
Automated Software Engineering manuscript No.
(will be inserted by the editor)

Exploring Output-Based Coverage
for Testing PHP Web Applications

Hung Viet Nguyen · Hung Dang Phan ·
Christian Kästner · Tien N. Nguyen

the date of receipt and acceptance should be inserted later

Abstract In software testing, different testers focus on different aspects of
the software such as functionality, performance, design, and other attributes.
While many tools and coverage metrics exist to support testers at the code
level, not much support is targeted for testers who want to inspect the output
of a program such as a dynamic web application. To support this category of
testers, we propose a family of output-coverage metrics (similar to statement,
branch, and path coverage metrics on code) that measure how much of the
possible output has been produced by a test suite and what parts of the output
are still uncovered. To do that, we first approximate the output universe using
our existing symbolic execution technique. Then, given a set of test cases, we
map the produced outputs onto the output universe to identify the covered
and uncovered parts and compute output-coverage metrics. In our empirical
evaluation on seven real-world PHP web applications, we show that selecting
test cases by output coverage is more effective at identifying presentation faults
such as HTML validation errors and spelling errors than selecting test cases
by traditional code coverage. In addition, to help testers understand output
coverage and augment test cases, we also develop a tool called WebTest that
displays the output universe in one single web page and allows testers to visually
explore covered and uncovered parts of the output.

H. Nguyen
Google LLC, USA

H. Phan
ECpE Department, Iowa State University, USA

C. Kästner
School of Computer Science, Carnegie Mellon University, USA

T. Nguyen
School of Engineering & Computer Science, University of Texas at Dallas

This is a post-peer-review, pre-copyedit version of an article published in Automated Software Engineering, with the
author-intended layout. The final version with Springer's changes will be available online at:
http://dx.doi.org/10.1007/s10515-018-0246-5

2 Hung Viet Nguyen et al.

(a) Example PHP program

1 echo "<h2>Online Shopping</h2>";
2 if (isAdmin()) logAdminAccess();
3 if (isLoggedIn())
4 echo "<div>Welcome " . $user . "!</div>";
5 else
6 echo "<div>Please log in first.</div>";
7 echo "Copyright 2015";

(b) Output of a test

(c) Output coverage visualization

Fig. 1 An example web application and the WebTest tool showing output coverage

1 Introduction

In software development, different testers have different focuses and priorities.
Testing may focus on functional correctness, but also on design, performance,
security, usability, and other aspects. While code-level testing is well supported
by tools and coverage metrics, we argue that testers inspecting the output
of a program are much less supported, even though the output is the main
product of many software systems, including dynamic web applications. For
example, a UI tester tasked with checking a web application for layout issues,
typographical errors, design standards, or browser compatibility, accessibility
support, and user friendliness would likely examine the final rendered web
page and would not need to know about how the web page is generated, what
languages the server-side code is written in, and what technologies are used
underneath. For such testers, code measures such as line or branch coverage
represent an improper abstraction, refer to artifacts not directly related to
the testing tasks and possibly unknown to the testers, and incentivize testing
priorities inefficiently as we will show. Instead, we propose coverage measures
specifically for the program’s output, to support output-oriented testing.

Exploring Output-Based Coverage for Testing PHP Web Applications 3

For testers that focus primarily on the output of an application (UI testers
and others), we propose coverage metrics on the output of an application,
which indicate how much of the possible output has been produced by a set
of tests and what output is still uncovered. Output coverage metrics measure
coverage in terms of the output, not in terms of the code that produces the
output, because code that does not produce any output is irrelevant to a UI
tester. For example, to inspect all possible outputs of our example in Figure 1a
for layout issues, a UI tester would not care about the implementation logic
beyond understanding which different pages can be produced and would not
care about whether admin access is logged (Line 2). The UI tester would care
about seeing all texts in the context to investigate different parts of the output
and the consistency among those parts, for example, ensuring that font sizes
are consistent in all outputs. An output coverage metric allows the tester to
identify parts of the output that have not yet been covered by existing test
cases, without having to manually inspect all string literals and how they are
combined through data and control flow in the program. With that knowledge,
the tester can then create new tests that reveal UI bugs in those missing parts.

The key to providing useful output-coverage metrics is to determine uncov-
ered output by comparing tests against the output universe, that is, the set
of all possible outputs produced by an application. If the output depends on
user input or the environment, such output universe can trivially be infinite;
instead, we focus on those parts of the output that are produced from string
literals within the program. We address the output universe problem by ap-
proximating all possible outputs using a symbolic-execution engine for PHP
programs [Nguyen et al., 2011]. Our key insight is that although the number of
concrete outputs may be infinite, there are usually a finite number of structures
on a web page that we can derive. The symbolic-execution engine explores
feasible paths in a program, considers unknown data such as user inputs as
symbolic values, computes possible outputs, and stores them compactly. Al-
though not including user inputs, these concrete outputs often make up the
main output of many web pages (75–96% of all output [Nguyen et al., 2014]),
and typically include the elements that are repeated on many pages. Note that
Alshahwan and Harman [2014] recently proposed an output-uniqueness criteria
for counting different outputs produced by a test suite, but their approach
cannot determine uncovered output or distinguish string literals in a program
from user input.

We propose a family of output coverage metrics similar, in spirit, to tradi-
tional statement, branch, and path coverage on source code:

1. Coverage of string literals (Covstr): As with statement coverage, we de-
termine which string literals have been output by a test suite. Relative
Covstr is measured as the ratio between the number of characters in string
literals in the output universe that are covered by the test suite and the
total number of all the characters in the output universe.

2. Coverage of output decisions (Covdec): As with branch coverage, we look at
decisions in the program that can affect the output, namely output decisions

4 Hung Viet Nguyen et al.

(each conditional statement represents two decisions that can be taken, but
not all decisions are output decisions). Relative Covdec is measured as the
ratio between the number of output decisions covered by a test suite and
the total number of all output decisions in the output universe.

3. Coverage of contexts (Covctx): As with path coverage, we consider all
combinations of output decisions (all contexts) that can be produced by
the program. Relative Covctx is measured as ratio between the contexts
covered by a test suite and the contexts in the output universe.

In an experimental evaluation on seven PHP web applications, we show
that selecting test cases by output coverage is more effective in identifying
output-related bugs—such as HTML validation errors and spelling errors—than
traditional test case selection by code coverage, whereas the latter is more
suitable for detecting traditional coding bugs. That is, different classes of bugs
can benefit from different coverage measures and output coverage is an effective
complementary metric for certain output-oriented use cases in testing.

In addition, we illustrate the benefit of output coverage indirectly by
demonstrating how output coverage in an output universe can be visualized to
help developers create test cases that optimize output coverage and to help
navigate and inspect the compact representation of the output directly to detect
certain classes of presentation faults. We introduce a prototype visualization
tool WebTest that compactly represents the output universe, highlighting
uncovered parts, as exemplified in Figure 1c.

Our key contributions in this paper include the following:

– We suggest that even though UI testers may have access to source code,
functional testing metrics are not well suited for UI testing. That is, different
types of testers concerning different aspects of the software including its
output are likely to demand different types of coverage metrics.

– We propose a family of output coverage metrics that is complementary to
but neither synonymous with nor meant to be substitutable for traditional
code-based coverage. As we will explain in Section 2.2, our output coverage
metrics provide a tailored view on the test suite of a web application for
testers who are focused on the output.

– In contrast to existing work (Section 6) which is limited to absolute output
coverage and is often inadequate for real-world testing scenarios, we provide
relative output coverage and information about what has not been covered
by an existing test suite. It is this kind of information that can help testers
augment their test cases.

– We describe a solution to the output universe problem using our existing
symbolic execution engine for PHP code and algorithms to compute both
absolute and relative output coverage metrics. While several components of
the approach (such as the symbolic execution and the core of the output
mapping algorithm) existed in our prior work [Nguyen et al., 2011], we
provide several enhancements, such as using dynamic instrumentation and
location information for better mapping accuracy, and combine them into
a holistic approach that solves a new problem (Section 3).

Exploring Output-Based Coverage for Testing PHP Web Applications 5

– Via an empirical study, we provide evidence that detecting different kinds
of issues actually benefits from optimizing test suites for different kinds of
coverage metrics and show the effectiveness of using output coverage as a
criterion for detecting output-related bugs.

– Finally, we demonstrate a prototype visualization of output coverage, demon-
strating the potential to assist developers in detecting output-related bugs
and augmenting their test suites.

All our tools are publicly available at https://github.com/git1997/VarAnalysis.

2 Output Coverage Metrics

A key step in determining output coverage is to compute the output universe,
that is, the set of all possible outputs from a web application. Based on the
output universe, we then define a suite of output coverage metrics.

2.1 Representing the Output Universe

Unlike traditional code coverage metrics, such as statement coverage or branch
coverage, where the set of all statements and branches in a program is well
defined and finite, the set of all possible outputs is usually infinite due to
unknown data coming from user inputs and databases. Such unknown data can
lead to different outputs with the same structure (e.g., only the user’s name
changes while the layout of the web page and the welcome message remain
the same), or different outputs with different structures (e.g., a different set of
functionality is presented depending on whether the user has the administrator
role).

We approximate all outputs through symbolic execution of the PHP code.
We reuse our symbolic execution engine for PHP called PhpSync [Nguyen
et al., 2011]. During symbolic execution, we track unknown values (such as user
input) as symbolic values, while tracking location information on string literals
concretely. This way, we approximate all possible structures of the output with
all statically determinable content, leaving symbolic values as ‘placeholders’ for
unresolved data. The result is a representation of the output that can contain
the alternatives from branching decisions and symbolic values representing
unknown values. For branching decisions, we explore both branches and track
the (symbolic) path conditions, such that some output is only produced under
some conditions, illustrated with #if directives in an extended example in
Figure 2b.

2.2 Family of Output Coverage Metrics

Just as a family of coverage metrics such as statement, branch, and path
coverage has been defined on code [Ammann and Offutt, 2008; Miller and

https://github.com/git1997/VarAnalysis

6 Hung Viet Nguyen et al.

(a) A PHP program (extended from Figure 1) to illustrate different output coverage metrics

1 echo "<h2>Online Shopping</h2>";
2 if (isAdmin($_GET["user"]))
3 logAdminAccess();
4 if (isLoggedIn($_GET["user"]))
5 $message = "<div>Welcome " . $_GET["user"] . "!</div>";
6 else
7 $message = "<div>Please log in first.</div>";
8 echo $message;
9 if ($showCoupons)

10 echo "<div>Coupons are available!</div>";
11 echo "<div>Copyright 2015</div>";

(b) Representation of the output universe with CPP #if directives and symbolic values in
Greek letters; origin locations of strings literals in server code are shown in italics

1 <h2>Online Shopping</h2> L1
2 #if α // isLoggedIn($_GET['user']) L4
3 <div>Welcome β!</div> // β represents $_GET['user'] L5
4 #else
5 <div>Please log in first.</div> L7
6 #endif
7 #if γ // $showCoupons L9
8 <div>Coupons are available!</div> L10
9 #endif

10 <div>Copyright 2015</div> L11

(c) A concrete output of a test case in which the user (Alice) is logged in as administrator
and the $showCoupons option is enabled

1 <h2>Online Shopping</h2>
2 <div>Welcome Alice!</div>
3 <div>Coupons are available!</div>
4 <div>Copyright 2015</div>

(d) The S-Model for a concrete output

<h2>Online
Shopping</h2>

!</div>
<div>Coupons are
available!</div>

<div>Copyright
2015</div>

CONCAT

<div>Welcome

CONCAT

L1, Fig.2a

L5, Fig.2a $_GET[user] L5, Fig.2a L10, Fig.2a

L11, Fig.2a

L5, Fig.2a

Alice

Literal NonLiteralCONCATLegends:

(e) Output coverage and code coverage for the example

Output coverage Code coverage

Covstr 111/142 (78%) Statement cov. 9/10 (90%)
Covdec 2/4 (50%) Branch cov. 3/6 (50%)
Covctx 1/4 (25%) Path cov. 1/8 (13%)

Fig. 2 An example PHP program and its output-universe representation, as well as a
concrete execution with corresponding S-Model and coverage results.

Exploring Output-Based Coverage for Testing PHP Web Applications 7

Maloney, 1963], we propose a family of coverage metrics that are applied to the
output of a dynamic web application. We define output coverage for a given
test suite as follows:

Coverage of string literals. Coverage for string literals (Covstr) is similar
to statement coverage in that we measure how much of the content contained
in string literals in the program (that are relevant for the output universe)
have been produced in at least one test case. The rationale for this type of
coverage is that a string that could appear in the output needs to be tested
in a concrete output generated by at least one test case. Note that not all
string literals in the PHP program contribute to the output: For example, the
literal “user” in our example is an array access but is not part of the output
universe and as such not measured by this metric. To measure the coverage for
string literals, we compute their covered length, or equivalently, the number of
covered characters:

Definition 1 (Covstr) The ratio between the number of characters in string
literals in the output universe that are covered by the test suite and the total
number of all characters in the output universe.

We define Covstr based on the lengths of the literals instead of the number of
literals since a web application often has long literals containing large portions
of HTML code. Counting characters aligns better with the chance of bugs since
long literals are more likely to contain presentation bugs (e.g., spelling errors
and HTML validation errors) than short ones.

Compared to a simpler approach of investigating all string literals in a
PHP program individually, testing with output coverage ensures that each
literal is produced in the context of at least one full page. Such context allows
to investigate presentation issues depending on context as font sizes, colors,
surrounding texts, or ordering that cross multiple string literals. For example,
a tester may want to assure that all <div> tags are correctly nested, which is
difficult to assess from looking only at individual string literals. Analogous to
statement coverage, to achieve Covstr coverage each literal has to appear in at
least one context, not in all possible contexts.

Coverage of output decisions. In addition to covering all string literals,
testers might also want to investigate the composition of the page when certain
parts are not displayed based on some decision. For instance, they might want
to check that the layout of the web page is still correct without the coupon
output in Figure 2c. We consider every control-flow decision in the program
that affects the output as an output decision. A control-flow decision that does
not produce output in either branch is not considered as an output decision.
We define coverage on output decisions (Covdec) analogous to branch coverage
on code:

Definition 2 (Covdec) The ratio between the number of output decisions
covered by the test suite and the total number of all output decisions in the
output universe.

8 Hung Viet Nguyen et al.

Coverage of contexts. The previous measures consider only some contexts
in which string literals may appear, while certain bugs in the output may
appear in some contexts and not others. (Each context is a specific combination
of output decisions, which can be listed by traversing the output decisions
on the output universe.) Therefore, we also consider all possible contexts
and define a corresponding output-coverage metric Covctx analogous to path
coverage on code:

Definition 3 (Covctx) The ratio between the combinations of output deci-
sions covered by the test suite and the total number of all possible combinations
of output decisions in the output universe.

In our example, there are three control-flow decisions (if statements) of
which two affect the output; these two output decisions can be combined to
provide four different contexts (in contrast to eight paths). Note that, as with
path coverage, the number of contexts grows exponentially, even though the
domain is technically finite due to our abstractions (e.g., we unroll loops exactly
once). Therefore, achieving full Covctx coverage is not a realistic goal and is
likely of limited practical use. We include Covctx and path coverage only for
completeness and theoretical purposes. In Figure 2e, we exemplify output
coverage metrics and their code coverage counterparts for a single test case.

Relations with code coverage metrics. Our three output coverage metrics
are inspired by but do not necessarily correlate with statement coverage, branch
coverage, and path coverage, respectively. Specifically, not all statements and
decisions in a web application contribute to the output (e.g., the logging
functionality in our example), and a single statement can produce multiple
parts of the output (e.g., the echo statement on line 8 of Figure 2a generates
the two alternatives on lines 2–6 in Figure 2b). Our output coverage metrics
provide a tailored view on the test suite of a dynamic web application for
testers who are interested in the output.

In practice, some testers might be interested in both code coverage and
output coverage and build test suites that target both, whereas others focus
on specific classes of tests and are more interested in one or the other form of
coverage. We do not expect that there is any single combination that would
balance both for all use cases. In fact, in some contexts, emphasis may shift
during the testing process. Therefore, the proposed output coverage metrics
are by no means intended to be a replacement for traditional code coverage
metrics. As we will show, both coverage metrics measure distinct aspects and
might be useful in different contexts in which developers can select or combine
the right metrics as required.

3 Computing Output Coverage

Key Idea. We compute output coverage metrics in three steps illustrated in
Figure 3.

Exploring Output-Based Coverage for Testing PHP Web Applications 9

PHP
page

(Fig. 2a)

Symbolic Execution
to Approx. Output

Approximated
output universe

(Fig. 2b)

Test
cases

Dynamic
Instrumentation

Concrete
outputs
(Fig. 2c, 2d)

Mapping

Output
coverage
metrics

(Fig. 2e)

Fig. 3 Computing output coverage

First, we use our symbolic execution engine for PHP [Nguyen et al., 2011]
to approximate the output universe of a PHP web application. The symbolic
executor considers unknown data such as user inputs and data from databases
as symbolic values, explores all feasible paths in a program, and computes
all possible alternatives of the output. For scalability, it executes only one
iteration of a loop and aborts on recursive function calls. Throughout symbolic
execution, we track location information for every character in the output.
Details on symbolic execution of PHP can be found elsewhere [Nguyen et al.,
2011, 2014].

Second, we instrument a regular PHP interpreter to record the execution of
a test case and the generation of its output. We again track location information
about every character in string values (either to string literals or to outside
sources such as user input).

Third, we match concrete outputs from test executions against the output
universe to measure coverage. The location information produced as part of
every test execution is used to avoid ambiguity in identifying parts in the output
universe that have been covered by the test suite. Since the number of string
literals, output decisions, and contexts in the output universe representation is
finite, we can compute the three coverage metrics as percentages.

Next, we explain steps 2 and 3 in more detail.

3.1 Dynamic Instrumentation of Test Cases

To enable more precise mapping of test outputs on the output universe, we
track location information of string values that are output by concrete test
executions. (Location information is the position of a string literal in the
source code and is used for distinguishing string literals that have the same
value but are produced from different locations in the server-side program.)
String values in PHP are either introduced in literals or read from variables or
functions that represent environment values, database results, or user input
(e.g., $_GET[‘user’]). Once created, we track location information also through
assignments, concatenation, and function calls until it is finally used as part of
an echo or print statement (or inline HTML) to produce output.

We track location by attaching position information to string values. Tech-
nically, we attach a tree-based representation for string values called S-Model.

10 Hung Viet Nguyen et al.

1 // Evaluating a Literal Expression
2 function Value eval(LiteralExpr literalExpr)
3 value ← evalLiteral(literalExpr)
4 value.SModel ← new Literal(literalExpr)
5 return value
6 end
7
8 // Evaluating a Concat Expression
9 function Value eval(ConcatExpr concatExpr)

10 leftValue ← eval(concatExpr.LeftExpr)
11 rightValue ← eval(concatExpr.RightExpr)
12 value ← evalConcat(leftValue, rightValue)
13 value.SModel← new Concat(leftValue.SModel, rightValue.SModel)
14 return value
15 end
16
17 // Evaluating a Non-Literal Expression
18 function Value eval(NonLiteralExpr nonLiteralExpr)
19 value ← evalNonLiteral(nonLiteralExpr)
20 if value.SModel is not set
21 value.SModel ← new NonLiteralNode(nonLiteralExpr)
22 end

Fig. 4 Algorithm to create S-Model (added instrumentation highlighted in italics)

An S-Model may contain three kinds of nodes: Literal and NonLiteral nodes with
location information and Concat containing nested S-Model nodes. In Figure 2d,
we illustrate the S-Model corresponding to the output of Figure 2c of our
running example (for clarity, we show only line information).

We compute location information with an instrumented PHP interpreter,
based on the open-source interpreter Quercus.1 We track the attached S-Model
information during the evaluation of the test as shown in Figure 4. Specifically,
we handle three kinds of expressions:

1. For a PHP literal expression (lines 2–6), we attach a new Literal node to the
string value, pointing to the expression node with its location information.

2. For a PHP concatenation expression (lines 9-15), we create a Concat node to
represent the returned string value with its children being the corresponding
S-Models of the constituent sub-strings.

3. For all other PHP expressions, such as a PHP variables or a function
calls (lines 18-22), we reuse the original interpreter’s code to evaluate
the expression and obtain its value (line 19). We attach a NonLiteral node
referring to the corresponding non-literal expression that creates the value.
For example, when the string literals are involved in string operations other
than concatenation (such as str_replace), the approach currently tracks the
location to the string operation.

The output of the test is collected as a single large S-Model from echo and
print statements, collecting all individual string outputs with Concat nodes.

1 http://quercus.caucho.com/

http://quercus.caucho.com/

Exploring Output-Based Coverage for Testing PHP Web Applications 11

3.2 Mapping Outputs to Output Universe

A dynamic web application often contains multiple entry points (pages), each
of which may be rendered by executing multiple server (PHP) files. We symbol-
ically execute each entry point separately and merge the results in one single
model to create the output universe. In the same way that the output repre-
sentation of one single entry point usually contains alternatives of that page’s
contents, the output universe contains alternatives of the entry points’ outputs,
using the same underlying representation of alternatives (#if directives as in
Figure 2). This is a standard technique used in our existing work [Nguyen et al.,
2015a]. The S-Model, on the other hand, is a concrete output representation of
one single entry point.

To compute output coverage, we identify which string literals in the output
have been covered by outputs generated in a test case. We map Literal nodes
of the S-Model for test executions against the output universe to identify
covered string literals and output decisions. An S-Model can be considered
as a concatenation of string literals (with location information), whereas the
output universe can be considered as a concatenation of string literals and
symbolic values, with some parts being alternatives to one another. Note that
we only map the S-Model to the part of the output universe that represents
the corresponding entry point’s output.

In most cases, the mapping is straightforward, because we simply can
match string literals by location information. Matching is more difficult when
concrete values of an execution are matched against symbolic values in the
output universe, because there might be multiple possible matches. In addition,
location information is not always available—there are cases where we might
lose location information during processing when strings are processed through
library functions. Therefore, for those cases where location information is not
available or not sufficient, we use heuristic strategies to determine the best
mapping among possible alternatives.

To illustrate our mapping challenge for cases involving symbolic values,
consider mapping a string value ‘Welcome guest” with the following output
universe, which could both be matched against ‘Welcome β’ if α is true or against
the literals ‘Welcome guest’ if α is false:

1 Welcome
2 #if α
3 β // $_GET['user']
4 #else
5 guest
6 #endif

To perform mapping in those cases, we use the following heuristic strategies:

– Pivot mapping:We first identify pivots—the string literals in the S-Model
that can be mapped exactly to the string literals in the output universe.
The remaining unmapped string literals will correspond to symbolic values
or parts with alternatives. For instance, in the above example, we first map
the string ‘Welcome’ to the corresponding string on the output universe. The

12 Hung Viet Nguyen et al.

Table 1 Subject systems

Name Version Files LOC Test pool

AddressBook (AB) 6.2.12 100 18,874 75
SchoolMate (SM) 1.5.4 63 8,183 67
TimeClock (TC) 1.04 69 23,403 63
UPB 2.2.7 395 104,640 67
WebChess (WC) 1.0.0 39 8,589 52

OsCommerce (OC) 2.3.4 787 91,482 92
WordPress (WP) 4.3.1 793 342,097 65

unmapped string ‘guest’ will then be matched against the #if block in the
output universe.

– Best local mapping: To identify which one of the alternatives should
be mapped to a given string value, we recursively map the string value
with each alternative and select the one with the best mapping result (the
highest number of mapped characters). Note that we perform the mapping
locally for (possibly nested) alternatives after pivots are identified in the
previous step; we do not consider globally optimal mapping of alternatives.
In this example, the string ‘guest’ will be matched with both values in the
true branch (β) and false branch (‘guest’) of the #if block for comparison.

– Location mapping: Since mapping can be ambiguous without location
information (e.g., the string value “guest” can be mapped to either the
symbolic value β or the string literal “guest"), we use the location information
provided by the S-Model of a string value to compare with the location of
a string value or symbolic value in the output universe to select a correct
mapping. In this example, considering the location information, the string
‘guest’ can be mapped to only one of the two branches.

Discussion. Since our output mapping algorithm works heuristically in some
cases, it is important that there are sufficient pivots to guarantee that the
local best mappings are correct. As there are often large chunks of texts that
remain unchanged across different executions, these pivots make our mapping
algorithm fast and highly precise. Note that our output mapping algorithm is
extended from the CSMap algorithm described in our existing work [Nguyen
et al., 2011]. While CSMap maps the output universe with a string in the
output (without location information), our extended algorithm maps the output
universe with an S-Model of a string value with its location information to
avoid any possible ambiguous mappings.

4 Empirical Evaluation

We hypothesize that output coverage is a preferable metric to assess bugs that
manifest in the output of a web application, such as HTML validation errors,
layout issues, and spelling errors, whereas traditional code coverage metrics
perform better with regard to bugs within the PHP code, such as undefined

Exploring Output-Based Coverage for Testing PHP Web Applications 13

Output-related bugs

Code-related bugs

Output-coverage metrics

Code-coverage metrics

Types of coverage metrics Types of bugs

Fig. 5 Relationships among output-coverage metrics, code-coverage metrics and the two
types of bugs

variables and missing parameters. That is, bugs in the output have different
characteristics than bugs in the source code and are better addressed with a
different form of coverage.

In the following, we distinguish between output-related bugs and code-related
bugs and compare the effectiveness of output-coverage metrics and code-coverage
metrics to assess coverage and prioritize testing effort. Specifically, as visualized
in Figure 5, we test (1) whether output coverage and code coverage measure
different aspects of a test suite (correlation R1 << 1), (2) whether output
coverage is a better predictor for output-related bugs than code coverage
(R2 > R3), and (3) whether code coverage is a better predictor for code-related
bugs than output coverage (R5 > R4). In addition, we check (4) whether a test
selection strategy that prioritizes output coverage will find more output-related
bugs than one that prioritizes code coverage, and (5) vice versa (i.e., whether a
test selection strategy that prioritizes code coverage will find more code-related
bugs than one that prioritizes output coverage). Note the complementary
nature of those questions: The first three questions assess the predictive power
of coverage metrics, whereas the last two questions assess the effect of using a
coverage metric as an optimization criterion, as we will explain.

In addition, we indirectly demonstrate how output coverage could be used
in praxis by testers who focus on output quality, illustrating a prototype
visualization tool to visually guide testers in augmenting or prioritizing their
test suites regarding output coverage.

4.1 Experiment Setup

To compare output coverage and code coverage, we execute various test suites
of different size on existing PHP web applications. For each test suite, we assess
coverage regarding both coverage metrics and use objective measures for three
classes of bugs on the concrete output: HTML validation errors as reported
by a static validator, spelling errors as reported by a spell checker, and PHP
errors or warnings as reported by the PHP interpreter. We subsequently use
that data to identify to what degree coverage metrics would have been suitable
to select test suites that maximize the number of detected bugs of a certain
class.

Subject systems. We assembled a corpus of seven open-source PHP web
applications for our experiment, as characterized in Table 1. The first five are
commonly used for evaluating research on PHP analysis [Artzi et al., 2010;

14 Hung Viet Nguyen et al.

Nguyen et al., 2014, 2015a; Samimi et al., 2012a]. In addition, we selected two
popular systems, OsCommerce and WordPress, that are newer, larger, and
more frequently used.

Test case generation. As common for open-source PHP applications, none
of our subject system comes with a comprehensive test suite. To avoid biases,
we use an external tool to automatically generate a large pool of test cases
from which we can derive many different test suites. We use a state-of-the-
art black-box test generation framework, the web crawler Crawljax,2 which
systematically follows links and forms on a web application. We configured
Crawljax to run with a depth of 5–10 depending on the sizes of subject systems.
Among thousands of generated tests, we remove redundant test cases producing
the exact same textual output, resulting in 52 to 92 tests per application (see
Test pool in Table 1).

Computing output coverage and code coverage. For two of our seven
subject systems (OsCommerce and WordPress), we are not able to compute the
output universe due to technical (but not conceptual) limitations in the used
symbolic-execution engine (i.e., engineering limitations due to an incomplete
support of PHP’s object system). Whereas we can compute S-models for
concrete executions and assess absolute coverage of string literals (e.g., 100
characters of string literals are covered), without knowing the output universe,
we cannot compute relative output coverage metrics. We decided to include
the subject systems nonetheless because, for our technical evaluation, we can
substitute relative Covstr with absolute Covstr, as the output universe is
constant independent of the test suite. In addition, including the two larger
and more popular systems improves the external validity of our results.

Technically, we use our dynamic instrumentation during a test run (Sec-
tion 3.1) to record the number of statements, branches, and string literals that
have been covered by a test case to compute (absolute) statement coverage,
branch coverage, and coverage of string literals (Covstr) for a given test suite.
For the first five subject systems, we additionally compute coverage of output
decisions (Covdec) based on the output universe. (We do not attempt to mea-
sure Covctx since, similar to path coverage, it is not practical to compute, as
we also explained earlier in Section 2.2).

Identifying bugs. Given a test case or test suite, we count the number of
bugs it reveals. We initially considered seeding bugs, but decided that, assuming
a uniform distribution of bugs, we could just assess the effectiveness of two test
suites by comparing their coverage: A test suite with a higher coverage should,
by definition, find more randomly seeded bugs on average. We use this insight
and evaluate coverage, but additionally also analyze reported issues (bugs and
warnings), as found by off-the-shelf bug detection tools in our subject systems.

For output-related bugs, we detect two kinds of issues: (1) HTML validation
errors, as detected by the validation tool JTidy3 and (2) spelling errors, as

2 http://crawljax.com/
3 http://jtidy.sourceforge.net/

http://crawljax.com/
http://jtidy.sourceforge.net/

Exploring Output-Based Coverage for Testing PHP Web Applications 15

detected by the open-source spell checker Jazzy.4 Jazzy may flag false positives,
such as unknown tool names, but we count those as spelling errors nonetheless,
as a tester would have to investigate them as well. We chose these types of
issues since they are common issues that can be objectively detected by external
tools, without relying on human subjects to manually find, seed, or classify
bugs. While semantic UI errors such as layout, font, or color issues are also
a type of output-related bugs, for the purpose of our evaluation, it does not
make a difference whether the errors are syntactic or semantic. Semantics UI
errors are subjective and do not have a readily available ground truth (most of
the subject systems do not have a long enough history of bug reports), and
randomly seeding artificial ones does not provide any more insight.

For code-related bugs, we enable all levels of error reporting in PHP (setting
error_reporting(E_ALL)) and collect PHP issues that are reported during a test
run since testers might need to be aware of all such errors, warnings, or notices.

For bugs found within a test suite, we only count unique bugs as identified
by a unique location in the server-side code; for output-related bugs, we map the
bug locations back to PHP server-side code using our origin location tracking.

Note how we triangulate results with two different distributions of bugs:
uniform distribution by assessing coverage and distribution of reported issues by
external tools, which are likely more representative of real bugs that developers
investigate and possibly fix.

Comparing output coverage and code coverage. Finally, we compare
the effectiveness of output coverage and code coverage regarding finding the
different classes of bugs across multiple test suites for each subject system.
We use the two complementary strategies discussed above: First we assess the
predictive power of a coverage metric through correlations with random test
suites; then we assess the effect of using a coverage metric as an optimization
criterion when creating a test suite.
– Random test suites: We generate 100 random test suites of size k; each test

suite is composed of k randomly selected tests from the subject system’s
test pool. Despite their same size, the test suites contain different tests and
cover different amounts of code and output and may find different numbers
of bugs. By correlating the values of the different coverage measures with
the number of detected bugs (using Pearson correlation), we can assess the
effectiveness of a metric. We expect that output-coverage metrics correlate
stronger with output-related bugs than code-coverage metrics, and vice
versa (i.e., R2 > R3 and R5 > R4 in Figure 5). As a sanity check, we also
compare the correlation of output coverage against code coverage across
all test suites, expecting that they do measure different aspects and do not
correlate perfectly (i.e., R1 << 1 in Figure 5).
We repeat the entire experiment for different sizes of the test suite k, from
1 to the size of the test pool minus 1 (since there is only one test suite with
size equal to the size of the test pool, and correlation is not defined for such
a set).

4 http://sourceforge.net/projects/jazzy/

http://sourceforge.net/projects/jazzy/

16 Hung Viet Nguyen et al.

– Optimized test suites: To simulate a developer optimizing a test suite
toward a specific metric, we optimize the test suite with k tests to maximize
a coverage metric. Specifically, we implemented a (deterministic) greedy
algorithm that incrementally adds test cases to a test suite such that each
added test case makes the resulting test suite achieve the highest coverage.
We create such an optimized test suite for all possible sizes k and for both
Covstr and statement coverage.
We expect that a test suite optimized for output coverage is more effective
at finding output-related bugs than a test suite optimized for code coverage,
and vice versa. (Note that the experiment does not aim to simulate opti-
mizing for both types of coverage simultaneously as it would be a matter
of trade-offs that depend on context-dependent factors.)

E
xploring

O
utput-B

ased
C
overage

for
T
esting

P
H
P

W
eb

A
pplications

17

AddressBook SchoolMate TimeClock UPB WebChess OsCommerce WordPress

Covstr vs. Stmt.
0

1

Validation Errors
(Covstr, Stmt. Cov.) 0

1

Validation Errors
(Covdec, Branch Cov.) 0

1

Spelling Errors
(Covstr, Stmt. Cov.) 0

1

Spelling Errors
(Covdec, Branch Cov.) 0

1

PHP Errors
(Covstr, Stmt. Cov.) 0

1

PHP Errors
(Covdec, Branch Cov.)

1 18 74

0

1

1 16 66 1 16 62 1 16 66 1 13 51 1 23 91 1 16 64

: Cor. Covstr and statement cov.
: Cor. Covstr and bug cov. : Cor. statement cov. and bug cov.
: Cor. Covdec and bug cov. : Cor. branch cov. and bug cov.

HTML Validation Errors Spelling Errors PHP Errors

Covstr vs. Stmt Branch Stmt Branch Stmt Branch
Sys. Stmt Cov Covstr Cov Covdec Cov Covstr Cov Covdec Cov Covstr Cov Covdec Cov

(p1) (p2) (p3) (p2) (p3) (p2) (p3) (p2) (p3) (p4) (p5) (p4) (p5)

AB 0.73 0.77 0.37 0.80 0.31 0.47 -0.02 0.46 -0.06 0.49 0.61 0.47 0.63
SM 0.81 0.76 0.68 0.66 0.61 0.35 0.05 0.09 0.03 0.76 0.86 0.73 0.91
TC 0.81 0.80 0.80 0.27 0.44 0.51 0.55 0.34 0.47 No PHP errors reported
UPB 0.16 0.31 0.17 0.10 0.19 0.41 0.18 0.33 0.20 0.16 0.43 0.37 0.42
WC 0.25 0.16 0.37 0.35 0.39 0.95 0.15 0.41 -0.12 0.18 0.31 0.15 0.27
OC 0.90 0.54 0.41 na* 0.41 0.90 0.93 na* 0.90 No PHP errors reported
WP 0.72 0.59 0.66 na* 0.62 0.90 0.61 na* 0.53 No PHP errors reported

*: Covdec cannot be computed without output universe, see Section 4.1.

Fig. 6 Results of experiment 1. The plots are organized into seven rows: The first row shows the correlation between Covstr and statement coverage
across different sizes of the random test suites (up to the size of the test pool minus 1, as explained in the text). Each plot in the second row has two
lines: The first line shows the correlation between Covstr and coverage of validation errors, whereas the second line shows the correlation between
statement coverage and coverage of validation errors. The remaining rows of plots are organized in similar manner as the second row but for other
metrics and types of bugs. To make the data more readable, we record all the correlations where the size of the random test suites is at 25% the size of
the test pool (highlighted with gray vertical lines in the plots). For example, for AddressBook, we record the correlations where the size of the test
suites is 18.) We present the data in the table below the plots and highlight the results that support or contradict our hypotheses.

18
H
ung

V
iet

N
guyen

et
al.

AddressBook SchoolMate TimeClock UPB WebChess OsCommerce WordPress

Validation Bugs

0
33

0
10

3

0
10

28

0
74

0
39

0
27

0
32

1

Spelling Bugs

0
16

0
14

0
12

4

0
65

0
49

0
12

0
25

3

PHP Bugs

0
19

0
62

0
1

0
4

0
28

0
1

0
1

Covered outputs

0
26

K

0
64

K

0
31

2K

0
26

K

0
36

K

0
13

K

0
15

3K

Covered statements
1 11 37

0
14

63

1 10 33

0
62

6

1 9 31

0
43

76

1 10 33

0
21

40

1 7 26

0
12

32

1 13 46

0
40

30

1 9 32

0
20

K

: Optimized by Covstr : Optimized by statement coverage

Validation Errors Spelling Errors PHP Errors Output covered Stmt. covered

System Covstr Stmt Cov Covstr Stmt Cov Covstr Stmt Cov Covstr Stmt Cov Covstr Stmt Cov

AB 27 12 16 1 14 16 25,593 24,000 1,325 1,403
SM 76 74 6 6 49 56 41,840 41,050 383 428
TC 355 328 59 47 0 0 91,286 84,928 1,481 1,653
UPB 19 17 40 33 3 4 16,940 10,325 1,081 1,590
WC 34 33 47 35 19 28 35,266 31,643 973 1,081
OC 22 22 12 12 0 0 13,403 13,215 3,955 4,025
WP 202 188 190 149 0 0 119,598 105,300 15,517 16,297

Fig. 7 Results of experiment 2. The plots are organized into five rows: The first three rows show the number of bugs detected when the test suites are
optimized by Covstr or statement coverage over different sizes. The last two rows show the output coverage and statement coverage of those test suites,
respectively. Note that we draw the plots up to half the size of the test pool since they typically cover all the bugs at that point (e.g., in AddressBook,
the plots show the maximum size at 37 instead of 75, which is the size of the test pool for this system). Similarly to Figure 6, the table below the plots
shows the results for a fixed size of the test suites (again marked with gray vertical lines in the plots), where we highlight the results that support or

contradict our hypotheses. We select the fixed size at 15% because optimized test suites are expected to achieve maximum coverage at a smaller size
than that of random test suites.

Exploring Output-Based Coverage for Testing PHP Web Applications 19

We do not specifically evaluate performance, as this is not a key issue. The
symbolic execution ran within seconds for each of the first five systems, and
our output coverage computation completed for less than a second per test
case.

4.2 Results

Random test suites. We show all computed correlations for four kinds of
coverage metrics and three kinds of bugs for different sizes of random test
suites in Figure 6. For better readability, we exemplify specific results for test
suites of a fixed size as part of that figure.

Output-coverage metrics tend to have low to strong correlation with code
metrics, depending on how much code not directly contributing to the output is
executed by the test suites. This non-perfect correlation is a first indicator that
code coverage provides some indication of how much output has been covered,
but is only an imperfect predictor. Both coverage metrics indeed measure
different aspects of the test suite and may be suitable for different tasks.

In most systems and for most test suite sizes, we can see, as hypothesized,
that output-related bugs correlate well with output-coverage metrics and this
correlation is stronger than the correlation with code-coverage metrics. We can
also see the opposite effect for code-related bugs. For example, for AddressBook,
Covstr is a much better predictor for HTML validation errors and spelling errors
than statement coverage, whereas statement coverage is a better predictor for
PHP errors (for test suites with size larger than 8). In addition, Covstr tends
to correlate better with output-related bug coverage than Covdec since Covstr
better measures “the amount of output” that is covered by a test suite. This
suggests a test selection strategy which optimizes a test suite based on Covstr.

Since we deal with real bugs that are not evenly distributed and there is
randomness from the test suite selection, the results do not uniformly support
our hypothesis, but they amount to strong evidence overall. Investigating the
cases that contradict our hypothesis, we found that the bugs are clustered in
only a few places. For example, TimeClock has a small number of files that
produce large chunks of output but do not contain any spelling errors, leading
to low correlations between Covstr and spelling bugs. In WordPress, the skewed
distribution of validation errors is caused by large amounts of output coming
from JavaScript code, which is not relevant for HTML validation. Similarly, in
WebChess, PHP bugs are found in only a few source files.

Optimized test suites. Whereas our first experiment compared the predic-
tive power for random test suites, our second experiment explores the effect of
creating test suites to optimize specific coverage metrics. That is, we investigate
whether a small test suite with k tests is better at finding output-related bugs
if tests have been specifically selected to maximize output coverage, compared
to a test suite of the same size optimized for code coverage.

20 Hung Viet Nguyen et al.

We plot the results for different sizes of test suites in Figure 7 and exemplify
the specific results for a small test suite.

Again, the results largely confirm our hypothesis. While at a certain size,
both test suites optimized for output coverage and code coverage detect all bugs
in our subject systems, at smaller sizes test suites optimized for output coverage
have an edge at detecting output-related bugs, whereas test suites optimized
for code coverage have an edge for detecting code-related bugs. Despite some
noise, the results are consistent across all systems.

Comparing output coverage across test suites optimized for output coverage
and code coverage and vice versa (last two rows of plots in Figure 7) further
allows us to quantify the benefit of optimizing for a coverage metric if we
assume a uniform distribution of bugs in the output or the code (e.g., if we
used uniformly seeded bugs). We can see that under these idealized (uniform)
conditions, test suites optimized by output coverage will cover additional
output, unless the test suites are too large that they all achieve maximum
output coverage. It also confirms our first experiment in that both coverage
metrics measure distinct characteristics.

Qualitatively investigating the cases where output coverage performs better
than code coverage in detecting output-related bugs, we found that many
systems contain large pieces of code for purposes such as user credentials
validation, numerical computations, or filesystem operations, which—when
executed—do not contribute significantly to the output. In such cases, a high
coverage on code does not always translate into a high coverage on the output,
and hence, a high coverage of output-related bugs.

4.3 Threats to Validity and Limitations

We made an explicit decision to not use bugs previously reported and fixed
by developers in the subject systems but rather to use two proxies: bugs and
warnings reported by neutral off-the-shelf tools and analyzing coverage as
a proxy for uniformly seeding bugs, thus triangulating our results over two
distributions of bugs for code and output issues each. Note that the former
may report issues that are not relevant to developers, but we believe that their
distribution will likely mirror those of relevant issues. Our results may not
generalize to systems that have bug distributions that are different from those
detected by these tools and different from uniform distributions.

We use Pearson correlation in our experiments since (1) assuming a uniform
distribution of bugs, there should be a linear correlation of coverage of bugs
(covering twice the outputs/statements might discover twice the bugs), and
(2) our null hypothesis for Covstr versus statement coverage is that they are
linearly correlated and measure effectively the same. One could argue that a
rank-based correlation (e.g., Spearman) may be more appropriate for decision
and branch coverage. Our results (Figure 6) are stable with regard to both
Pearson and Spearman; correlation coefficients are very similar (usually <

Exploring Output-Based Coverage for Testing PHP Web Applications 21

0.1 difference, often <= 0.02); only three relative close cases change colors in
Figure 6 (one from green to red and two from red to green).

As usual, one has to be careful in generalizing results beyond the subject
systems studied. However, these subject systems represent two major venues,
including five systems commonly used in research and two large systems
commonly used in practice.

Regarding the effectiveness of our technique, an evaluation of the symbolic-
execution engine was done in a prior work [Nguyen et al., 2014]. Implementation-
wise, our symbolic-execution engine is limited to PHP web applications without
heavy use of object-oriented code [Nguyen et al., 2015a]. Specifically, we do not
yet handle anonymous classes and object iteration (iterating through an object’s
properties with a foreach loop like entries in a map), or advanced features such
as traits, object serialization, and cloning.5 Since writing a full-fledged (and
symbolic) interpreter for a mature and complex language like PHP is nontrivial,
we needed to prioritize our engineering efforts for a research prototype towards
parts of the language that are most commonly used such as (named) class
declaration, object instantiation, field access, method invocation, and other
features that are non-object-oriented. Similarly, we also currently do not handle
client-side JavaScript processing as it is outside of this paper’s scope and would
require symbolic analysis of JavaScript code. Nevertheless, we do not anticipate
any issues with symbolic execution that are specific to currently unsupported
language features, but expect that they are a matter of engineering investments
in supporting more language constructs, which can be improved independently
in a separate work. The idea of output coverage is general to other forms of
output and user interfaces, and the approach is applicable beyond PHP web
applications (e.g., statically recovering possible variations of Java Swing dialogs
or Android activities and representing them and their coverage in a visual
form).

5 An Application Scenario: Visualizing Output Coverage

As a final indicator for the applicability of output coverage, we outline a
prototype visualization tool that can help developers to assess output coverage
and to select test cases that optimize output coverage, as done mechanically in
our second experiment. This prototype also illustrates how output coverage can
simplify many decisions during quality assurance that might otherwise require
careful inspection of the program logic to understand how string literals are
composed and propagated.

Whereas coverage metrics summarize coverage in a single number, for code
coverage, visualizations that highlight both covered and uncovered lines of code
(e.g., EclEmma and Cobertura) help developers to understand coverage and
create test cases for uncovered parts. For output coverage, highlighting only
covered string literals or output decisions within the source code is often an

5 http://php.net/manual/en/language.oop5.php

http://php.net/manual/en/language.oop5.php

22 Hung Viet Nguyen et al.

<html>

Online Shopping

TextLegends:

<body>

<h2> α

<div>

Welcome β!

<div>

Please log in first.

¬α γ

<div>

Coupons are
available.

<element> Cond

Fig. 8 The VarDOM for the PHP program in Figure 2a

inadequate abstraction for testers who are focused on the output and output-
related quality criteria such as consistent font size and colors. Instead, we
borrow from coverage visualizations for source code, but apply them to the
rendered output of a web page. To that end, we design a prototype tool named
WebTest that displays the output universe in one single web page and allows
testers to visually explore both covered and uncovered parts of the output
universe, as initially exemplified in Figure 1c. Since the output universe can be
significant in size and cover many alternative pages, we additionally develop
more compact representations in which a user can interactively explore coverage
in different parts of the output space. We envision testers using WebTest to
augment their test cases or navigate and inspect the output universe directly
to detect certain classes of presentation faults.

To reason about the structure of the output universe and modify the HTML
code to highlight covered and uncovered fragments, we parse the symbolic
output (text with conditional segments and symbolic values) into a DOM
structure with conditional nodes. We use variability-aware parsers developed
initially to parse un-preprocessed C code [Kästner et al., 2011], which we
recently adopted also for HTML, JavaScript, and CSS, to build a structure
coined VarDOM [Nguyen et al., 2014]. In the following, we describe the
VarDOM representation and how we visualize the VarDOM on a web page.

5.1 The VarDOM Representation

The VarDOM is a single tree structure that represents the hierarchical DOM
structure (HTML Document Object Model) of a web page with additional
nodes representing optional elements and symbolic values. Figure 8 shows the
VarDOM of the PHP program in Figure 2a, which is the result of parsing its
output universe representation in Figure 2b.

Each conditional node tracks the symbolic condition describing when the
corresponding subtree is included in the page. For example, in Figure 8, the three
<div> tags are displayed under different constraints α, ¬α, and γ, respectively

Exploring Output-Based Coverage for Testing PHP Web Applications 23

Fig. 9 Screenshot of WebTest on SchoolMate-1.5.4

(these symbols have location information in the source code, not shown in
Figure 8). The parsing process can handle arbitrary conditions on the input
strings, which do not need to align with the structure of the DOM (e.g., a
single opening tag can be closed by two alternative closing tags) [Kästner et al.,
2011]. In this way, the VarDOM compactly represents the output universe in a
single DOM-like structure. By tracking location information, we can identify
which structures in the VarDOM have been covered entirely or partially.

5.2 Visualizing Output Coverage with VarDOM

To visualize coverage, we render the VarDOM as an interactive web page as
illustrated in Figures 1c and 9. We process VarDOM nodes as follows:

– Regular DOM nodes in the VarDOM are rendered as plain HTML. That
is, we simply display the corresponding HTML element and recursively
displaying its child nodes (if any) in HTML format. We optionally show
some key elements as <html> and <title> verbatim, as done in many
WYSIWYG HTML editors to emphasize the structure of the page. When
possible, we also inject background colors to highlight covered and uncovered
fragments.

– Symbolic values are rendered using special placeholders. For instance, in
Figure 1c, the symbolic value is shown as $_GET[‘user’].

– For conditional nodes (stemming from control-flow decisions in the PHP
program and shown as #if directives in the output universe as in Figure 1c),
we either show all alternatives sequentially as in Figure 1c or provide an
interactive mechanism to select as in Figure 9. (We describe more about
this mechanism below.)

24 Hung Viet Nguyen et al.

– Coverage information is encoded as background colors, similar to IDE
tools for code coverage. We highlight the parts that are entirely covered
or uncovered by a given test suite in green and red background colors
(injected by manipulating CSS attributes). Information about different
coverage metrics is shown at the bottom part of the visualized web page
(in Figure 1c, we show Covstr only).

The interactive mechanism is necessary for many web applications, because
the output universe can be very large. For example, even in the relatively small
SchoolMate application, a rendering of all alternatives sequentially would fill
59 printed pages. Therefore, instead of displaying all alternatives at once, we
dynamically show and hide the alternatives on the output universe in tabs such
that only one alternative is shown for each decision at a time, but such that
a user can interactively explore alternatives through buttons in the interface.
For example, in Figure 9, a tester has selected the first alternative out of
eight possible cases for the top-most decision. As coverage in certain parts
may be hidden from view, we additionally indicate relative coverage, including
potentially hidden parts of inner decisions, with our coverage metrics in a side
bar.

Importantly, our encoding mostly preserves the visual layout of the original
page, allowing testers to quickly explore output-related issues such as inconsis-
tent font sizes or spelling issues. Furthermore, it allows testers to assess how
well a test suite covers the output universe and to explore uncovered parts of the
web page to create new test cases, all at a fundamentally different abstraction
level of outputs rather than at the level of string literals and code instructions
within PHP code.

6 Related Work

Output coverage. Supporting testing, especially web testing, from the
perspective of a tester interested in the output has received increased attention
recently.

First, our work is related to the output-uniqueness test selection criteria [Al-
shahwan and Harman, 2012, 2014], which aimed to generate diverse outputs
and show that output uniqueness provides a useful replacement for whitebox
testing if the source code in unavailable. They proposed seven syntactic ab-
stractions pertinent to web applications to avoid sensitivity to nondeterministic
output. They measure coverage only as the absolute number of distinct observed
outputs of a test suite, but have no notion of an output universe that could
help identify uncovered outputs nor the notion of decisions in producing that
output leading to our Covdec and Covctx metrics. In contrast, our contribu-
tion is in enabling output uniqueness and diversity to test adequacy criterion
and showing a difference between the measures for different kinds of bugs. In
addition, our symbolic approximation can precisely identify nondeterminism
from the environment or user input. Finally, our goal is not to substitute code

Exploring Output-Based Coverage for Testing PHP Web Applications 25

coverage by output coverage, but to provide a complementary coverage metric
that is tailored to the purposes for a specific group of testers. Specifically, our
evidence generally tends to align with previous findings and does not contradict
them. The correlation between Covstr and statement coverage is high in most
systems as in the work of Alshahwan and Harman [2014], but as we showed,
the difference is strong enough and has a clear one-directional effect to explain
differences in effectiveness for different kinds of bugs. Correlations between
decision and branch coverage are similar (0.70, 0.82, 0.35, 0.69, 0.36, N/A,
N/A). We did not compare context and path coverage, as the output universe
grows exponentially or is in fact infinite.

Second, Zou et al. [2014] introduce a V-DOM coverage for web applications.
They convert a PHP program into C code and performs static analysis for
control flows and data flows to build a V-DOM tree. Roughly similar to our
VarDOM [Nguyen et al., 2014], V-DOM’s nodes represent all possible DOM
objects that can appear in any possible executions of a page. V-DOM coverage
is defined as the ratio of the number of covered DOM objects over the total
number of DOM objects. In comparison, their work focuses only on the coverage
on DOM objects, whereas we provide a suite of coverage metrics analogous
to code coverage metrics, including coverage on output decisions for which
we additionally track decisions that lead to different outputs. V-DOM does
not target the server-side branches or paths relevant for generation of client
pages. As a consequence of not tracking decisions, they cannot create the
more compact visual representation we introduce in Figure 9. Technically, their
V-DOM coverage can be defined in terms of the nodes in VarDOM.

We would have liked to empirically compare with those existing works [Al-
shahwan and Harman, 2014; Zou et al., 2014]. Unfortunately, neither the tools
nor data (test suites) were available for a direct comparison. As they rely on
further unavailable tools, reimplementing them was not realistic. We publicly
released our tool for future comparisons.

Third, DomCovery [Mirzaaghaei and Mesbah, 2014] is another DOM-based
coverage criteria for web applications. The coverage is defined at two levels:
(1) the percentage of DOM states and transitions covered in the total state
space, and (2) the percentage of elements covered in each particular DOM
state. In contrast, we do not focus on the coverage on DOM states in the
state space. DomCovery does not account for elements that are shared across
different states, which in contrast, we represent explicitly. Finally, they do not
aim to track or reveal the alternative parts from output decisions, as we do in
WebTest.

More generally, earlier work has proposed output uniqueness for testing.
Several researchers introduce the concept of an equivalent class [Goodenough
and Gerhart, 1975; Ostrand and Balcer, 1988; Weyuker and Ostrand, 1980]
in which an element in a class leads to a correct output if all elements in the
class lead to correct output. Subdomain partition methods are proposed for the
input space via specification analysis [Ostrand and Balcer, 1988]. Richardson
and Clarke [1981] uses symbolic evaluation to partition the set of inputs into

26 Hung Viet Nguyen et al.

procedure subdomains so that the elements of each subdomain are processed
uniformly by testing.

Analyzing web output. Many researchers have investigated the output of
web applications and the relationship between code and output for various
purposes. Wang et al. [2012] aim to map changes in the client-side code to PHP
code using the recorded run-time mappings and static impact analysis. Elbaum
et al. [2006] use dynamic analysis to analyze responses to draw inferences about
its interface. PHPQuickFix [Samimi et al., 2012b] examines constant prints,
i.e., the PHP statements that print directly string literals and repairs HTML
ill-formed errors. PHPRepair [Samimi et al., 2012b] follows a dynamic approach
in which a given test suite is used to generate client-side code with different
server-side executions, while tracing the origin of output strings. Minamide
[2005] proposed a string analyzer that takes a PHP program and a regular
expression describing the input, and validates approximate HTML output via
context-free grammar analysis. Several string taint-analysis techniques were
built for PHP web programs and software-security problems [Wassermann and
Su, 2008; Xie and Aiken, 2006; Yu et al., 2011]. In prior work, we have analyzed
both code and all possible outputs to trace data flows from the code to the
web page and back [Nguyen et al., 2015a] and used the VarDOM to provide
IDE support [Nguyen et al., 2014, 2015b]. In this work, we analyze the output
universe for a new purpose to define and visualize output coverage of a test
suite.

Web testing. More generally, there is a rich literature on web testing [Doğan
et al., 2014; Li et al., 2014] overall. This adopts many quality assurance strategies
developed in other contexts to the specifics of web applications, including
dynamic symbolic execution [Artzi et al., 2010; Saxena et al., 2010; Wassermann
et al., 2008], search-based testing [Ali et al., 2010; Alshahwan and Harman,
2011; McMinn, 2004], mutation testing [Brady, 2016; Praphamontripong and
Offutt, 2010], random testing [Artzi et al., 2011; Frantzen et al., 2009; Heidegger
and Thiemann, 2010], and model-based testing [Andrews et al., 2005; Ricca
and Tonella, 2001]; they are all focused on analyzing the source code of the
web application. Also several specialized techniques to generate test cases by
crawling the web page [Girardi et al., 2006; Mesbah and van Deursen, 2009;
Mesbah et al., 2012; Milani Fard et al., 2014; Raghavan and Garcia-Molina,
2001] and collecting session data [Elbaum et al., 2003] have been explored. As
suggested previously [Alshahwan and Harman, 2014], output coverage can be
used a post-processing step to select a subset of the test cases generated by
these tools in order to focus on output defects. We have used such crawler to
create the test suites in our evaluation.

7 Conclusion

We explored output coverage for web testing, but the ideas generalize to testing
outputs of other kinds of applications. We use symbolic execution of PHP to

Exploring Output-Based Coverage for Testing PHP Web Applications 27

approximate the output universe, identify which parts of the output universe are
covered by test cases, and subsequently parse and transform the DOM structure
of the resulting page to visualize coverage. As shown in our evaluation, selecting
test cases by output coverage is more effective in identifying output-related
bugs, such as HTML validation errors and spelling errors, than traditional
selection by code coverage. In principle, the same mechanisms could be applied
also to other forms of output and user interfaces, for example, statically recover
possible variations of Java Swing dialogs or Android activities and represent
them and their coverage in a visual form. Although different analysis and
visualization techniques will be needed (e.g., to discover a sequence of API
calls setting various parameters instead of echo statements printing text), the
same basic ideas apply.

Acknowledgements. Kästner’s work has been supported in part by the National
Science Foundation (awards 1318808, 1552944, and 1717022) and AFRL and
DARPA (FA8750-16-2-0042). Nguyen’s work has been supported in part by
CCF-1349153, CCF-1320578, and CCF-1413927.

References

Shaukat Ali, Lionel C. Briand, Hadi Hemmati, and Rajwinder Kaur Panesar-
Walawege. A systematic review of the application and empirical investigation
of search-based test case generation. IEEE Trans. Softw. Eng., 36(6):742–
762, November 2010. ISSN 0098-5589. doi: 10.1109/TSE.2009.52. URL
http://dx.doi.org/10.1109/TSE.2009.52.

Nadia Alshahwan and Mark Harman. Automated web application testing
using search based software engineering. In Proceedings of the 2011 26th
IEEE/ACM International Conference on Automated Software Engineering,
ASE ’11, pages 3–12, Washington, DC, USA, 2011. IEEE Computer Society.
ISBN 978-1-4577-1638-6. doi: 10.1109/ASE.2011.6100082. URL http://dx.
doi.org/10.1109/ASE.2011.6100082.

Nadia Alshahwan and Mark Harman. Augmenting test suites effectiveness
by increasing output diversity. In Proceedings of the 34th International
Conference on Software Engineering, ICSE ’12, pages 1345–1348. IEEE
Press, 2012.

Nadia Alshahwan and Mark Harman. Coverage and fault detection of the
output-uniqueness test selection criteria. In Proceedings of the 2014 Interna-
tional Symposium on Software Testing and Analysis, pages 181–192, New
York, NY, USA, 2014. ACM.

Paul Ammann and Jeff Offutt. Introduction to Software Testing. Cambridge
University Press, New York, NY, USA, 1 edition, 2008.

Anneliese A. Andrews, Jeff Offutt, and Roger T. Alexander. Testing web
applications by modeling with fsms. Software and Systems Modeling, 4:
326–345, 2005.

http://dx.doi.org/10.1109/TSE.2009.52
http://dx.doi.org/10.1109/ASE.2011.6100082
http://dx.doi.org/10.1109/ASE.2011.6100082

28 Hung Viet Nguyen et al.

Shay Artzi, Adam Kiezun, Julian Dolby, Frank Tip, Daniel Dig, Amit Paradkar,
and Michael D. Ernst. Finding bugs in web applications using dynamic test
generation and explicit-state model checking. IEEE Trans. Softw. Eng., 36
(4):474–494, July 2010. ISSN 0098-5589. doi: 10.1109/TSE.2010.31. URL
http://dx.doi.org/10.1109/TSE.2010.31.

Shay Artzi, Julian Dolby, Simon Holm Jensen, Anders Møller, and Frank
Tip. A framework for automated testing of javascript web applications. In
Proceedings of the 33rd International Conference on Software Engineering,
ICSE ’11, pages 571–580, New York, NY, USA, 2011. ACM. ISBN 978-1-
4503-0445-0. doi: 10.1145/1985793.1985871. URL http://doi.acm.org/
10.1145/1985793.1985871.

Padraic Brady. Mutation testing framework for php, 2016. URL https:
//github.com/padraic/humbug.

Serdar Doğan, Aysu Betin-Can, and Vahid Garousi. Web application testing:
A systematic literature review. J. Syst. Softw., 91:174–201, May 2014. ISSN
0164-1212. doi: 10.1016/j.jss.2014.01.010. URL http://dx.doi.org/10.
1016/j.jss.2014.01.010.

Sebastian Elbaum, Srikanth Karre, and Gregg Rothermel. Improving web
application testing with user session data. In Proceedings of the 25th In-
ternational Conference on Software Engineering, ICSE ’03, pages 49–59,
Washington, DC, USA, 2003. IEEE Computer Society. ISBN 0-7695-1877-X.
URL http://dl.acm.org/citation.cfm?id=776816.776823.

Sebastian Elbaum, Kalyan-Ram Chilakamarri, Marc Fisher, II, and Gregg
Rothermel. Web application characterization through directed requests.
In Proceedings of the 2006 International Workshop on Dynamic Systems
Analysis, WODA ’06, pages 49–56, New York, NY, USA, 2006. ACM. ISBN
1-59593-400-6. doi: 10.1145/1138912.1138923. URL http://doi.acm.org/
10.1145/1138912.1138923.

Lars Frantzen, Maria Las Nieves Huerta, Zsolt Gere Kiss, and Thomas Wallet.
Web services and formal methods. chapter On-The-Fly Model-Based Testing
of Web Services with Jambition, pages 143–157. Springer-Verlag, Berlin,
Heidelberg, 2009. ISBN 978-3-642-01363-8. doi: 10.1007/978-3-642-01364-5_
9. URL http://dx.doi.org/10.1007/978-3-642-01364-5_9.

Christian Girardi, Filippo Ricca, and Paolo Tonella. Web crawlers compared.
International Journal of Web Information Systems, 2(2):85–94, 2006.

John B. Goodenough and Susan L. Gerhart. Toward a theory of test data
selection. In Proceedings of the International Conference on Reliable Software,
pages 493–510. ACM, 1975.

Phillip Heidegger and Peter Thiemann. Contract-driven testing of javascript
code. In Proceedings of the 48th International Conference on Objects, Models,
Components, Patterns, TOOLS’10, pages 154–172, Berlin, Heidelberg, 2010.
Springer-Verlag. ISBN 3-642-13952-3, 978-3-642-13952-9. URL http://dl.
acm.org/citation.cfm?id=1894386.1894395.

Christian Kästner, Paolo G. Giarrusso, Tillmann Rendel, Sebastian Erdweg,
Klaus Ostermann, and Thorsten Berger. Variability-aware parsing in the
presence of lexical macros and conditional compilation. In Proceedings of

http://dx.doi.org/10.1109/TSE.2010.31
http://doi.acm.org/10.1145/1985793.1985871
http://doi.acm.org/10.1145/1985793.1985871
https://github.com/padraic/humbug
https://github.com/padraic/humbug
http://dx.doi.org/10.1016/j.jss.2014.01.010
http://dx.doi.org/10.1016/j.jss.2014.01.010
http://dl.acm.org/citation.cfm?id=776816.776823
http://doi.acm.org/10.1145/1138912.1138923
http://doi.acm.org/10.1145/1138912.1138923
http://dx.doi.org/10.1007/978-3-642-01364-5_9
http://dl.acm.org/citation.cfm?id=1894386.1894395
http://dl.acm.org/citation.cfm?id=1894386.1894395

Exploring Output-Based Coverage for Testing PHP Web Applications 29

the 2011 ACM International Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA ’11, pages 805–824, New
York, NY, USA, 2011. ACM. ISBN 978-1-4503-0940-0. doi: 10.1145/2048066.
2048128. URL http://doi.acm.org/10.1145/2048066.2048128.

Yuan-Fang Li, Paramjit K. Das, and David L. Dowe. Two decades of web
application testing-a survey of recent advances. Inf. Syst., 43(C):20–54,
July 2014. ISSN 0306-4379. doi: 10.1016/j.is.2014.02.001. URL http:
//dx.doi.org/10.1016/j.is.2014.02.001.

Phil McMinn. Search-based software test data generation: A survey: Research
articles. Softw. Test. Verif. Reliab., 14(2):105–156, June 2004. ISSN 0960-
0833. doi: 10.1002/stvr.v14:2. URL http://dx.doi.org/10.1002/stvr.
v14:2.

Ali Mesbah and Arie van Deursen. Invariant-based automatic testing of ajax
user interfaces. In Proceedings of the 31st International Conference on
Software Engineering, ICSE ’09, pages 210–220, Washington, DC, USA, 2009.
IEEE Computer Society. ISBN 978-1-4244-3453-4. doi: 10.1109/ICSE.2009.
5070522. URL http://dx.doi.org/10.1109/ICSE.2009.5070522.

Ali Mesbah, Arie van Deursen, and Stefan Lenselink. Crawling ajax-based web
applications through dynamic analysis of user interface state changes. ACM
Trans. Web, 6(1):3:1–3:30, March 2012. ISSN 1559-1131. doi: 10.1145/2109205.
2109208. URL http://doi.acm.org/10.1145/2109205.2109208.

Amin Milani Fard, Mehdi Mirzaaghaei, and Ali Mesbah. Leveraging existing
tests in automated test generation for web applications. In Proceedings
of the 29th ACM/IEEE International Conference on Automated Software
Engineering, ASE ’14, pages 67–78, New York, NY, USA, 2014. ACM. ISBN
978-1-4503-3013-8. doi: 10.1145/2642937.2642991. URL http://doi.acm.
org/10.1145/2642937.2642991.

Joan C. Miller and Clifford J. Maloney. Systematic mistake analysis of digital
computer programs. Commun. ACM, 6(2):58–63, February 1963.

Yasuhiko Minamide. Static approximation of dynamically generated web pages.
In Proceedings of the 14th International Conference on World Wide Web,
WWW ’05, pages 432–441, New York, NY, USA, 2005. ACM. ISBN 1-
59593-046-9. doi: 10.1145/1060745.1060809. URL http://doi.acm.org/
10.1145/1060745.1060809.

Mehdi Mirzaaghaei and Ali Mesbah. Dom-based test adequacy criteria for
web applications. In Proceedings of the 2014 International Symposium on
Software Testing and Analysis, ISSTA 2014, pages 71–81, New York, NY,
USA, 2014. ACM. ISBN 978-1-4503-2645-2. doi: 10.1145/2610384.2610406.
URL http://doi.acm.org/10.1145/2610384.2610406.

Hung Viet Nguyen, Hoan Anh Nguyen, Tung Thanh Nguyen, and Tien N.
Nguyen. Auto-locating and fix-propagating for HTML validation errors
to PHP server-side code. In Proceedings of the 2011 26th IEEE/ACM
International Conference on Automated Software Engineering, pages 13–22,
Washington, DC, USA, 2011. IEEE Computer Society.

Hung Viet Nguyen, Christian Kästner, and Tien N. Nguyen. Building call graphs
for embedded client-side code in dynamic web applications. In Proceedings

http://doi.acm.org/10.1145/2048066.2048128
http://dx.doi.org/10.1016/j.is.2014.02.001
http://dx.doi.org/10.1016/j.is.2014.02.001
http://dx.doi.org/10.1002/stvr.v14:2
http://dx.doi.org/10.1002/stvr.v14:2
http://dx.doi.org/10.1109/ICSE.2009.5070522
http://doi.acm.org/10.1145/2109205.2109208
http://doi.acm.org/10.1145/2642937.2642991
http://doi.acm.org/10.1145/2642937.2642991
http://doi.acm.org/10.1145/1060745.1060809
http://doi.acm.org/10.1145/1060745.1060809
http://doi.acm.org/10.1145/2610384.2610406

30 Hung Viet Nguyen et al.

of the 22Nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pages 518–529, New York, NY, USA, 2014. ACM.

Hung Viet Nguyen, Christian Kästner, and Tien N. Nguyen. Cross-language
program slicing for dynamic web applications. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, pages 369–380,
New York, NY, USA, 2015a. ACM.

Hung Viet Nguyen, Christian Kästner, and Tien N. Nguyen. Varis: IDE support
for embedded client code in PHP web applications. In Proceedings of the
37th International Conference on Software Engineering - Volume 2, pages
693–696, Piscataway, NJ, USA, 2015b. IEEE Press.

T. J. Ostrand and M. J. Balcer. The category-partition method for specifying
and generating fuctional tests. Commun. ACM, 31(6):676–686, June 1988.
ISSN 0001-0782. doi: 10.1145/62959.62964. URL http://doi.acm.org/10.
1145/62959.62964.

Upsorn Praphamontripong and Jeff Offutt. Applying mutation testing to web
applications. In Proceedings of the 2010 Third International Conference
on Software Testing, Verification, and Validation Workshops, ICSTW ’10,
pages 132–141, Washington, DC, USA, 2010. IEEE Computer Society. ISBN
978-0-7695-4050-4. doi: 10.1109/ICSTW.2010.38. URL http://dx.doi.
org/10.1109/ICSTW.2010.38.

Sriram Raghavan and Hector Garcia-Molina. Crawling the hidden web. In
Proceedings of the 27th International Conference on Very Large Data Bases,
VLDB ’01, pages 129–138, San Francisco, CA, USA, 2001. Morgan Kaufmann
Publishers Inc. ISBN 1-55860-804-4. URL http://dl.acm.org/citation.
cfm?id=645927.672025.

Filippo Ricca and Paolo Tonella. Analysis and testing of web applications. In
Proceedings of the 23rd International Conference on Software Engineering,
ICSE ’01, pages 25–34, Washington, DC, USA, 2001. IEEE Computer So-
ciety. ISBN 0-7695-1050-7. URL http://dl.acm.org/citation.cfm?id=
381473.381476.

Debra J. Richardson and Lori A. Clarke. A partition analysis method to increase
program reliability. In Proceedings of the 5th International Conference on
Software Engineering, ICSE ’81, pages 244–253, Piscataway, NJ, USA, 1981.
IEEE Press. ISBN 0-89791-146-6. URL http://dl.acm.org/citation.
cfm?id=800078.802537.

Hesam Samimi, Max Schäfer, Shay Artzi, Todd Millstein, Frank Tip, and Laurie
Hendren. Automated repair of HTML generation errors in PHP applications
using string constraint solving. In Proceedings of the 34th International
Conference on Software Engineering, pages 277–287, Piscataway, NJ, USA,
2012a. IEEE Press.

Hesam Samimi, Max Schäfer, Shay Artzi, Todd Millstein, Frank Tip, and Laurie
Hendren. Automated repair of html generation errors in php applications
using string constraint solving. In Proceedings of the 34th International
Conference on Software Engineering, ICSE ’12, pages 277–287, Piscataway,
NJ, USA, 2012b. IEEE Press. ISBN 978-1-4673-1067-3. URL http://dl.
acm.org/citation.cfm?id=2337223.2337257.

http://doi.acm.org/10.1145/62959.62964
http://doi.acm.org/10.1145/62959.62964
http://dx.doi.org/10.1109/ICSTW.2010.38
http://dx.doi.org/10.1109/ICSTW.2010.38
http://dl.acm.org/citation.cfm?id=645927.672025
http://dl.acm.org/citation.cfm?id=645927.672025
http://dl.acm.org/citation.cfm?id=381473.381476
http://dl.acm.org/citation.cfm?id=381473.381476
http://dl.acm.org/citation.cfm?id=800078.802537
http://dl.acm.org/citation.cfm?id=800078.802537
http://dl.acm.org/citation.cfm?id=2337223.2337257
http://dl.acm.org/citation.cfm?id=2337223.2337257

Exploring Output-Based Coverage for Testing PHP Web Applications 31

Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen McCa-
mant, and Dawn Song. A symbolic execution framework for javascript.
In Proceedings of the 2010 IEEE Symposium on Security and Privacy,
SP ’10, pages 513–528, Washington, DC, USA, 2010. IEEE Computer
Society. ISBN 978-0-7695-4035-1. doi: 10.1109/SP.2010.38. URL http:
//dx.doi.org/10.1109/SP.2010.38.

Xiaoyin Wang, Lu Zhang, Tao Xie, Yingfei Xiong, and Hong Mei. Automating
presentation changes in dynamic web applications via collaborative hybrid
analysis. In Proceedings of the ACM SIGSOFT 20th International Symposium
on the Foundations of Software Engineering, FSE ’12, pages 16:1–16:11, New
York, NY, USA, 2012. ACM. ISBN 978-1-4503-1614-9. doi: 10.1145/2393596.
2393614. URL http://doi.acm.org/10.1145/2393596.2393614.

Gary Wassermann and Zhendong Su. Static detection of cross-site scripting
vulnerabilities. In Proceedings of the 30th International Conference on
Software Engineering, ICSE ’08, pages 171–180, New York, NY, USA, 2008.
ACM. ISBN 978-1-60558-079-1. doi: 10.1145/1368088.1368112. URL http:
//doi.acm.org/10.1145/1368088.1368112.

Gary Wassermann, Dachuan Yu, Ajay Chander, Dinakar Dhurjati, Hiroshi
Inamura, and Zhendong Su. Dynamic test input generation for web appli-
cations. In Proceedings of the 2008 International Symposium on Software
Testing and Analysis, ISSTA ’08, pages 249–260, New York, NY, USA,
2008. ACM. ISBN 978-1-60558-050-0. doi: 10.1145/1390630.1390661. URL
http://doi.acm.org/10.1145/1390630.1390661.

E. J. Weyuker and T. J. Ostrand. Theories of program testing and the
application of revealing subdomains. IEEE Trans. Softw. Eng., 6(3):236–
246, May 1980. ISSN 0098-5589. doi: 10.1109/TSE.1980.234485. URL
http://dx.doi.org/10.1109/TSE.1980.234485.

Yichen Xie and Alex Aiken. Static detection of security vulnerabilities in
scripting languages. In Proceedings of the 15th Conference on USENIX
Security Symposium - Volume 15, USENIX-SS’06, Berkeley, CA, USA,
2006. USENIX Association. URL http://dl.acm.org/citation.cfm?
id=1267336.1267349.

Fang Yu, Muath Alkhalaf, and Tevfik Bultan. Patching vulnerabilities with
sanitization synthesis. In Proceedings of the 33rd International Conference
on Software Engineering, ICSE ’11, pages 251–260, New York, NY, USA,
2011. ACM. ISBN 978-1-4503-0445-0. doi: 10.1145/1985793.1985828. URL
http://doi.acm.org/10.1145/1985793.1985828.

Yunxiao Zou, Zhenyu Chen, Yunhui Zheng, Xiangyu Zhang, and Zebao Gao.
Virtual dom coverage for effective testing of dynamic web applications. In
Proceedings of the 2014 International Symposium on Software Testing and
Analysis, ISSTA 2014, pages 60–70, New York, NY, USA, 2014. ACM. ISBN
978-1-4503-2645-2. doi: 10.1145/2610384.2610399. URL http://doi.acm.
org/10.1145/2610384.2610399.

http://dx.doi.org/10.1109/SP.2010.38
http://dx.doi.org/10.1109/SP.2010.38
http://doi.acm.org/10.1145/2393596.2393614
http://doi.acm.org/10.1145/1368088.1368112
http://doi.acm.org/10.1145/1368088.1368112
http://doi.acm.org/10.1145/1390630.1390661
http://dx.doi.org/10.1109/TSE.1980.234485
http://dl.acm.org/citation.cfm?id=1267336.1267349
http://dl.acm.org/citation.cfm?id=1267336.1267349
http://doi.acm.org/10.1145/1985793.1985828
http://doi.acm.org/10.1145/2610384.2610399
http://doi.acm.org/10.1145/2610384.2610399

	Introduction
	Output Coverage Metrics
	Computing Output Coverage
	Empirical Evaluation
	An Application Scenario: Visualizing Output Coverage
	Related Work
	Conclusion

