking configuration options. We show that our
white-box approach outperforms existing state of the art approaches (i.e., more
accurate models at lower cost) on 10 configurable systems. Due to known scal-
ability issues with precise and accurate static data-flow analyses (Arzt et al.,
2014; Avdiienko et al., 2015; Bodden, 2018; Do et al., 2017; Lerch et al., 2015;
Pauck et al., 2018; Qiu et al., 2018; Wang et al., 2016), we limit our evaluation
to relatively small, but still real-world open-source applications from different
domains, including command-line programs, processing libraries, databases,
and software product lines. Nevertheless, our evaluation still provides evidence
for the feasibility of the underlying ideas. More generally, we show the poten-
tial benefits of analyzing the system structure to help in the understanding,
debugging, and optimization of configurable systems and provide a foundation
for future research to scale white-box performance analyses.

In summary, we make the following contributions:
– A white-box program analysis, combining data-flow and control-flow anal-

ysis and dynamic instrumentation for fine-grained performance measure-
ment to identify how options affect the execution of configurable systems,
exploiting insights about common characteristics of such systems (Sec 3).

– A compression technique that allows us to independently infer the influence
of options and their interactions on multiple regions of a system’s execu-
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tion and a corresponding method to build accurate performance-influence
models (Sec 3.2).

– An optimization to reduce the overhead of the instrumented systems that
we analyze (Sec 3.3).

– An empirical evaluation of ConfigCrusher on 10 systems demonstrating the
feasibility and potential of a white-box approach to reduce the cost and
increase the accuracy of performance modeling compared to state of the
art performance modeling approaches (Sec 5).

– A public open-source implementation of ConfigCrusher and reimplemen-
tations and improvements of prior state of the art approaches for Java
systems (Velez et al., 2019).

– A replication package with technical information of the systems analyzed,
environmental setup for experiments, analysis scripts, and data of several
months of measurements (Velez et al., 2019).

2 Performance Modeling of Configurable Systems

A system’s performance and, often directly correlated, energy consumption are
important concerns for many software systems. While it is possible to design
and optimize a system’s implementation for a specific task, much of our mod-
ern software is built on top of reusable (open-source) infrastructure software,
such as databases, Web servers, video encoders, and so forth. However, a sin-
gle reusable infrastructure component will rarely ever satisfy all stakeholders
equally (“no one size fits all”); for example, developers needing a data-storage
component for a write-heavy scenario would likely make different implemen-
tation decisions than for a read-heavy scenario, if they would implement such
component from scratch. To resolve this tension between a single reusable
component and custom implementations for different stakeholders, reusable
components often have a large number of configuration options that defer de-
sign decisions and allow users to choose between different implementations and
different resulting functionality and quality tradeoffs to meet their needs (e.g.,
workloads and environments).

When reusing such infrastructure components with many options, making
suitable configuration decisions can be challenging (Apel et al., 2013; Xu et al.,
2015). Users are often unaware of the impact on options on various qualities
or have only vague intuitions (Hubaux et al., 2012; Xu et al., 2013), and
options may interact, producing surprising behavior (Siegmund et al., 2015).
For example, a developer considering whether to enable encryption, would
likely expect that encryption may slow down system performance, but may
need to perform experiments to identify the severity of the effect, given the
concrete system, workload, and other configuration decisions.

In this context, performance-influence models that explain how configura-
tion options and their interactions influence the performance of a system, in
a certain context (e.g., requirements and needs), can be helpful when making
deliberate configuration decisions (e.g., optimizing performance for given work-
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load or debugging the system’s performance behavior). That is, performance-
influence models have a fundamentally different approach and goal than tra-
ditional performance models, which typically model and analyze (e.g., using
Queuing networks, Petri Nets, and Stochastic Process Algebras) the perfor-
mance of a system’s architecture under different workloads in the design stage
of a project (Harchol-Balter, 2013; Serazzri et al., 2006), possibly also mod-
eling design decisions as configuration options (Becker et al., 2009; Esfahani
et al., 2013). In contrast, performance-influence models describe the perfor-
mance behavior of a given system implementation, with a given workload and
environment, in terms of configuration decisions and they are typically learned
from observing a specific system execution under different configurations.

Performance-influence models are typically learned by fitting a model to
explain the performance in terms of configuration options (Guo et al., 2013;
Jamshidi et al., 2017a, 2018; Siegmund et al., 2015; Valov et al., 2017). The
models can be used for performance debugging (Siegmund et al., 2015; Wang
et al., 2018; Xu et al., 2013), optimization (Guo et al., 2013; Oh et al., 2017;
Zhu et al., 2017), and adaptation (Jamshidi et al., 2017b, 2018; Wang et al.,
2018; Zhu et al., 2017).

As a running example, the performance-influence model Π = 1 + 3A +
3AB+ 3AC for the system in Figure 2 (Lines 1–15) suggests that the measured
execution, with a given workload and environment, takes 1 second by default
(Line 12), but 3 seconds longer if option A (compression) is selected (Lines 4
+ 16) and another 3 seconds extra, each, if option B (page-size, Line 21) or C
(encryption, Line 3) are selected together with A. Such model can help with
several maintenance and understanding tasks. For example, users can opti-
mize the execution time (e.g., deselect A in this example) or make an informed
tradeoff decision, (e.g., whether the functionality of A is worth the 3 second
overhead). Likewise, such models can generally help with system understand-
ing such as identifying the interaction of A with B and C or recognizing that
A might be a performance bottleneck. Similarly, we can use this model in a
planning algorithm to adapt (i.e., dynamically reconfigure) the system, in re-
sponse to changing requirements or environment conditions, such as high load
or low battery (Aldrich et al., 2019; Weisenburger et al., 2017).

Performance-influence modeling is different from performance tuning ap-
proaches that attempt to change a system’s configuration to optimize per-
formance (possibly also considering multiple qualities with a suitable fitness
function) for a given workload and environment (Hutter et al., 2011; Olaechea
et al., 2014). These approaches search for a good configuration rather than
building models of the entire configuration space. Performance tuning ap-
proaches for configurable systems conduct some sort of search in the con-
figuration space, with and without building intermediate models to support
the search (Jamshidi and Casale, 2016; Oh et al., 2017; Siegmund et al.,
2012b), typically measuring the system execution under different configura-
tions. For performance tuning, search is typically more efficient than building
performance-influence models, because the focus is only on finding the fastest
configuration, not on explaining why it is fast, not modeling the performance
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1 def foo(boolean x)
2 // Begin region R1
3 if(x) ... // execution: 4s ΠR1

= 1A + 3AC
4 else ... // execution 1s
5 // End region R1
6 def main(List workload)
7 a = getOpt("A"); b = getOpt("B");
8 c = getOpt("C"); d = getOpt("D");
9 e = getOpt("E"); f = getOpt("F");

10 g = getOpt("G"); h = getOpt("H");
11 i = getOpt("I"); j = getOpt("J");
12 ... // execution: 1s
13 boolean x = false;
14 // Begin region R2
15 if(a) // variable depends on option A
16 ... // execution: 2s
17 foo(c); // variable depends on option B
18 x = true; ΠR2

= 2A
19 // End region R2
20 // Begin region R3
21 if(b && x) ... // execution: 3s ΠR3

= 3AB
22 // End region R3
23 if(d && e && f) ... // execution: 5s
24 if(a) ... // execution: 0.1s
25 if(b) ... // execution: 0.2s
26 if(c) ... // execution: 0.3s
27 if(d) ... // execution: 0.4s
28 if(e) ... // execution: 0.5s
29 if(f) ... // execution: 0.6s
30 if(g) ... // execution: 0.7s
31 if(h) ... // execution: 0.8s
32 if(i) ... // execution: 0.9s

Fig. 2: Running example system with three regions, indicated between red comments, influ-
enced by configuration options. The comments indicate the execution time of the branch of
each control-flow statement for a given workload, input size, and underlying hardware. For
simplicity, we ignore the regions in Lines 23–32 through Sec. 4. Region 1 is influenced by
a control-flow interaction and Region 3 by a data-flow interaction. The local performance-
influence models are shown to the right of each region.

of slower configurations, and not characterizing the influence of options and
interactions. In contrast, performance-influence models, the focus of this arti-
cle, are more suited for tasks related to understanding, debugging, prediction,
adaptation, and automated reasoning.

2.1 State of the art of building performance-influence models

Performance-influence models are typically created by selecting a set of config-
urations, measuring the performance of a system for each configuration (given
a fixed workload and environment), and then fitting a model (e.g., a linear
model) to explain the system’s performance behavior in terms of its configu-
ration options. The accuracy of performance-influence models is measured in
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terms of how well the models predict the performance of all configurations.
The main cost driver for building performance-influence models is the need to
execute and measure a potentially large number of sampled configurations –
there is typically a tradeoff between accuracy and cost in that models trained
on fewer samples are less expensive to build, but also less accurate (e.g., if the
sampled configurations do not cover all relevant execution paths, cf. Fig. 1).

Essentially, all existing approaches for building performance-influence mod-
els are black box in that they do not consider the implementation of the system.
The key differentiators are how configurations are sampled and how (and what
kind of) models are fitted. Many combinations have been explored (Guo et al.,
2013; Sarkar et al., 2015; Siegmund et al., 2012a,b, 2013, 2015), with different
tradeoffs among applicability, cost, and accuracy (Kolesnikov et al., 2018).

By contrast, we propose to analyze the system’s implementation (white-
box) to guide the sampling to relevant configurations and to instrument the
system to perform more fine-grained measurements, mapping performance in-
fluence of options to specific code regions. While there has been work on pro-
gram analysis to identify how configuration options affect the execution of a
system (Angerer et al., 2015; Kim et al., 2013; Lillack et al., 2018), usually for
testing or system comprehension, beyond our own prior work with very limit-
ing assumptions (e.g., no data-flow interactions, and exclusive to compile-time
variability) (Siegmund et al., 2013), we are not aware of any work on using pro-
gram analysis to inform performance-influence modeling. We conjecture that
white-box strategies can achieve higher accuracy at lower cost, if the analysis
identifies relevant options and interactions.

The insights on which we build this work are Irrelevance (not all options
influence the performance of a system on a given workload), Orthogonality (not
all options interact with each other), and Low Interaction Degree (most options
tend to interact only with few other options) (Jamshidi et al., 2017a; Kim et al.,
2011, 2013; Kolesnikov et al., 2018; Lillack et al., 2018; Meinicke et al., 2016;
Nguyen et al., 2016; Reisner et al., 2010; Siegmund et al., 2012a, 2013). Other
insights, such as prefix sharing and variational execution (Meinicke et al.,
2016), could be exploited to efficiently build accurate models. However, these
insights require special dynamic analysis techniques with excessive overhead,
even for small systems, which is why we do not consider them in this work.

In the following paragraphs, we describe the state of the art approaches for
building performance-influence models in terms of their sampling, measuring,
and learning techniques, and to what degree they exploit the insights that we
consider in this work. Table 1 summarizes the approaches and Table 2 com-
pares the number of executions and accuracy of each approach when analyzing
our running example (Fig. 2, Lines 1–21).

Brute Force is a black-box approach that samples all configurations of a
system and measures the execution time of the system for a given workload
end-to-end. It is rarely used in practice due to its obvious scalability issues
for all but the smallest configuration spaces. Learning a performance-influence
model from Brute Force executions is not necessary as we know the execution
time of all configurations, although a simplified model could be learned for
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Table 1: Comparison of the state of the art approaches.

Approach Sampling Measuring Learning

Brute Force Exhaustive End-to-end Not needed
SPLat Distinct execution paths End-to-end Not needed
Sampling and Learning Strategy based End-to-end Algorithm based
Family-Based One configuration Region-level Not needed
ConfigCrusher Static analysis-based Region-level Not needed

Table 2: Comparison of the cost and accuracy of the state of the art approaches when
analyzing the running example in Fig. 2.

Insights Quality
Approach Irrelevance Orthogonality LID Cost Accurarcy

Brute Force 7 7 7 1024 High
SPLat 3 7 7 6 High
Sampling and Learning 7 3 3 —1 —1

Family-Based 7 3 7 1 —2

ConfigCrusher 3 3 3 4 High

LID = Low Interaction Degree.
1 Depends on sampling strategy, such as t-wise sampling (Medeiros et al., 2016)
2 High accuracy in the absence of data-flow interactions

understanding (Kolesnikov et al., 2018). In our running example, among other
inefficiencies, it will execute irrelevant configurations (e.g., all configurations
that explore all values of options D – J).

SPLat (Kim et al., 2013) is a white-box testing approach that we repur-
pose for performance analysis.1 By instrumenting the system, it dynamically
tracks the configurations that produce distinct execution paths. It reexecutes
the system until all configurations with distinct paths are explored. While it
ignores irrelevant options, since they do not produce different paths, it explores
all combinations of options that it encounters during execution; each time an
option is reached in a new path, it explores both values for that option. Essen-
tially, it is an improved version of the Brute Force approach. SPLat does infer
from control-flow interactions that some options are only reachable when spe-
cific values are selected. In our running example, it will explore option C only
when option A is enabled. Despite this benefit, it still often produces very large
sets of configurations to sample, which can lead to scalability issues. Similar
to the Brute Force approach, it measures the execution time end-to-end and
learning a performance-influence model is not necessary.

Sampling and Learning approaches are combinations of a sampling tech-
nique; such as random sampling, feature-wise, pair-wise (Medeiros et al., 2016),
design of experiments (Montgomery, 2006), or combinatorial sampling (Al-
Hajjaji et al., 2016; Halin et al., 2018; Hervieu et al., 2011, 2016; Nie and
Leung, 2011), to measure the end-to-end execution time of a subset of the
configuration space, and a learning technique; such as regression, classification

1 Though SPLat was designed for unit testing software product lines, the algorithm can
be used to reduce the number of configurations to sample.
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and regression trees (Guo et al., 2013; Sarkar et al., 2015; Siegmund et al.,
2012a,b, 2015), or Gaussian Processes (Jamshidi et al., 2017b), to extrapolate
a performance-influence model. The number of samples and accuracy of the
learned model depend on the sampling strategy and learning algorithm. Al-
though some sampling strategies rely on a coverage criteria to sample specific
interaction degrees, such as t-wise sampling (Medeiros et al., 2016; Nie and
Leung, 2011), they might miss important interactions leading to inaccurate
models. In addition, due to their lack of insight of the internals of the system,
none of these approaches recognizes irrelevant options.

Family-Based Performance Measurement (Siegmund et al., 2013), our own
prior work, is currently the only white-box performance-influence modeling
approach we are aware of. It uses a static mapping between options to code re-
gions and instruments the system tomeasure the execution time spent in the re-
gions. Subsequently, it executes the system once with all options enabled, track-
ing how much each option contributes to the execution time. The approach
works well when all options only contribute extra behavior, but do not interact.
Current implementations, however, derive the static map from compile-time
variability mechanisms (preprocessor directives) (Siegmund et al., 2013) and
could not handle our running example with load-time variability (i.e., loading
and processing options in variables at runtime). Furthermore, the static map
only covers direct control-flow interactions from nested preprocessor directives,
and can lead to inaccurate models when data-flow interactions occur. In our
running example (Fig. 2), data-flow analysis is needed to detect that the second
if statement indirectly depends on option A (with implicit data-flow through
variable x), leading to inaccurate performance-influence models otherwise.

All the surveyed approaches build performance-influence models with dif-
ferent levels of applicability, cost, and accuracy, but they either overapprox-
imate or underapproximate the interactions in a system and configurations
that need to be executed to build an accurate performance-influence model.
Furthermore, none of the approaches can associate the resulting performance-
influence model with regions in the source code, which can help to under-
stand and debug individual components of a system. The only exception is
the family-based approach, but it has severe limitations and assumptions of
the systems it can analyze.

2.2 ConfigCrusher

We introduce ConfigCrusher, a new white-box approach that exploits the in-
sights of Irrelevance, Independence, and Low Interaction Degree, which leads
to a reduction in the cost to measure performance while also generating ac-
curate and informative performance-influence models. Our approach improves
upon the state of the art of performance-influencing modeling by using a static
analysis to identify how load-time configuration options may influence regions
in the system through control-flow and data-flow dependencies. Then, it de-
rives a set of relevant configurations to measure the execution time of regions
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Fig. 3: Overview of ConfigCrusher’s modular components. The components represented with
solid boxes can be reused for analyzing systems implemented in any programming language.
The dashed blue boxes indicate components that have to target specific programming lan-
guages.

and builds local performance-influence models that describe how options in-
fluence the execution time of those regions. Subsequently, the local models are
aggregated to obtain a global performance-influence model for the system.

In our running example, ConfigCrusher will identify 3 regions affected by
configuration options (Fig. 2) and use the options that influence the regions to
compress the configuration space into a set of 4 configurations to be sampled
(Table 3). Next, it will instrument the system’s regions, reducing the instru-
mentation overhead through additional optimization (Sec. 3.3). Finally, it will
build local performance-influence models (Sec. 3.5) for each region based on
the performance observed when executing the instrumented system with the
compressed set of configurations (Table 3) and, subsequently, aggregate them
to produce an accurate global performance-influence model.

3 ConfigCrusher

The general idea of ConfigCrusher is to identify the regions (sets of statements
influenced by a set of options from control-flow and data-flow dependencies)
in the system that depend on configuration options, and use these options to
generate a compressed set of configurations. The set is then used to measure
the regions’ performance to build an accurate performance-influence model.
We proceed in five steps:
– Identify Configuration-Dependent Regions (Sec. 3.1): We perform a data-

flow analysis that identifies the control-flow statements that depend on
configuration options and the code regions affected by these statements.
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– Compress Configuration Set (Sec. 3.2): We identify the smallest set of con-
figurations that cover all relevant executions of all regions.

– Instrument Regions with Optimizations (Sec. 3.3): We instrument the re-
gions in the system to track their execution time in different configurations
and optimize the instrumentation to reduce measurement overhead.

– Execute the Instrumented System (Sec. 3.4): We execute the instrumented
system to measure the performance of regions.

– Build the Performance-Influence Model (Sec. 3.5): We individually build lo-
cal performance-influence models based on the measured code regions’ per-
formance and, subsequently, aggregate them to obtain a global performance-
influence model.

3.1 Identifying Configuration-Dependent Regions

As first step, we identify the control-flow statements that depend on configu-
ration options and the regions affected by these statements. To this end, we
create the statement influence map SI from statements S to the set of options
O that influence the execution of these statements (SI : S → P(O)). We use
this map later to compress a set of configurations (Sec. 3.2) and to instrument
the system (Sec. 3.3).

To obtain the statement influence map, we use a data-flow analysis to track
how options are used in control-flow statements. That is, we track variables
at API calls that load configuration options and then propagate them along
control-flow and data-flow dependencies (including implicit flows). By tracking
how each option flows through the system, we can identify, for each control-
flow statement, the set of options that may influence this statement. Finally,
we produce the map, mapping all statements in the branches of a control-flow
statement to all influencing options.

Example: The options in our running example in Fig. 2 (Lines 1–21) are the
fields A – J. Lines 6–13 are not influenced by any options, Lines 3–4 are influ-
enced by the set of options {A, C}, Lines 15–18 by {A}, and Line 21 by {A, B}.

We can reason about Irrelevance, Orthogonality, and Low Interaction Degree
with this data-flow analysis: Options that influence no control-flow statements
are irrelevant and never appear in the resulting map. Likewise, we can iden-
tify which set of options interact on which control-flow statements and detect
both orthogonality and low interaction degree. For example, in our running
example, we learn that option A interacts with B and C separately, but not
together, and that options D – J are irrelevant in the system.

3.2 Compressing Configuration Set

Based on the statement influence map, we now calculate the compressed set
of configurations (CC ⊆ P(O)) that will be executed to measure the perfor-
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Algorithm 1: Compression of configuration set
Input: Influencing options IO : P(P(O))
Output: Compressed set of configurations CC : P(C)

1 Function compress_configuration_set(IO)
2 unique_opts := unique_options(IO) // Get unique sets of options

// Remove subsets of other sets
3 unique_opts := remove_subsets(unique_opts)
4 options_to_confs := new Map()
5 for o ∈ unique_opts do
6 confs := configurations(o) // Get all configurations
7 options_to_conf.put(o, confs)
8 end
9 o1 := ∅, cs1 := ∅

10 for o2, cs2 ∈ options_to_confs do
11 CC := ∅, pivot := o1 ∩ o2

12 while c ∈ cs1 ∧ cs1.hasNext() ∧ cs2.hasNext() do
13 pv := pivot_value(pivot, c) // Get value of pivot
14 c2 := conf_with_pv(cs2) // Get conf. with value of pivot
15 CC.add(c1 ∪ c2)
16 end
17 CC.add_remaining(cs1), CC.add_remaining(cs2)
18 o1 := o1 ∪ o2, cs1 := CC
19 end
20 return CC
21 end

mance of the regions in the system. We use the set of all interactions (image
of SI from Sec. 3.1, IO : P(P(O))) to generate this set of configurations and
use it later to execute the instrumented system (Sec. 3.4).

Intuitively, our goal is to execute the system such that each region is exe-
cuted for every combination of options involved in that region, while minimiz-
ing the overall number of configurations to execute. Since different regions may
be influenced by different options (orthogonality), we can execute them in the
same configurations, in a process we call compression. The challenge is similar
to finding covering arrays in combinatorial interaction testing, such as cover-
ing all combinations of pairs of options (Al-Hajjaji et al., 2016; Halin et al.,
2018; Hervieu et al., 2011, 2016; Kuhn et al., 2013). However, we need to cover
different interaction strengths for different sets of options depending on which
combinations of options have been detected in our statement influence map.

We developed a heuristic compression algorithm (Algorithm 1) to find and
compress a set of configurations that we use to measure the performance of the
system. First, we select all unique sets of options that are not subsets of other
sets (Lines 2–3) and calculate all combinations of each set (Lines 5–8)—these
are the minimum combinations we need to cover. Next, we compress the set of
configurations (Lines 10–19) by iteratively merging the partial configurations
around the options that are common between two sets of options (i.e., the
pivot).

Example: In our running example (Lines 1–15), the regions are influenced by
the sets of options {A}, {A,B}, and {A,C}. That is, we need to cover two
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Algorithm 2: Identify regions
Input: Control-flow graph CFG, Statement-influence map SI : S → P(O)
Output: System with instrumented regions R→ P(E)× P(E), Regions to

influencing options R→ P(O)
1 Function identify_regions(CFG, SI)
2 for each stmt ∈ statements(CFG)
3 idom := idom(stmt, CFG) // Get immediate dominator

// influence(s, SI): S → P(O)
4 if influence(stmt, SI) 6= ∅ ∧ influence(stmt, SI) 6= influence(idom,

SI) then
5 r := new Region()

// Omit incoming edges from loops
6 for each edge ∈ in(stmt, CFG)
7 start(r, edge, stmt) // Map r → e and r → P(P(O))
8 end
9 pdom := ipdom(stmt, CFG) // Get immediate post-dominator

10 while influence(stmt, SI) = influence(pdom, SI) do
11 pdom := ipdom(pdom,CFG)
12 end
13 for each edge ∈ in(pdom)
14 end(r, edge, stmt) // Map r → e and r → P(P(O))
15 end
16 end
17 end
18 end

combinations for {A} (with A enabled and disabled), four combinations of
{A,B}, and four combinations of {A,C}. The four combinations of {A,B}
already subsume the two configurations of {A}. Furthermore, based on the
pivot {A} of the remaining sets, we can create a merged compressed set of
four configurations that still cover all interactions of A with B and A with
C:

{
{}, {B,C}, {A}, {A,B,C}

}
.

Note how compression exploits Irrelevance and Orthogonality : It does not
consider irrelevant options (e.g., D) and does not consider the combinations of
options that do not interact (e.g., B and C). The size of the compressed set
is dominated by the size of the largest interaction (at least 2n configurations
for an interaction among n options; n = 2 in our running example), which is
often moderate due to Low Interaction Degree. At the same time, independent
interactions of the same size can often be merged effectively.

3.3 Instrumenting Regions with Optimizations

Next, we instrument the system to measure its performance broken down by
code regions. As part of the instrumentation, we identify and optimize the
actual regions used for measurement, derived from the statement influence
map (Sec. 3.1). We subsequently execute the instrumented system (Sec. 3.4)
with the compressed set of configurations (Sec. 3.2) to build the performance-
influence model (Sec. 3.5).
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(a) Unoptimized (b) Optimized
Fig. 4: Unoptimized and optimized instrumented control-flow graphs of the methods of
Fig. 2. For simplicity, statements within the regions and those before line 9 in method main
are ignored.

A region is a set of statements influenced by the same set of options, identi-
fied by a set of control-flow edges that start the region and another set of edges
that end it. Algorithm 2 calculates the regions and their start (Line 3) and
end edges (Lines 4–16) in a method. A region starts before the first statement
influenced by a set of options (indicated by the statement influence map) and
ends after the last statement influenced by the same set of options. One task
of the algorithm is to find the end of a region where all the paths originating
from a control-flow statement meet again (i.e., the immediate post-dominator)
(Lines 9–12). The algorithm obtains the immediate post-dominator and con-
tinuously searches for the next one until it finds the last statement with the
same influence as the current control-flow statement.

After identifying all regions, we instrument the start and end edges of these
regions with statements to log their execution time and measure their influence
on performance. We also instrument the entry point of the system to measure
the performance of code not influenced by any options. The result of executing
an instrumented system is the total time spent in each region.
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Example: Fig. 4a shows the three regions that we instrument in the control-
flow graphs of our running example in Fig. 2. One region contains statements
{12, 14, 15} since statement 15 is influenced by {A} and its last post-dominator
without that influence is 21.

Optimization. Although Algorithm 2 can identify regions in a system, we ob-
served excessive overhead in execution even in small systems (see Sec. 5.3).
We found that the overhead arose from redundant, nested regions (i.e., re-
gions with the same set of influencing options), and regions executed repeat-
edly in loops. Subsequently, we identified optimizations to reduce measure-
ment overhead through instrumenting different regions without altering the
performance-influence model that we produce. Specifically, we perform opti-
mizations that preserve the following two invariants.

Invariant 1 (Expand regions): Statements not influenced by options
can be added to a region without altering the performance-influence model that
is generated and without increasing measurement effort. Statements not in-
fluenced by options contribute the same execution time to all configurations.
Therefore, including these statements in a region increases the execution time
of the region equally for all configurations, but does not affect the perfor-
mance difference among configurations used to build the performance-influence
model.

Example: Consider the statement in Line 12 and Region R2 in our running
example. The statement takes 1 second to execute and Region R2 takes 2
seconds to execute when option A is enabled, from which we can derive the
partial performance-influence model ΠR2 = 1+2A. Since the statement is not
influenced by any options, we can include it in the region, now observing 1 or
3 seconds executions depending on whether A is enabled, preserving the same
2 seconds difference and resulting in the same model.

Invariant 2 (Merge regions): GI : P(P(O)) is the set of all interactions
in the system. Two consecutive regions or an outer and an inner region in-
fluenced by interactions i1 ∈ GI and i2 ∈ GI can be merged if i1 ∪ i2 ∈ GI
without altering the performance-influence model that is generated and with-
out increasing measurement effort. Merging two consecutive regions or an outer
and an inner region forms an interaction between the options that influence
both regions. Therefore, we have to sample all combinations of the interaction
to obtain their influence on the region. If that interaction is already present
in the system, we already sample all these configurations anyway. Therefore,
we can merge these regions into one that is influenced by the interaction of
the two regions. As stated in invariant 1, merging does not affect the abso-
lute performance difference used to build the performance-influence model.
By merging regions, especially nested regions within loops, we significantly
reduce the number of regions that are executed, which significantly reduces
the overhead of measuring the instrumented system.
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Algorithm 3: Propagate influence down
Input: Statement stmt, Control-flow graph CFG, Statement-influence map

SI : S → P(O)
Output: Optimized statement-influence map S → P(O)′

1 Function propagate_down(stmt, CFG, SI)
2 ipdom := ipdom(stmt, CFG) // Get immediate post-dominator

// Get set of statements in all paths
3 pstmts := paths_stmts(stmt, ipdom) − ipdom
4 for each ps ∈ pstmts

// influence(ps, SI): S → P(O)
5 if influence(ps, SI) ⊂ influence(stmt, SI) then
6 influence(ps, SI) := influence(stmt, SI)
7 end
8 end
9 end

Algorithm 4: Propagate regions up
Input: Statement stmt, Control-flow graph CFG, Statement-influence map

SI : S → P(O), Set of all interactions in the system GI : P(O)
Output: Optimized statement-influence map S → P(O)′

1 Function propagate_up(stmt, CFG, SI,GI)
2 for each pred ∈ preds(stmt, CFG)

// influence(s, SI): S → P(O)
3 if influence(pred) ∪ influence(stmt) ∈ GI ∧ influence(pred) 6=

influence(pred) ∪ influence(stmt) then
4 influence(pred) := influence(stmt)
5 end
6 end
7 end

Example: Consider regions R2 and R3 in our running example. Region R2 is
influenced by {A} and region R3 by {A,B}. We sample all 4 combinations of A
and B to conclude that Region R2 takes 2 seconds to execute when option A is
enabled and Region R3 takes 3 seconds when both A and B are enabled, result-
ing in the partial performance-influence model ΠR2+R3 = 2A+ 3AB. Since we
already sample all configurations for interaction {A,B} and since {A}∪{A,B}
does not create a new interaction, we can merge both regions into one that is in-
fluenced by interaction {A,B} without having to sample more configurations.
In this case, the merged region would take 2 seconds when A is enabled and
5 seconds when both A and B are enabled, resulting in the same performance-
influence model when we calculate the actual influence of enabling both A and
B (i.e., +3 seconds). With the same reasoning, we can also merge regions 1
and 2 in our running example.

We developed two algorithms (Algorithm 3 and Algorithm 4) that use the
invariants to propagate the options that influence statements up and down a
control-flow graph (i.e., intraprocedually), as well as across graphs (i.e., inter-
procedually), to expand, merge, and pull out regions. The propagation in Al-
gorithm 3 merges consecutive regions (Lines 4–8) and expands where regions
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Table 3: Configuration performance map of the optimized region of Fig. 2. For simplicity,
the measurement noise was removed.

Configurations Regions
A B C D Base (s) OR1 ≡ {A, C} (s) OR2 ≡ {A, B} (s)

F F F F 1 0 0
F T T F 1 0 0
T F F F 1 3 0
T T T F 1 6 3

OR1: Optimized Region 1; OR2: Optimized Region 2.

end. The propagation in Algorithm 4 pulls out nested regions and expands
where regions start. Obeying our invariants, both algorithms never create new
interactions nor do they alter the performance-influence model that we gen-
erate, but significantly reduce the overhead of measuring the instrumented
system. After propagation, we identify the regions and instrument them as
before (Algorithm 2).

The propagation algorithms are non-deterministic (i.e., different results are
obtained depending on the order in which regions are merged). In fact, different
orderings can be used to optimize for different goals. Assuming that most of the
overhead occurs in nested regions, especially those inside loops, we prioritize
pulling regions out of loops. (We experimented with other orderings and the
results were similar to Table 7). Fig. 4b presents an optimized instrumentation
that prioritizes our goal, in which we pulled out the region in the callee.

3.4 Executing the Instrumented System

After instrumentation, we can now execute the system with the compressed
set of configurations (CC, Sec. 3.2) and track execution times for each re-
gion. We produce a configuration performance map CP , which maps each
region R in each executed configuration to a corresponding execution time T
(CP : CC → (R → T )).

At the start and end of every region, we record the current time and log the
difference as the execution time of the region. Since regions might be nested
during execution, we also keep a stack of regions at runtime and subtract the
time of nested regions from the time of outer regions. This additional step can
become a source of overhead for deeply nested regions, which is what we ob-
served in the unoptimized instrumented systems. We tried building a trace of
regions and processing the execution times after the system finished executing.
However, due to the large number of regions that were executed, the systems
ran out of memory. Our evaluation shows that the dynamic processing incurs
low overhead (Sec. 5.3).

Example: Table 3 presents a configuration performance map for the two op-
timized regions and compressed set of four configurations of our running ex-
ample.
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3.5 Building the Performance-Influence Model

Our final step is to build the performance-influence model Π that predicts the
performance of each configuration (Π : C → T ), based on the configuration
performance map (CP : CC → (R → T ), Sec. 3.4) and the region influence
map (RI : R → P(O), Sec. 3.3).

To build the global performance-influence model, we first build local mod-
els for each region separately and subsequently aggregate them. A local model
contains performance terms for all combinations of options that are associated
with the region (using RI), in the form Πr = t1XY + t2X¬Y + t3¬XY +
t4¬X¬Y for a region r with options X and Y (or Πr = t4 + (t2 − t4)X + (t3 −
t4)Y + (t1 − t2 − t3 + t4)XY to highlight the influence of options and avoid
negated terms) (Siegmund et al., 2012a). If a region has been executed multiple
times for the same combination of options in one configuration, the execution
time ti should not differ beyond usual measurement noise (since other options
should not influence the region), thus we average the execution time.

The global performance-influence model Π is obtained by aggregating all
local performance-influence models. Note that local models can be useful for
understanding and debugging the individual regions in the system.

Example: With the measurement times in Table 3, we build the local models
of the base region as ΠBase = 1 (averaged over 4 executions) and of the other
two regions as ΠOR1 = 3A¬C + 6AC = 3A + 3AC and ΠOR2 = 3AB, resulting in
the overall model Π = 1 + 3A+ 3AB+ 3AC.

4 Implementation

To show the feasibility of our white-box approach, we implemented Con-
figCrusher for Java systems and made it publicly available (Velez et al., 2019).
Its modular design allows ConfigCrusher to analyze systems in any program-
ming language; only the data-flow analysis (Sec. 3.1) and instrumentation
(Sec. 3.3) components have to target the specific language (Fig. 3).

There are several strategies to track data-flow in a system: manual track-
ing, static analysis (Arzt et al., 2014; Dong et al., 2016; Enck et al., 2010;
Lillack et al., 2018; Qiu et al., 2018; Rabkin and Katz, 2011), and dynamic
analysis (Austin and Flanagan, 2009, 2012; Bell and Kaiser, 2014; Meinicke
et al., 2016; Nguyen et al., 2016; Reisner et al., 2010; Yang et al., 2016). We
used the state of the art (Do et al., 2017; Pauck et al., 2018; Qiu et al., 2018;
Wang et al., 2016) object-, field-, context-, and flow-sensitive static taint anal-
ysis engine FlowDroid (Arzt et al., 2014). A taint analysis, typically used in the
security domain, tracks what variables have been affected by selected inputs
(sources) and are used in specific locations (sinks). We annotated the API calls
to load configurations options as sources and control-flow statements as sinks.

We used the ASM library (Bruneton et al., 2002) to add bytecode in-
structions to measure the execution time of regions. We used the Soot frame-
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work (Vallée-Rai et al., 1999) to build the call graph of a system to optimize
the instrumentation of regions.

Limitations. Our ConfigCrusher implementation is limited to analyzing single-
threaded systems, as we dynamically process the execution time of regions,
keeping a stack of regions at runtime to subtract the time of nested regions
from the time of outer regions. Having one region executing at a time facilitates
the processing and calculations that we perform. Other measurement strategies
could be used, such as using a performance profiler, to measure the execution
time of regions in multi-threaded systems.

At its core, the used static taint analysis is unsound and can lead to over-
tainting (Qiu et al., 2018; Wang et al., 2016), which can affect the results
of our approach. For instance, at the one extreme, if the analysis misses all
interactions, we will fail to produce a performance-influence model. At the
other extreme, if the analysis indicates that all options interact, our approach
results in the Brute Force approach. In addition, despite the high precision of
FlowDroid (Arzt et al., 2014), the analysis is challenged by the size of the call
graph, which restricts the size of the systems that our implementation of Con-
figCrusher can analyze (Arzt et al., 2014; Avdiienko et al., 2015; Bodden, 2018;
Do et al., 2017; Lerch et al., 2015; Pauck et al., 2018; Qiu et al., 2018; Wang
et al., 2016). Similar to other approaches (Avdiienko et al., 2015; Lillack et al.,
2018; Qiu et al., 2018), we reduced the precision of some FlowDroid specific
settings (e.g., used an unexceptional control-flow graph) for a faster analysis
(the analysis ran out of memory for systems 3 – 10 in Table 4 using the default
settings). Despite running the static analysis on a server with 512 GB of RAM
and 32 CPU cores, we were forced to exclude some systems from our evalua-
tion since the server either used all of its memory or did not finish the analysis
after 4 hours. Avdiienko et al. (Avdiienko et al., 2015) experienced similar
results on a server with more RAM and CPU cores. Nevertheless, our evalu-
ation demonstrates the feasibility of our implementation to produce accurate
and informative performance-influence models, signifying that our approach
is robust despite the levels of unsoundness and overtainting of FlowDroid. We
expect that incorporating advancements in scaling taint analyses (Andreasen
et al., 2017; Barros et al., 2015; Bodden, 2018; Christakis and Bird, 2016; Do
et al., 2017; Garbervetsky et al., 2017; Lerch et al., 2015; Späth et al., 2017;
Zhang and Su, 2017), the results in this article and the benefits of our ap-
proach will generalize to larger systems. We conjecture that similarly accurate
results can be achieved with other taint analysis implementations.

5 Evaluation

To demonstrate the feasibility and potential of our white-box approach, we
evaluate ConfigCrusher against state of the art approaches to build performance-
influence models, for a specific workload, input size, and underlying hardware,
in terms of the cost (i.e., number of configurations to sample and time to
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execute those configurations) to generate performance-influence models and
their accuracy. Subsequently, we explore the usefulness of ConfigCrusher’s lo-
cal performance-influence models to identify the local influence of options on
performance. Specifically, we address the following research questions:

RQ1: How does ConfigCrusher compare to other performance-
influence modeling approaches in terms of cost and accuracy? We
compare the effectiveness of ConfigCrusher regarding the cost of generating
models and their accuracy to state of the art black-box and white-box ap-
proaches.

RQ2: How much overhead is induced by instrumentation? One of
the goals of ConfigCrusher is to build performance-influence models efficiently.
As discussed in Sec. 3.3, we observed an excessive amount of overhead when
executing our unoptimized instrumented systems. We evaluate the effective-
ness of our optimization by exploring how much overhead the instrumented
regions induce and how it affects the performance that we measure.

RQ3: To how many regions can the influence of options on per-
formance be localized? One of the benefits of ConfigCrusher over state of
the art approaches is that it builds local performance-influence models, which
indicate whether and how the options locally influence the performance of a
system. In an exploratory analysis, we examine the local performance-influence
models to determine the local influence of options on performance. Subse-
quently, we analyze the source code regions corresponding to the local models
to further investigate how they are influenced by options. We conjecture that
this type of information, derived from the local models, can provide insights
to developers and maintainers for enhanced analysis of individual components
of a system.

5.1 Subject Systems

The subject systems are summarized in Table 4. We selected a representa-
tive set of configurable systems that satisfy the following criteria: (a) systems
from a variety of domains to increase external validity, (b) systems with at
least 5 options (the Brute Force approach would produce results cheaply for
systems with few options), (c) systems with characteristics representative of
large-scale configurable systems (e.g., systems with binary and non-binary
options), (d) single-threaded systems with deterministic execution time (we
sampled each system multiple times with different approaches and observed
execution times within usual measurement noise), and (e) systems for which
the static taint analysis terminated. We included systems that have been used
in previous studies, for comparability of results (systems 4, 7, 8) (Kim et al.,
2013; Siegmund et al., 2013; Souto et al., 2017), and new configurable systems
with a total of 860+ stars and 155+ forks on GitHub, and used by 160+ open-
source projects, at the time of writing, to showcase the applicability of our
approach (2, 3, 5, 6, 8, 9, 10). In the following sections, we consider the entire
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Table 4: Configurable subject systems.

ID Name Domain # SLOC # Opt. # Conf. CID

1 Running Example Example 69 10 1 024 —
2 Pngtastic Counter Processing 1 250 5 32 7f96382
3 Pngtastic Optimizer Optimization 2 553 5 32 7f96382
4 Elevator SPL–Benchmark 575 6 20 —
5 Grep1 Command line 2152 7 128 ef9eaa7
6 Kanzi Compression 20 537 7 128 4dae29e
7 Email SPL–Benchmark 696 9 40 —
8 Prevayler Database 1 328 9 512 5be1ca4
9 Sort1 Command line 2 163 12 4 096 ef9eaa7

10 Density Converter Processing 1 359 22 222 2ba8373

CID = Commit ID.
1 Java implementation of the Unix command.

system of Fig. 2 (Lines 1–32) as the Running Example (system 1 in Table 4)
to showcase the potential of our approach.

Due to their novelty, white-box approaches impose strict limitations on the
systems they can analyze (Kim et al., 2013; Siegmund et al., 2013; Souto et al.,
2017). ConfigCrusher lifts some of these limitations; we consider data-flow in-
teractions and do not limit the analysis to specific system implementations,
which expands the types of systems that can be analyzed and increases the
accuracy of the results. Still, the used implementation of static code analysis
imposes limitations on the size of systems and their number of configuration
options. We acknowledge the size of the real-world systems used in the eval-
uation and that black-box approaches can analyze larger systems. However,
at this stage, we want to showcase the feasibility, benefits, and potential of
white-box analyses and expect that, with improvements to the used data-flow
analysis (Andreasen et al., 2017; Barros et al., 2015; Bodden, 2018; Christakis
and Bird, 2016; Do et al., 2017; Garbervetsky et al., 2017; Lerch et al., 2015;
Späth et al., 2017; Zhang and Su, 2017), our implementation will analyze larger
systems. Nevertheless, we selected systems for our evaluation with representa-
tive characteristics of larger configurable systems (i.e., we observed the insights
of Irrelevance, Orthogonality, and Low-Interaction Degree of configurable sys-
tems). Hence, the systems that we selected are suitable to answer our research
questions and we conjecture that we can obtain similar results (Sec. 5.2) in
larger systems with a more scalable implementation of the static taint analysis.
Note the general trend in the results (Sec. 5.2): all other state of the art white-
box approaches have the same scalability problem. Still, ConfigCrusher was able
to analyze real-world systems which the other approaches could not; SPLat
did not scale to Density Converter (system 10 in Table 4) and the family-based
approach could not analyze any system besides the software product lines.

Although our static analysis correctly identified that all options interact
in Elevator (4), since it was purposely built with such behavior (Kim et al.,
2013; Meinicke et al., 2016; Souto et al., 2017) (i.e., our approach equals the
Brute Force approach), we included the system in the evaluation since it is
one of the two systems that the family-based approach can analyze.
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5.2 RQ1: Comparison to State of the Art

With RQ1, we evaluate the cost and accuracy of the performance-influence
models generated by ConfigCrusher and how it compares to state of the art
black-box and white-box approaches. To answer this question, we measured
the cost and prediction error of ConfigCrusher and all other approaches and
compared them to the ground truth.

Procedure: We established ground truth by measuring the performance of the
entire configuration space four times and averaged the performance of each
configuration. Due to the high number of configurations and execution time
of Sort (9) and Density Converter (10), we randomly sampled a large number
of configurations each to act as the ground truth. We observed no variation
in the errors of the results presented in Table 5 and Table 6 when using more
than 1000 configurations.

Specifically, we compared ConfigCrusher to feature-wise sampling (i.e., en-
able one option at a time) and pair-wise sampling (i.e., cover all combina-
tions of all pairs of options) (Medeiros et al., 2016) with stepwise linear re-
gression (Sarkar et al., 2015; Siegmund et al., 2012a,b, 2015), Brute Force,
SPLat (Kim et al., 2013), and the family-based approach (Siegmund et al.,
2013). We excluded random sampling since research (Jamshidi et al., 2017a,b;
Medeiros et al., 2016; Siegmund et al., 2015) has shown that it requires nu-
merous samples to make accurate predictions and it is not clear how many
configurations to sample for a specific system.

We conjectured that SPLat behaves essentially like the Brute Force ap-
proach in all but software product lines, since all configuration options are
read at the start of the system. We included a SPLat variant, called SPLatDe-
layed (SAD), for which we modified the source code of the systems to delay the
evaluation of options in control-flow statements (Saumont, 2017). The source
code refactoring allowed us to evaluate how SPLat would operate in systems
if it could detect when options are actually evaluated in control-flow decisions.

The static taint analysis and the performance measurements were executed
on a 2.2 GHz Intel Core i7 MacBook Pro with 16 GB of RAM running OS
X 10.13 (i.e., fixed underlying hardware). For each configuration, we initi-
ated one VM invocation and ran the configuration (Georges et al., 2007). We
used the JVM options "-Xms10G -Xmx10G –XX:+UseConcMarkSweepGC" to re-
duce the overhead of garbage collection. To control for measurement noise, we
measured each configuration five times and averaged the performance of each
configuration. For each system, we extracted the configuration options from
the projects’ documentation and executed a representative test scenario and
workload provided by the system (i.e., fixed workload and input size) (Velez
et al., 2019). Following the evaluation of state of the art approaches (Al-Hajjaji
et al., 2016; Guo et al., 2013; Halin et al., 2018; Kim et al., 2013; Lillack et al.,
2018; Medeiros et al., 2016; Meinicke et al., 2016; Sarkar et al., 2015; Siegmund
et al., 2012a,b, 2013, 2015), we discretized the non-binary options (e.g., pick
either the lowest or highest value) to reduce the number of samples to execute.
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Table 5: Cost of building performance-influence models.

S BF/SA FW PW SAD FB1 CC2

1 1024 [1.9h] 10 [16.6s] 56 [2.2m] 512 [56.9m] N/A 8 [33.8s, 4.4s]
2 32 [2.9m] 5 [27.2s] 16 [1.5m] 24 [2.2m] N/A 4 [21.9s, 7.8s]
3 32 [42.2m] 5 [1.6m] 16 [10.0m] 16 [21.0m] N/A 10 [10.7m, 30.6s]
4 20 [10.8m] 3 [50.0s] 9 [3.3m] 20 [10.8m] 1 [49.5s] 64 [—]
5 128 [10.6m] 7 [22.1s] 29 [1.9m] 48 [3.5m] N/A 64 [5.1m, 10.2s]
6 128 [1.2h] 7 [1.5m] 29 [8.8m] 64 [35.4m] N/A 64 [35.4m, 12.6s]
7 40 [16.9m] 4 [23.5s] 11 [1.7m] 40 [16.9m] 1 [1.1m] 8 [1.5m, 12.8s]
8 512 [3.7h] 9 [2.7m] 46 [16.0m] 144 [1.5h] N/A 32 [14.5m, 12.6s]
9 1298 [18.4h] 12 [13.1m] 79 [1.4h] 48 [42.8m] N/A 256 [3.7h, 21.6s]

10 1414 [14.7h] 22 [21.3m] 254 [4.1h] +24h3 N/A 256 [2.1h, 42.1s]

S = Subject system; FW = Feature-wise; PW = Pair-wise; BF = Brute Force; SA = SPLat;
SAD = SPLat Delayed; FB = Family-Based; CC = ConfigCrusher.
A cell indicates approaches with the lowest costs.
1 Not applicable to systems without static map derived from compile-time variability.
2 Time includes the overhead of the static taint analysis.
3 No data was collected due to timeout.

Table 6: MAPE comparison.

S Feature-wise Pair-wise SPLat Delayed Family-Based1 ConfigCrusher

1 56.9↑ 6.2↑ 0.2↑ N/A 0.1
2 0.8 2.0↑ 1.3 N/A 1.1
3 19.7↑ 0.9 1.0 N/A 1.1
4 51.1 1.5 ∅ 2.7 ∅
5 32.1↑ 114.7↑ 1.9↓ N/A 3.6
6 1.9 1.3 1.21 N/A 2.7
7 100↑ 44.2↑ ∅ 2.3↓ 23.0
8 111.2↑ 29.2↑ 3.0↓ N/A 9.2
9 90.0↑ 653.0↑ 2.4↑ N/A 1.6

10 635.2↑ 218.9↑ N/A3 N/A 4.3

A cell indicates approaches with statistically indistinguishable lowest errors. ↑ ap-
proach with statistically > error than ConfigCrusher. ↓ approach with statistically <
error than ConfigCrusher. ∅ approach sampled all configurations, thus no performance
to predict.
1 Not applicable to systems without static map derived from compile-time variability.

Cost Metric. We measured the number of configurations and sampling time to
generate a model. For ConfigCrusher, we also measured the one-time overhead
of the static analysis.

Error Metric. We used the Mean Absolute Percentage Error (MAPE) to mea-
sure the mean difference between the values predicted by a model and the
values actually observed (i.e., ground truth). For each approach, we calculate
the prediction error on the configurations that the approach did not sample.
We also calculated the error across all configurations (Velez et al., 2019). We
used the multiple comparison T̃-procedure (Konietschke et al., 2012) with 95%
confidence to compare statistical differences between ConfigCrusher’s predic-
tion error to the prediction error of each of the other approaches.
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Results: We show the cost results in Table 5 and the error results in Ta-
ble 6. ConfigCrusher’s prediction error is statistically indistinguishable or lower
than other approaches. Furthermore, ConfigCrusher’s high accuracy is usually
achieved with lower cost compared to the other accurate approaches. Our re-
sults support our conjecture on the cost and prediction error comparison of
Fig. 1.

Though feature-wise and pair-wise sampling tended to have lower costs
than ConfigCrusher, when their errors are taken into account, we can conclude
that more configurations had to be sampled to make accurate predictions. By
comparison, for those systems, ConfigCrusher sampled more configurations, but
attained significantly lower errors.

As we conjectured, SPLat behaves essentially like the Brute Force ap-
proach in all but software product lines. We also conjectured that SPLatDe-
layed would produce the lowest error since it uses a heuristic to perform a
more efficient Brute Force approach. For the Running Example (1), Pngtastic
Counter (2), Pngtastic Optimizer (3), and Sort (9), in which other approaches
besides SPLatDelayed produced lower errors, but statistically indistinguish-
able, we can attribute the results to measurement noise. Interestingly, SPLat-
Delayed did not finish analyzing Density Converter (10) within 24 hours. In
this case, most options are read sequentially (similar to reading all options at
the beginning of the system), thus indicating the limitations of the approach.

Only for Elevator (4) and Email (7), the family-based approach remains
the most efficient and accurate approach, but, at the same time, the most
limited one in terms of applicability.

Characteristics of interactions discussion: Thanks to ConfigCrusher, we ob-
served and confirmed the insights of Irrelevance, Orthogonality, and Low In-
teraction Degree of configurable systems. In 9 out of 10 systems, it significantly
reduced the configuration space to sample, thus reducing the cost to build ac-
curate models. For example, our analysis identified the irrelevant options in
our running example (1), Grep (5), and Sort (9), which is not leveraged by
the black-box approaches before sampling. Similarly, ConfigCrusher identified
orthogonal interactions and leveraged low interaction degree to sample fewer
configurations, which was not exploited by the white-box approaches.

For Pngtastic Counter (2), Pngtastic Optimizer (3), and Kanzi (6), the
black-box approaches produced accurate models with low cost. Upon inspec-
tion of the results, we discovered that (a) in Pngtastic Counter, the options did
not affect the performance of the system; the execution time was essentially
the same for all configurations, and (b) in Pngtastic Optimizer and Kanzi, the
options did affect the performance, but the execution times were clustered in
a few groups. For example, the performance of Kanzi under all configurations
was either ∼4 seconds or ∼61 seconds. We consider these three systems as
outliers since previous empirical studies (Apel et al., 2013; Jamshidi et al.,
2017b; Kolesnikov et al., 2018; Siegmund et al., 2015) have shown that the
performance of most configurable systems changes based on the selected con-
figurations.
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Source of prediction error discussion: Regarding ConfigCrusher’s prediction
error of Email (7), the system has a feature model (Apel et al., 2013) that
describes its valid configurations. Since the invalid configurations were not
executed, ConfigCrusher did not have all the information for each region to
generate an accurate model. Despite missing information, ConfigCrusher was
able to produce more accurate results than the other approaches, except the
family-based approach. We hope to incorporate information from a feature
model to produce more accurate models for this type of systems.

Regarding ConfigCrusher’s prediction error of Prevayler (8), we observed
that the execution time of certain regions differed beyond usual measurement
noise. This behavior occurs when the correct interaction in the regions was not
captured by the static analysis (a possible consequence of the unsoundness of
the used taint analysis). We were unable to manually determine the correct
interaction of the problematic regions. We conjecture that, since the system
writes to disk, there might be some interactions in system calls, which we do
not analyze. Despite this imprecision, ConfigCrusher was able to produce more
accurate results than the other approaches. We hope to overcome this issue
by analyzing system calls to obtain even more accurate results.

RQ1: ConfigCrusher’s prediction error is statistically indistinguishable or
lower than other approaches. ConfigCrusher’s high accuracy is usually
achieved with lower cost compared to the other accurate approaches.

5.3 RQ2: Instrumentation Overhead

As explained in Sec. 3.3, we observed excessive overhead when executing our
instrumented systems. With RQ2, we investigate how much overhead is in-
duced by instrumenting regions. To answer this question, we compared the in-
strumentation overhead and execution times of uninstrumented systems with
systems instrumented with the unoptimized Algorithm 2 and with systems in-
strumented with the optimized Algorithm 2 and the propagation Algorithms 3
and 4.

Procedure: We used the execution time of the uninstrumented systems as
ground truth and executed the configuration that triggered the most num-
ber of regions in the optimized systems. We executed the configuration with
the highest execution time in case of multiple configurations with the same
number of executed regions.

Static and Dynamic Overhead Metric. We measured the number of instru-
mented regions as the static overhead and the number of times the regions
were entered and exited as the dynamic overhead.
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Table 7: Static and dynamic comparison of instrumented regions before and after optimiza-
tion for the configuration with the largest dynamic overhead.

Original Unoptimized Optimized
S Time R RC Time R RC Time

1 12.14s 16 32 12.16s 10 22 12.13s
2 5.40s 36 > 106 >1h 13 18 5.54s
3 3.68m 397 > 106 >1h 7 88 3.77m
5 22.87s 46 > 106 >1h 1 2 21.87s
6 1.04m 128 > 109 >1h 23 4160 1.04m
7 26.08s 60 8530 25.50s 11 1204 25.49s
8 1.25m 147 > 109 >1h 28 > 106 1.27m
9 4.87m 166 > 109 >1h 1 2 4.89m

10 6.45m 202 2420 6.53m 10 78 6.45m

S = Subject system; R = # of instrumented regions; RC = # of executed
regions.

Time Metric. We measured the execution times of the unoptimized and opti-
mized instrumentations.

Results: Table 7 shows the results of our analysis. ConfigCrusher’s optimized
instrumentation with Algorithm 2, 3, and 4 reduced the number of regions and
overhead by several orders of magnitude. By contrast, the unoptimized instru-
mentation, Algorithm 2, created an excessive amount of overhead, preventing
running systems in a reasonable amount of time.

Only the systems Running Example (1), Email (7), and Density Con-
verter (10) had a low unoptimized dynamic overhead and executed in sim-
ilar time compared to the original systems. These systems do not have deeply
nested regions, which does not increase the overhead of the dynamic analysis.
Prevayler (8), which has similar structure to the previous systems, executed a
large number of optimized instrumented regions with low overhead.

We can attribute the lower execution times of the instrumented systems
compared to the original systems of the Running Example (1), Grep (5), and
Email (7) to measurement noise.

RQ2: ConfigCrusher’s optimized instrumentation incurs orders of magni-
tude less overhead compared to the unoptimized instrumentation.

5.4 RQ3: Performance Influence of Options in Regions

One of the benefits of ConfigCrusher over black-box approaches is that it builds
local performance-influence models, which indicate whether and how options
locally influence the performance of a system. With RQ3, we investigate to
how many regions the influence of options on performance can be localized.
To answer this question, we analyzed all local performance-influence models
to determine the local influence of options on performance. Subsequently, we
manually examined the source code regions corresponding to the local models
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Table 8: Influence of options analysis of local performance-influence models.

PNIO Performance influenced by optionsNEG Non-NEG
S Regions Regions Regions Min ID Max ID Structure

1 0 0 10 1 3 Sleep
2 13 2 0 N/A N/A Loop, I/O
3 3 1 3 3 3 Loop, I/O
5 0 0 1 6 6 Loop
6 19 2 2 6 6 Loop, I/O
7 7 0 4 2 8 Loop, Sleep
8 22 1 5 2 5 Loop, I/O
9 0 0 1 8 8 Loop

10 8 1 1 8 8 Loop, I/O

PNIO = Performance not influenced by options; NEG = Negligible execution time
(region which contribute < 5% of the execution time of the system). ID = Interaction
degree.

to further understand how they are influenced by options. We conjecture that
this type of information, derived from the local models, can provide insights
for enhanced analysis of individual components of a system.

Procedure: We classified all local performance-influence models into two cat-
egories according to how options influence their performance. Then, we man-
ually analyzed all corresponding source code regions to understand how they
are influenced by options. For example, we classified the following models from
Pngtastic Optimizer (3):
– Π9cb = 0.0
– Πb15 = 1.5
– Πb1a = 0.2 + 82.5Compress + 142.1CompressIter + ...,
as "Not influenced by options" (e.g., Π9cb and Πb15) and "Influenced by op-
tions" (e.g., Πb1a).

Results: Table 8 shows the results of our analysis. ConfigCrusher helped us to
identify that the influence of options on performance can be localized to a few
regions in a system. In these regions only subsets of all options interact. The lo-
cal performance-influence models helped us to easily locate these regions in the
source code to further analyze this performance behavior. In all such regions
(e.g., Region b1a above), the options influenced a loop or a control-flow state-
ment within a loop, which either manipulated data structures or performed
I/O operations. These structures were sometimes located in the method where
the region was instrumented, but other times we performed manual probing
to find them in other methods called from the instrumented method.

Local models discussion. The local performance-influence models indicate the
options that interact in the corresponding regions and whether and how they
locally influence the performance of the system. The exploratory analysis of
the corresponding source code regions yielded some interesting findings of how
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options are implemented in these systems, which cannot be found with black-
box approaches.

In a few regions, the control-flow statements with non-negligible execution
time depended on options, yet the same branch of the control-flow statement
was executed for all configurations. This behavior was surprising since we se-
lected, based on the systems’ documentation, configuration values for each
option that should behave differently. In fact, we discovered that two options
of Pngtastic Counter (2) were not used in the source code as they were de-
scribed in the documentation. For example, the valid range of an option was
0.0− 1.0, and we conjecture that the system would behave differently by pick-
ing different values. However, the control-flow statement where this option
was used always executed the same branch if the value was > 0. Finding these
inconsistensies, common in configurable systems (Cashman et al., 2018; Han
and Yu, 2016; Rabkin and Katz, 2011; Xu et al., 2013), might be useful for
developers and maintainers to debug these type of systems.

Interestingly, some options influenced only regions with negligible execution
time. This behavior was surprising since we expected, based on the systems’
documentation, that the options would influence the performance of the sys-
tems; for example, how the options that influence Region 9cb above drastically
change its execution time. We manually confirmed that they involve either a
few statements or did not contain expensive loops nor calls. While black-box
approaches also found that these options do not influence the performance,
ConfigCrusher helped us to pinpoint the regions where these options are used
to understand this potentially unexpected behavior.

We conjecture that developers can potentially discern similar findings in
other configurable systems to make more informative decisions during debug-
ging and optimization of these systems.

RQ3: ConfigCrusher helped us to identify that the influence of options on
performance is localized to a few regions in a system. The options influence
loops or control-flow statements within loops.

5.5 Threats to Validity

The primary threat to external validity is the selection of subject systems.
As discussed in Sec. 5.1, we were limited by the overhead and precision of
the static analysis. This limitation is due to the novelty of our approach and
shared with other white-box approaches, though we lift some of their limita-
tions. While we selected a set of widely-used open-source Java configurable
systems from different domains, readers should be careful when generalizing
results to other types of systems. For instance, we analyzed single-threaded
systems with deterministic execution time. Additionally, we analyzed and built
a performance-influence model for a single configurable system. Systems com-
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posed of numerous configurable systems, deployed in distributed environments,
and implemented in different languages are beyond the scope of this article.

Another threat to validity is the subset of options that we selected for
analysis in the subject systems. We selected options for which the systems’
documentation or the options’ functionality indicated that they would affect
performance and observed a wide range of execution times for the configura-
tions that we measured.

Another threat to validity is the selection of the data-flow analysis. As
discussed in Sec. 4, we selected the state of the art static taint analysis, but
reduced its precision in favor for an analysis that terminates. This strategy
has been used in previous work and, as demonstrated in our evaluation, our
approach is robust and produces accurate results with the settings that we
selected.

Measurement noise cannot be excluded and may affect the results we ob-
tained. We reduced this threat by repeating measurements several times on a
dedicated machine and averaging the results.

6 Related Work

In Sec. 2, we described performance modeling in general and closely related
state of the art black-box and white-box approach for performance-influence
modeling and compared them to ConfigCrusher. In this section, we discuss
additional research to position ConfigCrusher and white-box analyses in the
context of prior work.

Analysis of configurable systems: Similar to our work, several researchers
have leveraged some kind of program analysis to explore various properties
of configuration options (Dong et al., 2016; Hoffmann et al., 2011; Meinicke
et al., 2016; Nguyen et al., 2016; Rabkin and Katz, 2011; Reisner et al., 2010;
Souto and d’Amorim, 2018; Wang et al., 2013). Thüm et al. (Thüm et al.,
2014) presented a comprehensive survey of analyses for software product lines
also applicable to configurable systems.

Similar to our approach, Lillack et al. (Lillack et al., 2018) used taint anal-
ysis to identify, for each code fragment, in which configurations it may be
executed. However, they do not track information about individual options.
Instead, our taint analysis tracks how options influence code fragments due
to control-flow and data-flow interactions to track how options influence the
performance of the system.

Hoffmann et al. (Hoffmann et al., 2011) used dynamic influence tracing
to convert static parameters into dynamic control variables to adapt proper-
ties of an application. However, they do not consider interactions beyond two
parameters. By contrast, our approach tracks control-flow and data-flow in-
teractions among options, without a limit on the interaction degree, and how
they influence the performance of the system.

Reisner et al. (Reisner et al., 2010) and Meinicke et al. (Meinicke et al.,
2016) used symbolic execution and variational execution, respectively, to ana-
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lyze the behavior of interactions in configurable systems and found the insights
of Irrelevance, Independence, and Low Interaction Degree that we consider in
this work . We leverage those insights to create a novel white-box performance
analysis that efficiently generates accurate performance-influence models.

Testing configurable systems: Combinatorial Testing (Halin et al., 2018;
Hervieu et al., 2011, 2016; Kuhn et al., 2013; Nie and Leung, 2011) is an
approach to reduce the number of samples to test a system by satisfying a
certain coverage criterion. Similarly, Souto et al. (Souto et al., 2017) improved
SPLat (Kim et al., 2013) to use sampling heuristics (Medeiros et al., 2016)
to select what configurations to sample. While both these approaches scale to
large systems, they make assumptions on how options interact in the system
and can potentially miss relevant interactions. Instead, our sampling is guided
by white-box information on how options are used and interact in the systems.

Performance profiling: Several profiling techniques, including sampling and
instrumentation, can be used to identify performance hot spots (Cito et al.,
2018; Gregg, 2016; Mostafa et al., 2017; Yu and Pradel, 2018). For example,
Castro et al. (Castro et al., 2015) used both techniques to identify hot spots
that can be isolated and replayed as standalone systems for further perfor-
mance analysis and optimization. Our approach is complementary to this line
of work, assisting in potentially narrowing down the performance-intensive
components for more comprehensive profiling.

Energy measurement: Modeling power or energy consumption is closely re-
lated to performance and employs similar techniques (Gui et al., 2016; Gupta
et al., 2014; Jabbarvand et al., 2016). For example, Hao et al. (Hao et al., 2013)
used program analysis to estimate the energy consumption of instructions of
Android apps. This line of work, however, does not address configurability,
but could benefit from our approach to understand how the configuration of
the system influences its energy consumption.

7 Conclusion

This article presents ConfigCrusher, a white-box performance analysis approach
for configurable systems. ConfigCrusher employs a data-flow analysis to iden-
tify how configuration options may influence control-flow statements and in-
struments regions corresponding to those statements for performance mea-
surement. Our evaluation on 10 real-word systems shows the potential of our
white-box approach to builds similar or more accurate performance-influence
models than other approaches with lower cost. In contrast to state of the art
approaches, our white-box approach provides additional information of the
components of a system, which can aid stakeholders to analyze, optimize, and
debug them. Our work can provide a foundation for future research on white-
box analysis for configurable systems, such as understanding the performance
of larger and distributed systems, explaining causes for performance differ-
ences, and combining white-box and black-box approaches for more accurate
and efficient performance analysis.
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