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Abstract

Building software product lines (SPLs) with fea-
tures is a challenging task. Many SPL implemen-
tations support features with coarse granularity –
e.g., the ability to add and wrap entire methods.
However, fine-grained extensions, like adding a
statement in the middle of a method, either require
intricate workarounds or obfuscate the base code
with annotations. Though many SPLs can and have
been implemented with the coarse granularity of
existing approaches, fine-grained extensions are
essential when extracting features from legacy ap-
plications. Furthermore, also some existing SPLs
could benefit from fine-grained extensions to re-
duce code replication or improve readability. In this
paper, we analyze the effects of feature granularity
in SPLs and present a tool, called Colored IDE
(CIDE), that allows features to implement coarse-
grained and fine-grained extensions in a concise
way. In two case studies, we show how CIDE sim-
plifies SPL development compared to traditional
approaches.

Categories and Subject Descriptors: D.2.3 [Software]:
Software Engineering—Coding Tools and Techniques;
D.2.6 [Software]: Software Engineering—Programming
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Environments; D.3.3 [Software]: Software Engineering—
Language Constructs and Features

General Terms: Design, Languages

Keywords: Software product lines, virtual separation of
concerns, feature refactoring, IDE
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1 Introduction

A software product line (SPL) aims at generating tailored
programs from a set of features. Each feature represents
an increment in functionality relevant to stakeholders. Dif-
ferent programs tailored for a given task or environment
can be created by selecting a particular subset of features.
Using SPLs it is possible to create program families of
related programs for a domain.

A feature’s implementation extends the program in one
or more places. In prior work, we successfully created
SPLs, e.g., (Apel and Batory, 2006; Kästner et al., 2007a;
Leich et al., 2005), with several different implementation
approaches like AHEAD (Batory et al., 2004), mixin lay-
ers (Smaragdakis and Batory, 2002), aspectual feature
modules (Apel et al., 2008), or aspects (Kiczales et al.,
1997). At that time, we have not been aware of the impor-
tance of granularity on feature implementation.

In a recent case study, we decomposed a legacy
application – Berkeley DB, an embedded database
engine1 – into features in order to transform it into an
SPL (Kästner et al., 2007a). We factored out 38 features,
so that users could configure Berkeley DB to optionally

1http://www.oracle.com/database/berkeley-db
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include features such as transactions, statistics, or logging.
We noticed that this decomposition was much more difficult
than our prior SPL implementations. Several features
were hard to implement because they needed to introduce
statements in the middle of methods, or add parameters to
existing methods. The modularization of features became
very difficult to understand and maintain. Though some
problems were caused by limitations of AspectJ, we
found that other languages like Jak (Batory et al., 2004),
Jiazzi (McDirmid et al., 2001), or Hyper/J (Tarr et al., 1999)
also poorly support extensions of such fine granularity.

What we observed is that languages that are based
on collaboration-based design (Reenskaug et al., 1992)
focus on adding new members to existing classes, new
classes, and extending existing methods (Apel et al., 2007).
These capabilities are sufficient for many applications. But
for decomposing Berkeley DB, we needed much more
fine-grained extensions. For example, when adding trans-
action and synchronization mechanisms to the database
system, we extended the program in over 240 places, of-
ten in places not trivially to access, like in the middle of a
method (Kästner et al., 2007a). To realize such extensions,
we had to use workarounds that obfuscated the code. In
the end, we even considered restarting from scratch us-
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ing preprocessor directives such as ‘#ifdef’ and ‘#endif’ to
surround feature-specific code, but refrained because of
other problems this would have introduced (Spencer and
Collyer, 1992), which we discuss later.

Fine-grained extensions pose a major challenge for
current approaches to feature-based SPL development,
especially when creating a SPL by decomposing a legacy
application. Alerted by these results we analyzed the gran-
ularity of extensions in SPLs we created earlier. Even
though fine-grained extensions were required less fre-
quently than in Berkeley DB, we found potential for im-
provements where current implementations replicate code
or use workarounds that obfuscate the source code. We
did not notice this potential earlier because we accepted
the limitations of the given languages.

In this paper, we explore effects of granularity of dif-
ferent approaches on SPL development. We show that
existing approaches are not able to implement fine-grained
extensions satisfactorily and analyze possible solutions
that allow implementing SPLs without sacrificing under-
standability. We present a tool, called Colored IDE (CIDE),
that combines the strengths of existing approaches and
adds support to overcome the granularity problem. Finally,
we illustrate the benefits of CIDE in two case studies, the
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initial Berkeley DB case study and a small, existing SPL,
in which we did not realize granularity effects at first.

2 Background: Approaches to SPL
Implementation

There are two common ways to implement an SPL: the
compositional approach and the annotative approach.

2.1 The Compositional Approach

Compositional approaches implement features as distinct
modules. To generate a product line member, a set of mod-
ules is composed, usually at compile-time or deploy-time.
There is a large body of work on feature composition usu-
ally employing component technologies (Szyperski, 2002),
or specialized architectures and languages like frame-
works (Johnson and Foote, 1988), mixin layers (Smarag-
dakis and Batory, 2002), AHEAD (Batory et al., 2004),
multi-dimensional separation of concerns (Tarr et al., 1999),
and aspects (Kiczales et al., 1997).

In Figure 1, we show an example of 3 modules imple-
mented with Jak (AHEAD Tool Suite) (Batory et al., 2004),
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a compositional approach, that uses mixin technologies.
The first module (Lines 1–5) implements the basic stack.
The other two modules implement extensions for the two
features locking and logging. In Jak a feature can extend
an existing class using the refines keyword and introduce
new methods or extend existing ones with wrappers (by
overriding using the Super keyword to call the original
implementation).

2.2 The Annotative Approach

Annotative approaches implement features with some form
of explicit or implicit annotations of the source code. Typical
examples of explicit annotations are ‘#ifdef’ and ‘#endif’
statements of C/C++ style preprocessors to surround fea-
ture code. Others use Java annotations or new language
constructs in the code to be extended. Examples are explict
programming (Bryant et al., 2002), Frames/XVCL (Jarz-
abek et al., 2003), Spoon (Pawlak, 2006), Gears (Krueger,
2002), software plans (Coppit et al., 2007), metaprogram-
ming with traits (Turon and Reppy, 2007), and aspects us-
ing annotations (Kiczales and Mezini, 2005b). Alternatively,
implicit annotations exploit existing language facilities. For
example, deliberately introduced empty methods can be
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1 c lass Stack {
2 boolean push(Object o) {
3 elementData[size++] = o;
4 }
5 }

6 r e f i n e s c lass Stack {
7 boolean push(Object o) {
8 Lock l=lock(o);
9 Super.push(o);

10 l.unlock();
11 }
12 Lock lock(Object o) { /*...*/ }
13 }

14 r e f i n e s c lass Stack {
15 boolean push(Object o) {
16 Super.push(o);
17 log("added " + o);
18 }
19 void log(String msg) { /*...*/ }
20 }

Figure 1: A basic stack and two features implemented in
Jak.
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used as hooks for extensions, or naming conventions can
be employed for extensions like “synchronize all methods
starting with ‘sync_’”. In some approaches, features are
partly modularized leaving just annotations in the code, at
which feature code is later introduced, while in others the
whole SPL including alternative and mutually exclusive fea-
tures are encoded in a single code base and configurations
are created by removing or deactivating code fragments.

Especially common is the use of preprocessors to con-
figure a program. For example, with the C implementation
of Berkeley DB a user can configure 11 different features
at compile-time. An example code fragment from Berkeley
DB with ‘#ifdef’ statements for the features HAVE_QUEUE
and DIAGNOSTIC is shown in Figure 2.

Most SPL implementations can be categorized into
compositional and annotative approaches. Additionally,
some approaches like aspects can be included in both
groups, depending on how they are used, or combine ap-
proaches from both groups. However, there are techniques
that do not fit into either group, e.g., those based solely on
tool support (Beuche et al., 2004), based on model-driven
development (Trujillo et al., 2007), or on generative
programming (Czarnecki and Eisenecker, 2000). Still,
in this paper we focus on compositional and annotative
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1 s t a t i c i n t __rep_queue_filedone(dbenv , rep, rfp)
2 DB_ENV *dbenv;
3 REP *rep;
4 __rep_fileinfo_args *rfp; {
5 # i f n d e f HAVE_QUEUE
6 COMPQUIET(rep, NULL);
7 COMPQUIET(rfp, NULL);
8 r e t u r n (__db_no_queue_am(dbenv));
9 # e l s e

10 db_pgno_t first , last;
11 u_int32_t flags;
12 i n t empty , ret, t_ret;
13 # i f d e f DIAGNOSTIC
14 DB_MSGBUF mb;
15 # e n d i f
16 // over 100 lines of additional code
17 }
18 # e n d i f

Figure 2: Code excerpt of Berkeley DB.
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approaches because they cover a significant fraction of
contemporary SPL implementations and reveal interesting
differences concerning granularity of extensions.

3 Granularity

Features can extend a program with additional code. Exten-
sions with coarse granularity add new classes or methods
to the program or extend explicit extension points. Plug-in
architectures in frameworks and component approaches
are typical approaches that provide possibilities for such ex-
tensions. However, this might not be sufficient. Developers
might want to introduce new statements into existing meth-
ods and extend expressions or even method signatures.
These are fine-grained extensions and require additional
support. For example, they arise when legacy applications
are feature-refactored (Liu et al., 2006). (These applica-
tions were not designed with feature granularity in mind,
and consequently fine-grained extensions are commonly
needed when extracting features). We evaluate possible
levels of granularity and typical problems for both composi-
tional and annotative approaches.
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1 c lass Stack {
2 void push(Object o, Transaction txn) {
3 i f (o== n u l l || txn==null) r e t u r n ;
4 Lock l=txn.lock(o);
5 elementData[size++] = o;
6 l.unlock();
7 fireStackChanged();
8 }
9 }

Figure 3: Fine-grained extension example.

3.1 Compositional Approaches

Existing compositional techniques usually allow coarse-
grained extensions only. Many provide mechanisms to
define explicit extension points, which are the only points
that can be extended by a feature. Others like AHEAD and
AspectJ can extend virtually every method of the system.
In most approaches it is only possible to introduce new
classes, methods, or fields and to extend whole methods
using wrappers (a.k.a. around advice, method refinements,
or method overriding) (Apel et al., 2007).

We (Kästner et al., 2007a) and others (Murphy et al.,
2001) noticed several limitations when implementing fine-
grained extensions compositionally. We exemplify the three
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most common limitations by means of the code snippet
in Figure 3, in which the underlined code belongs to a
synchronization feature and should be implemented in its
own module.

1. Statement Extensions. In most compositional ap-
proaches it is not possible to introduce statements
in the middle of an existing method in order to ex-
tend certain statements or sequences of statements
therein.2 For example, consider how to synchro-
nize only the statement in Line 5. Simple wrap-
pers around the whole method are not sufficient. In-
stead, we have to introduce the locking statements
in Lines 4 and 6 specifically. Note, statement ex-
tensions might also access local variables. Usually,
workarounds borrow from annotative approaches
and introduce artificial extensions points for exten-
sion. Typically, a developer would introduce calls to
empty hook methods (Murphy et al., 2001) or per-
form an Extract Method refactoring (Fowler, 1999)
that moves Line 5 to its own method so that it can

2A notable exception is AspectJ that enables to extend method calls
or field access inside specific methods (Kiczales et al., 2001; Kästner
et al., 2007a). This feature can be used to emulate statement extensions
in some cases (cf. Sec. 5.1).
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be extended with a wrapper. Local variables, if ac-
cessed in the extension, are passed as parameters.
Either workaround requires explicit or implicit annota-
tions and severely obfuscates the source code (Mur-
phy et al., 2001; Kästner et al., 2007a).

2. Expression Extensions. Extensions to an individ-
ual expression can occur as well. An example is
shown in Line 3, in which the condition of the if
statement is extended. A typical workaround again
creates a new method and moves the expression
there, so that it can be extended with wrappers.

3. Signature Changes. To the best of our knowledge,
there is no compositional approach that allows to
introduce an additional parameter into an existing
method signature, as the txn parameter in Line 2. In-
stead, method signatures are considered unchange-
able. Typical workarounds store the additional pa-
rameters in thread-safe fields, duplicate code, or use
complex language mechanisms like the Wormhole
Pattern in AspectJ (Laddad, 2003). However, all of
these workarounds introduce different problems and
reduce code quality (Rosenmüller et al., 2007; Käst-
ner, 2007). Note that it is also necessary to adapt
all calls to the extended method.
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A possible implementation of the base code and its ex-
tensions using Jak is shown in Figure 4. Statements and
expression extensions are implemented with the two hook
methods h1 and h2. The parameter is passed with a thread-
safe field pushTxn and the original push method is deacti-
vated by throwing an exception. Apparently, the extension
code in Figure 4 is much larger than the amount of under-
lined code in Figure 3.

Extending compositional approaches with new lan-
guage constructs for fine-grained extensions is not triv-
ial either because of several conceptual problems. Firstly,
signatures are used to identify the methods that are to
be extended. If changing method signatures for an op-
tional feature was possible, another naming scheme would
need to be used to identify methods. Consequently, most
languages consider signatures as immutable, and do not
account for the possibility of signature changes.

Secondly, compositional approaches only introduce
new code fragments in positions in which the order does
not matter. Thus, it is possible to introduce new classes
into the program or new methods into a class, but not new
statements at a fixed position inside a method. This target
position is not known when implementing the feature and
could move if other features introduced statements as well.
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1 c lass Stack {
2 void push(Object o) {
3 i f (o== n u l l || h1()) r e t u r n ;
4 h2(o);
5 fireStackChanged();
6 }
7 boolean h1() { r e t u r n f a l s e ; }
8 void h2(Object o) {
9 elementData[size++] = o;

10 }
11 }

12 r e f i n e s c lass Stack {
13 ThreadLocal <Transaction > pushTxn =

new ThreadLocal <Transaction >();
14 void push(Object o, Transaction txn) {
15 pushTxn.set(txn);
16 Super.push(o);
17 }
18 void push(Object o) {
19 throw new UnsupportedOperationException(
20 "Call push(Object ,Transaction) instead");
21 }
22 boolean h1() {
23 r e t u r n pushTxn.get() == n u l l ;
24 }
25 void h2(Object o) {
26 Lock l = pushTxn.get().lock(o);
27 Super.h2(o);
28 l.unlock();
29 }
30 }

Figure 4: Fine-grained extension with AHEAD.
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Therefore, compositional approaches usually offer only
wrappers that add statements at the beginning and/or the
end of a method, but not at a finer granularity. Similarly,
parameters in method signatures are ordered, which
makes parameter introductions difficult.

The coarse granularity of compositional approaches
leads to several problems when developers use them to
implement fine-grained extensions anyway. Workarounds
often obfuscate the source code and are verbose and hard
to understand. Many workarounds replicate code or use
heavy-weight architectures that induce performance penal-
ties (Murphy et al., 2001; Kästner et al., 2007a; Rosen-
müller et al., 2007; Kästner, 2007).

3.2 Annotative Approaches

Conceptually, annotations can mark code fragments at arbi-
trary levels of granularity. They simply introduce markers at
the exact positions that should be extended. Typical exam-
ples are C/C++ style preprocessors, which although they
annotate only whole physical lines, are sufficient for even
the finest extensions due to the ability to isolate language
constructs in separate lines. A possible preprocessor im-
plementation of our example from Figure 3 is shown in
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1 c lass Stack {
2 void push(Object o
3 # i f d e f TXN
4 , Transaction txn
5 # e n d i f
6 ) {
7 i f (o== n u l l
8 # i f d e f TXN
9 || txn== n u l l

10 # e n d i f
11 ) r e t u r n ;
12 # i f d e f TXN
13 Lock l=txn.lock(o);
14 # e n d i f
15 elementData[size++] = o;
16 # i f d e f TXN
17 l.unlock();
18 # e n d i f
19 fireStackChanged();
20 }}

Figure 5: Fine-grained extension with C/C++ preprocessor.

Figure 5. Other annotation approaches allow similarly fine-
grained extensions, e.g., (Jarzabek and Shubiao, 2003;
Coppit et al., 2007).

Annotations do not share the conceptual limitations re-
garding ordered statements and fixed signatures because
they indicate the final position in the base code. Therefore,
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a method can always be identified by its final signature
and also the position of a statement or a parameter in an
ordered list can always be determined.

Still, our experience3 and reports by others, e.g.,
(Spencer and Collyer, 1992; Baxter and Mehlich, 2001),
show that annotations have problems as well. Firstly, an-
notations themselves obfuscate the source code as ap-
parent in Figure 5. Secondly, annotating arbitrary code
fragments, whether they make sense or not, is problem-
atic. For example, it is possible to annotate an opening
bracket with one feature and the closing bracket with an-
other. This makes annotations error-prone and raises com-
plexity. Thirdly, there may be problems dealing with separat-
ing terminals like commas between parameters. There are
frequent situations when such simple syntactic elements
must be annotated for features as well.

In Figure 6 we show an example: an init method with
two parameters, in which the first parameter is included
only if transactions are enabled in the system, and the sec-
ond is included only if logging is enabled. However, when
annotating this code fragment with C/C++ style preproces-

3In the FAME-DBMS project, colleagues analyzed and decomposed
the C version of Berkeley DB, which employs an annotation approach
(funded by the German Research Foundation, project no. SA 465/32-1).
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1 void init(Transaction txn,
LoggingLevel level){/*impl.*/}

2 void init(
3 # i f d e f TRANSACTION
4 Transaction txn
5 # i f d e f LOGGING
6 ,
7 # e n d i f
8 # e n d i f
9 # i f d e f LOGGING

10 LoggingLevel level
11 # e n d i f
12 ){/*impl.*/}

Figure 6: Decomposition with preprocessors.

sors we have to split the method declaration into multiple
lines and even include the comma inside a nested ‘#ifdef’
statement so that all derivable variants are syntactically
correct.

Despite these problems, annotative approaches sup-
port fine-grained extensions better than compositional ap-
proaches. However, they provide no perceptible form of
modularity.
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4 CIDE

4.1 Overview

Motivated by the problems of both compositional and anno-
tative approaches, we built an Eclipse-based prototype tool
for decomposing legacy applications into features that may
have a fine granularity.4 It uses the semantics of preproces-
sors, i.e., it can be classified as annotative approach, but
avoids the pollution of source code. Developers start with
a fully composed application with all features implemented
in a single code base, typically a legacy application. Then,
they make features explicit by successively associating
code fragments with one or more features, i.e., they mark
the corresponding code. Alternatively, developers can also
extend the application with new features and associate
all new code fragments with those features. Just as with
‘#ifdef’ statements, code fragments are only included when
all associated features are selected in a given configura-
tion.

In contrast to traditional preprocessors as in C/C++,
we do not obfuscate the source code with additional an-

4The tool can be downloaded at http://wwwiti.cs.uni-magdeburg.
de/iti_db/research/cide.
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notations. Instead, we use the representation layer of the
editor to indicate the associated features with different
background colors. Thus, developers can directly recog-
nize whether a code fragment is associated with a feature.
In case a code fragment is associated with multiple fea-
tures, which is traditionally done with nested preprocessor
statements, we mix the according background colors (e.g.,
red + blue = purple). Feature names are shown in tool-tips
on request. Note that it is usually not possible to recog-
nize the features of a code fragment solely by background
colors, especially when many features overlap. However,
colors are sufficient to determine the beginning and the
end of a code fragment associated with a set of features,
and it is convenient to look up the actual features using
tool-tips. Because of its colorful appearance (cf. Fig. 7) we
named the tool Colored Integrated Development Environ-
ment (CIDE).

As with preprocessors it is still possible to insert or
edit code, while the colors remain assigned to the code
fragments. But even though CIDE is based on preproces-
sor semantics, we do not assign features to arbitrary code
fragments to avoid the problems of meaningless associ-
ations and syntactical elements illustrated in Section 3.2.
Instead, we assign features to structural code elements
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Figure 7: CIDE Screenshot.
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of the source code. The form of such structural elements
depends on the artifact type. For example, programs in
many languages can be expressed as abstract syntax
tree (AST), not only Java programs. In all these cases
we use this underlying structure and associate features to
structural elements.

4.2 Coping with Feature Granularity

We illustrate the mechanisms used in CIDE by the example
of Java code and its AST representation. An AST contains
all structural elements that are relevant for the source code.
It is possible to recreate the source code from the AST
(except its original formatting). In Figure 8, we exemplify a
small Java code snippet and a corresponding AST. Note,
the AST does not include syntactical elements like commas
or brackets.

Instead of using offset and length to specify code frag-
ments, we assign features directly to subtrees of the AST
as defined by the language grammar. For example, we
can assign a feature to a class node and all its children
(i.e., making a class optional), or to a statement and its
children as highlighted in Figure 8 (i.e., statements are
optional child nodes of block nodes). It is even possible
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1 c lass C {
2 void m( i n t p){
3 s1();
4 s2(p,true);
5 }
6 }

ClassDeclaration
Name=C

MethodDeclaration
Name=m

ReturnType
Type=void

MethodCall
Name=s2

Parameter
Value=true

Parameter
Name=p

Parameter
Value=p

MethodCall
Name=s1

Block

Figure 8: AST Example.
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to assign a single parameter node to a feature (i.e., an
optional child node of a method node). However, nodes
that are not optional in the AST (i.e., that cannot be re-
moved without invalidating the AST), like the return type of
a method cannot be associated with features individually.
Developers can but are not required to view the code as
AST, usually, in the editor they assign the selected code
fragments directly to features, which CIDE automatically
maps to AST elements.

For Java code, we carefully defined two kinds of ex-
ceptions from the subtree rule exemplified in Figure 9.
Firstly, statements that embrace other statements can be
associated with features without necessarily associating
its child elements. So, it is possible to remove individual
if, for, while, try, and similar statements without remov-
ing the statements they surround. Secondly, children of
binary expression nodes can be associated with features
even though they are not optional AST elements (every
binary expression node requires two child expressions).
This allows us do decompose expression statements as
in Figure 3. We decided to include these exceptions for
increased granularity.

The restriction of assigning only optional AST subtrees
to features enforces decomposition into ‘reasonable’ code
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1 void m(boolean
a, boolean
b){

2 a = a || s1()
|| b;

3 if (a) {
4 s2();
5 }
6 }

MethodDeclaration
Name=m

…

IfStatement

BlockExpression
Name=b

Assignment

Block

BinaryOR-
Expr

VariableRef
Name=b

MethodCall
Name=s1

VariableRef
Name=a

BinaryOR-
Expr

VariableRef
Name=a

MethodCall
Name=s2

Figure 9: Exceptions to the optional subtree rule.
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fragments. Thus, developers can no longer associate only
an opening bracket but not the closing one with a feature.
Furthermore, they do not need to deal with syntactical ele-
ments such as commas in Figure 6 at all. We allow only
AST operations that create a well-formed AST as output,
so the Java compiler can parse the generated code of any
configuration. At the same time, the AST structure is ex-
tremely flexible, allowing developers to associate arbitrary
statements or even parameters or parts of expressions
with features. Decomposing a code snippet like the one
introduced in Figure 3 is straightforward, because parame-
ters, statements and expressions are all AST nodes that
can simply be ‘colored’.

Note, the granularity of CIDE is not as fine as that
provided by C/C++ like preprocessors. For example, de-
velopers cannot specify two alternative result types of a
method, because the AST only allows one child element
for the result type per method. In practice we have not yet
found any cases where this was a limitation. Furthermore,
for reasons of simplicity developers can assign only a set
of features to a code fragment and not a propositional for-
mula (Czarnecki and Pietroszek, 2006). Consequently, it is
not possible to specify a code fragment to be included if
a feature is not selected (#ifndef ). However, we are able
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to work around these problems by modeling features dif-
ferently in a feature model (e.g., specify two alternative
features instead of a single optional one). If future case
studies showed the demand for such expressibility, we
could still extend CIDE at the cost of a more complicated
user interface.

4.3 Feature Management

Feature implementations with fine-grained extensions are
difficult to understand in both compositional and annotative
techniques, as illustrated in Section 3. Even though com-
positional approaches can implement features cohesively,
workarounds make it hard to understand extensions. Also
the feature code in annotative approaches is hard to under-
stand because it is scattered and annotations obfuscate
the source code.

CIDE enhances feature management (navigation, se-
lection, composition) with tool support. Firstly, navigation
support allows developers to jump between code frag-
ments associated with a certain feature set to diminish
the problems of missing feature cohesion. This makes it
easy to find all code fragments associated with a feature.
Because feature code is still placed where it extends the
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program, and it is therefore obvious to see how it extends
the program, it is simple to understand how a feature is
implemented (cf. Fig. 3). The navigation support is in line
with prior approaches of concern graphs (Robillard and
Murphy, 2002) and the map metaphor (Griswold et al.,
2001) that choose tool support over complex modular im-
plementations.

Secondly, a projection facility can hide all code asso-
ciated with a feature in the editor during development, so
that the remaining code can be viewed in isolation. The pro-
jection facility is implemented like code folding in modern
development environments, in which bodies of methods or
comments can be folded and unfolded on request. When
the developer requests a feature to be hidden, CIDE just
leaves a marker to indicate hidden code. Thus, the devel-
oper can focus on selected features and hide feature code
that is not relevant to the current task. The markers are
still useful for modifications as they alert the developer of
feature extensions that might be necessary to adapt as
well.

Finally, we implemented a mechanism to export the
marked code into cohesive modules implemented with
compositional approaches (Kästner et al., 2007b). Our pro-
totype currently provides exports to Jak and to AspectJ.
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This way, feature implementations can be used indepen-
dently of CIDE, e.g., for further code generation and opti-
mization steps.

We argue that, compared to existing compositional and
annotative approaches, CIDE makes it easier to develop
feature-based SPLs because it hides all programming lan-
guage concepts of refinements, aspects, hook methods,
annotations, and similar for implementing features that are
necessary in these approaches. It provides different views
on the source code. Developers can hide features, navi-
gate between them, and even export them. Even though
CIDE cannot replace cohesive modules, it supports under-
standing scattered feature implementations and enables
developers to choose the best view on the source code for
each task.

5 Case Studies

In order to support our proposal, we conducted two case
studies. Firstly, we analyze our decomposition of the em-
bedded database engine Berkeley DB, a large scale legacy
application with 84,000 LOC. Secondly, we study a small
SPL of graph algorithms with 2,000 LOC designed as an
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SPL using a compositional approach. In both, we compare
their implementations with CIDE. The code for both case
studies is available for download from the CIDE web page.5

5.1 Berkeley DB

Our initial insight that the granularity of existing compo-
sitional approaches was insufficient came from a case
study, in which we decomposed a large scale legacy ap-
plication - the embedded database engine Berkeley DB
JE – into 38 features to make features explicit in its design
and to make it configurable as an SPL. To decompose
Berkeley DB, we first located and marked feature code,
then removed this feature code, and finally reintroduced it
using feature modules implemented with AspectJ (Kicza-
les et al., 2001), a compositional approach. Due to space
restrictions, we limit our report to statistics and the most
important insights in anecdotical form.

Berkeley DB was not designed as an SPL with features
in mind. Instead it was implemented as a single application
with a clean object-oriented design modularized in classes
and packages. Some configurability was achieved using
external parameters and runtime checks. Consequently,

5http://wwwiti.cs.uni-magdeburg.de/iti_db/research/cide
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feature code was scattered all over the application. Some
larger features like Synchronization and Transaction af-
fected up to 30 (of 300) classes in Berkeley DB in over
150 places (cf. (Kästner, 2007; Kästner et al., 2007a) for
detailed statistics).

Decomposition with AspectJ. When decomposing
Berkeley DB we were confronted with fine-grained ex-
tensions in almost every feature. For example, feature
code was often located right in the middle of a method.
Of 1,144 extensions used to implement the 38 features,
640 extensions (56 %) introduced new classes, methods,
or fields. 214 other extensions (19 %) were simple method
extensions that added wrappers to existing methods. They
were well supported by AspectJ. However, 261 extensions
(23 %) were required at statement level and 24 (2 %) at
expression level, which posed major problems.

Statement extensions were implemented in two differ-
ent ways. Firstly, AspectJ supports extensions finer than
just wrappers around methods: it is possible to extend
methods calls or field accesses inside specific methods
by combining call, set, or get with withincode pointcut des-
ignators. We used such extensions to emulate statement
extensions when the feature code was placed directly be-
fore, after, or around a single method call or field access.
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This was sufficient for 121 extensions (46 % of all state-
ment extensions). However, our solution was rather fragile,
because any changes to the internal implementation of the
base code might require the pointcuts to be altered. For the
remaining 140 statement and 24 expression extensions
we had to introduce hook methods and extend those.

We also faced the problem that certain method param-
eters of the code base belonged to a feature and should be
removed when the feature is not selected. This made it very
difficult to detach some features in Berkeley DB, because
AspectJ, like other compositional approaches, does not
permit changes to method signatures. We first noticed the
problem when we decomposed the part of the transaction
system that is responsible for atomicity. To group several
operations as a single transaction, the user can create a
Transaction object and pass it to operations like put, get, or
delete. This object is then passed further along the control
flow to acquire suitable locks. Inside Berkeley DB, such
a parameter is included in the signature of 59 methods.
Without the transaction feature, none of these methods
should include a transaction parameter.

We experimented with different possibilities to imple-
ment the Transaction feature. We removed the parameter
from the base code and introduced a second method for
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each operation with the additional parameter that calls the
first method. We could pass the parameter in a thread-
protected field, use method objects (Fowler, 1999), use
dummy or default parameters, employ AspectJ’s worm-
hole pattern (Laddad, 2003), or use parameter objects
that encapsulate all parameters. Unfortunately, all options
obfuscate the source code. Firstly, excited by AspectJ’s ad-
vanced constructs, we implemented the wormhole pattern
in 16 pieces of advice as exemplified in Figure 10. There,
all calls to getWritebleLocker(Environment) are replaced
by calls to getWriteableLocker(Environment, Transaction),
and the transaction parameter is captured from interface
methods like openDatabase and get using the cflow point-
cut designator. Eventually, we found this too fragile and too
hard to understand (Kästner et al., 2007a). Finally, we set-
tled with parameter objects named OperationContext and
interface methods that created those objects for internal
use. To extend the method, we only needed to extend the
parameter objects.

While we could work around the parameter limitation
for the transaction feature, we did not attempt any further
decomposition of features, in which a large amount of
parameters were involved. Especially the Locking feature
appeared unmanageable with compositional approaches
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1 p o i n t c u t interfaceCallWithTransaction(Transaction
txn) :

2 ( execut ion (* Environment.openDatabase (..)) &&
args(txn ,*,*)) ||

3 ( execut ion (* Database.get(..)) &&
args(txn ,*,*,*)) || ...;

4 p o i n t c u t getWritableLocker(Environment env):
c a l l (Locker LockerFactory.getWritableLocker(Environment))
&& args(env);

5
6 Locker around(Environment env, Database db,

Transaction txn) throws DatabaseException :
7 getWritableLocker(env) && t h i s (db) &&

cf low (interfaceCallWithTransaction(txn))
8 { r e t u r n LockerFactory.getWritableLocker(env,

txn); }

Figure 10: Using the Wormhole Pattern to pass a parame-
ter.

as it had to introduce parameters like locker, lockMode,
or lockType 289 times. Decomposing the Locking feature
would either result in utterly unreadable code or require
a complete preliminary redesign of the whole database
engine.

Together, workarounds for fine-grained extensions of
statements, expressions, and parameter lists made the de-
composition very difficult and the implementation tedious.
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Though it was possible to decompose most features, code
quality suffered and the resulting code base became hard
to understand and maintain.

Decomposition with CIDE. After these discouraging ini-
tial results, we experimented with other compositional
approaches and with decomposing Berkeley DB using
a C/C++ preprocessor but limitations discussed in Sec-
tion 3.2 held us from trying them on a case study of this
size. Finally, we decomposed Berkeley DB once more
into the same features using CIDE. In CIDE, fine-grained
extensions were no problem, because we could directly
associate single statements, exceptions, or even parame-
ters with features. This avoids all previously required work-
arounds. Because we did not need to perform any manual
decomposition or implementation of feature modules, but
only assign features to code fragments inside the IDE, the
decomposition of Berkeley DB was more convenient and
much faster (3 days instead of 1 month)6. CIDE’s finer gran-
ularity supported decomposing Berkeley DB significantly.
We were even able to decompose the Locking feature with
its 289 parameter extensions.

6The second decomposition was also faster because we were already
familiar with the source code. Still, the difference is significant.
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By using CIDE, understanding the SPL became sim-
pler, because neither do additional statements obfuscate
the source code, nor is it necessary to understand complex
workarounds like in Figures 4 and 10. Moreover, the projec-
tion facilities helped to reason about features in isolation
or in concert with other features.

5.2 The Graph Product Line

The graph product line (GPL) is a small SPL of graph
algorithms with about 2,000 LOC. It was designed from
scratch as an SPL and suggested as a benchmark for SPL
technologies (Lopez-Herrejon and Batory, 2001). The do-
main of graphs was chosen because it is well understood
and the algorithms are well known in computer science. It
consists of 14 features: edges can be directed, undirected
and optionally weighted, there are two search methods
breadth first search (BFS) and depth first search (DFS),
and finally there are several graph algorithms like cycle
checking, shortest path, strongly connected, or minimum
spanning tree. The implementation as an SPL makes it
possible to select the graph properties and algorithms
needed for a given problem (Lopez-Herrejon and Batory,
2001). The original version of GPL was implemented with
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+addEdge()
+addVertex()
+findEdge()
+findVertex()
+display()
+runBenchmark()
+search()
+connectedComponents()
+computeTranspose()
+shortestPath()
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+display()

-start
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-weight

Edge

+main()

Main

+bftSearch()
+dftSearch()
+display()

-name
-neighbors
-visited

Vertex

+init_vertex()
+preVisit()
+postVisit()

Workspace

RegionWorkspace TransposeWorkspace

-vertex
-edge

Neighbor

Figure 11: UML class model of GPL (excerpt).

mixin layers (Smaragdakis and Batory, 2002), but other im-
plementations e.g. in AspectJ (Lopez-Herrejon and Batory,
2002a) and Hyper/J (Lopez-Herrejon and Batory, 2002b)
are available. All these implementations use compositional
approaches with similar results regarding the following
analysis.

Although the GPL case study and the figures below
appear almost trivial, we intentionally chose it because it is
well suited to show that there are benefits from implementa-
tion approaches that support fine-grained extensions, even
for SPLs that are (1) not extracted from legacy applications
but designed from scratch and (2) small and simple.

In Figure 11 we show the basic class structure of GPL.
Details of some features are omitted. The architecture is
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simple: a Graph class holds the graph consisting of edges
and vertices. Most features add a method to the Graph
class and extend the run method used for benchmarks.
Some features like Number, Shortest, or Weighted add
fields for temporary values to Vertex and Edge and extend
their display method to show the additional values. Fea-
tures like Connected or Cycle also depend on methods
implemented in previous features like search algorithms.

Implementation with Mixin Layers. The granularity re-
quired to implement GPL is coarse. As illustrated in Ta-
ble 1 most features introduce only new code fragments
(25 methods and 21 fields into existing classes and 18
new classes). Methods were rarely extended (by means
of method overriding). Of 84 methods in GPL only 4 were
ever extended: the method Vertex.display was extended
by 9 features, the benchmark method Graph.run was ex-
tended by 7 features and Edge.display and Edge.adjust
were extended once. Not a single hook method was used
to implement extensions at statement or expression level.

Even though all features could be implemented with
the coarse granularity provided by the language, we found
some code replication that could have been avoided if
fine-grained extensions were available. Firstly, the mutu-
ally exclusive search features BFS and DFS, as well as
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1 p u b l i c void search(Workspace w) {
2 i n t s = vertices.size();
3 i f (s == 0) r e t u r n ;
4 f o r ( i n t c = 0; c < s; c++)
5 vertices.get(c).init_vertex(w);
6 f o r ( i n t c = 0; c < s; c++) {
7 Vertex v = vertices.get(c);
8 i f (!v.visited) {
9 w.nextRegionAction(v);

10 v.dfSearch(w);
11 v.bfSearch(w);
12 }
13 }
14 }

Figure 12: Search method differs only in a single line.

Directed and Undirected, introduced similar methods that
differ only in minor parts. Alternative implementations could
use hook methods inside a common base feature to avoid
code replication. In CIDE both variants can be combined
in a single code base, in which both features only extend a
single line as shown in Figure 12 (feature code is italicized
and underlined respectively).

Secondly, the extension of the Weighted feature intro-
duces a second addAnEdge method and a second Edge
constructor with an additional parameter, though concep-
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tually the addAnEdge method and the constructor of the
Edge class should be both extended with an additional
weight parameter. So, with the Weighted feature enabled
there were two addAnEdge methods, one with two and
one with three parameters, even though only the method
with three parameters should be used by clients.

Implementation with CIDE. In CIDE, we have composed
the whole code base including several mutually exclusive
features in a single code base, in which different code
fragments are associated with features. This way, the file
containing the code of the class Graph became fairly large
(772 LOC), of which 88 % were associated with features.
The projection facility came in handy to see only relevant
code fragments.

We were surprised that despite GPL’s apparent coarse
granularity, we could still identify several situations, in
which we benefit from CIDE’s fine granularity and could
reduce code replication. For example, we integrated both
search methods that only differ in one line as shown in
Figure 12. Similar code replication between the Directed
and Undirected features could be avoided as well. Fur-
thermore, we could implement the additional parameter
for the Weighted feature much simpler without additional
methods or constructors as shown in Figure 13. We sim-
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1 c lass Edge {
2 Edge(Vertex start , Vertex end, int weight) {
3 t h i s .start = start; t h i s .end = end;
4 this.weight = weight;
5 }
6 }
7 c lass Graph {
8 Edge addAnEdge(Vertex start , Vertex end,

int weight) {
9 Edge theEdge = new Edge(start , end, weight);

10 edges.add(theEdge);
11 start.addNeighbor(new Neighbor(end, theEdge));
12 r e t u r n theEdge;
13 }
14 }

Figure 13: Parameter extension for addAnEdge.

ply associated all weight parameters with the Weighted
feature (underlined). Because of reduced code replication
and because we do not need implementation overhead of
mixin layers, the code size of GPL in CIDE is 36 % smaller
than in the original implementation (1,222 LOC instead
1,920 LOC).
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6 Related Work

SPL Adoption. Krueger distinguishes between three dif-
ferent adoption models for SPLs (Krueger, 2002). Firstly,
the proactive adoption model relates to the waterfall ap-
proach of conventional software engineering. The SPL is
planned up front and designed with all features in mind,
therefore few carefully planned extension points are often
sufficient and fine-grained extensions arise infrequently.
Due to their coarse granularity, compositional approaches
are well suited, though in our GPL case study we still
discovered possibilities for improvement.

In contrast, the extractive adoption model converts an
existing legacy applications to an SPL by decomposing
its features – aiming to reduce adoption time, cost and
risk. In legacy applications, features were not planned in
the design phase and consequently dissolved in the imple-
mentation. Redesigning the complete legacy application is
usually out of the question, because the additional effort
could exceed the gained benefit of reduced time, costs,
and risk. Extracting scattered feature implementations re-
quires the ability to implement fine-grained extensions, so
that annotative approaches and especially CIDE are bet-
ter suited for SPL implementation. The Berkeley DB case
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study illustrates the need for fine-grained extensions when
extracting features.

Finally, the reactive adoption model, which relates
to spiral software engineering in conventional software,
stands between the proactive and extractive adoption
models. Not all features are foreseen and designed from
scratch, but the SPL is extended in iterative steps. In this
model, most extensions are preplanned, but it is not possi-
ble to design for extensibility in every case. So, we expect
a medium to high number of fine-granular extensions as
well.

This emphasizes the relevance of fine-grained exten-
sions and the applicability of CIDE in SPLs beyond only
decomposing legacy applications.

Related Tool Approaches. The concept of using the rep-
resentation layer to show additional information without
obfuscating the source code as in CIDE was already used
by several development environments. Recent examples
are presentation extension (Eisenberg and Kiczales, 2007),
AspectBrowser (Griswold et al., 2001) and Spotlight (Cop-
pit et al., 2007).

IDEs for visual programming and intentional program-
ming abstract from traditional code representations and
store code in internal tree formats close to ASTs. The
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idea of storing program code in databases to allow flex-
ible queries to create different views on the code goes
back to Linton (Linton, 1984). Modern examples are Snip-
pets (Westphal et al., 2004), effective views (Janzen and
De Volder, 2004), and the Domain Workbench (Simonyi
et al., 2006), that store all code in internal tree structures,
similar to how features are assigned to code in CIDE.

There is also an impressive body of work on feature an-
notations of source code. However, such work usually does
not aim at SPLs but at virtual separation of concerns to
make concerns or features explicit. For example, Robillard
and Murphy suggested concern graphs where developers
can collect methods belonging to a feature in an external
window (Robillard and Murphy, 2002). Work on visual sep-
aration of concerns (VSC) extends this and provides aggre-
gated views on the source code by features (Chu-Carroll
et al., 2003). Furthermore, the AspectBrowser (Griswold
et al., 2001) and JQuery (Janzen and De Volder, 2003)
use pattern expressions or queries to find code fragments
belonging to a certain feature. Similarly to CIDE, feature
annotations are stored externally, the code itself is not
changed. While FEAT, ConcernMapper, VSC, and JQuery
work at method level, thus providing only coarse granular-
ity, AspectBrowser works on character level of unparsed
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code. In contrast to CIDE, these tools are used exclusively
for source code exploration and navigation, whereas CIDE
is designed as a software product line tool suite, that uses
additionally annotations to configure the program.

Closest to our work on SPLs is an extended UML mod-
eling environment suggested by Czarnecki and Pietroszek,
in which users can assign individual model elements to
features (Czarnecki and Pietroszek, 2006). A tool uses this
information to check whether all possible configurations
are well-formed. However, while CIDE assigns only one or
more features to elements, they can assign arbitrary propo-
sitional formulas like ‘entity X is only included if feature X
is selected or feature Y is not’. Compared to CIDE, this
raises the complexity for both the user interface and the
back-end.

Cross-Section Views. Projections on features in CIDE
resemble cross-section views, e.g., in 3D engineering or
tomography. They hide all details unnecessary for the cur-
rent task and let the user focus on certain details from dif-
ferent views. An early example of such cross-section views
in software engineering is the concept of program slic-
ing (Weiser, 1984), in which the source code is projected
to the fragments relevant for a certain control flow. Typi-
cally, it shows all code that can affect a selected variable
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and hides all other code. Program slicing helps abstracting
from the whole program and to focus on a concrete, usually
comprehension or maintenance focused task. Instead of
projecting by control flow, CIDE projects (structurally) on
individual features. This enables developers to understand
programs by features and supports switching between dif-
ferent views dynamically.

Also the notion of on-demand remodularization fol-
lows the vision of cross-section views on a program. On-
demand remodularization as introduced by Ossher and
Tarr is the ability to extract a concern of an application into
a new module without affection other concerns (Ossher
and Tarr, 2000). Typically, it is desired to decompose a
program in one dimension first, e.g., data and classes, and
later extract a concern in another dimension, e.g., features,
which was not considered in the first decomposition. On-
demand remodularization permits developers to identify
and encapsulate new concerns at any time without neces-
sity to rearchitect the software. This enables the developer
to create only those modularizations that they need and as
they need them (Ossher and Tarr, 2000).

Additionally to the virtual separation of concerns ap-
proaches introduced above, there are several approaches
based on composition languages and tool support that
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physically remodularize the source code. An example is
effective views (Janzen and De Volder, 2004) that are
however limited to two dimensions, classes and ‘modules’.
Though modules are similar to features, they may not over-
lap. Another proposed tool for supporting remodulariza-
tion in multiple dimensions is the concern manipulation
environment that is aimed at describing and extract con-
cerns (Harrison et al., 2005). Similarly, CIDE is a tool-
based approach and allows to incrementally decompose a
system into further features by associating code fragments
with (potentially overlapping) features. Features can also
be extracted in later development steps when needed. The
key difference however is that CIDE aims directly at SPLs.

Feature Cohesion and Modular Reasoning. Implement-
ing features modularly is a fundamental goal of composi-
tional approaches. The motivation is that developers are
able to understand and modify features in isolation without
resorting to global reasoning or affecting other parts of
the system if they are implemented cohesively (Stevens
et al., 1974). There is a large body of work that discusses
modular reasoning for different programming paradigms
and languages, e.g., (Stata and Guttag, 1995; Kiczales
and Mezini, 2005a). Furthermore, Tarr et al. postulate that
it should be possible to decompose a system in different di-
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mensions and still implement all concerns modularly (Tarr
et al., 1999). However, in our observation, such cohesive
feature modules tend to become so complex that the ben-
efit of modular reasoning diminishes in the presence of
fine-grained extensions and with current compositional ap-
proaches.

In contrast, annotative approaches like preprocessors
do not implement features cohesively. On the contrary, fea-
ture implementations are scattered throughout the system,
preventing modular reasoning. To understand a feature,
developers must search the feature code as a first step.
However, approaches for virtual separation of concerns
listed above like concern graphs support identifying and
reasoning about scattered code. Although CIDE still pro-
vides exports into feature modules, it follows these ideas
and provides tools to reason about scattered feature im-
plementations instead of enforcing complex cohesive im-
plementations.

Feature Model and Consistency. CIDE, as most other
approaches for implementing extensions for features, does
not deal directly with consistency constraints or use a fea-
ture model. A feature model on top of CIDE that describes
the relationships between features, e.g., that one feature
depends on another feature, is necessary for a holistic
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approach, but not relevant for the granularity discussion in
this paper. Once features are related to each other, CIDE
can check the feature association of all AST elements to
ensure that every configuration is not only parseable, but
also compilable. This requires that several constraints are
fulfilled, e.g., that the target methods of all method calls
are defined in all configurations. These checks follow the
concepts of Czarnecki and Pietroszek (Czarnecki and Piet-
roszek, 2006) and Thaker et al. (Thaker et al., 2007) but
their discussion exceeds the scope of this paper.

7 Conclusion

There are many ways to implement features. However,
when features have fine-grained extensions, as common
when decomposing a legacy application, their implemen-
tations tend to become complicated, unreadable, and un-
maintainable. Compositional approaches do not support
fine-grained extensions, so that workarounds are required
which raise the implementation’s complexity. In contrast,
annotative approaches can implement fine-grained exten-
sions but introduce readability problems by obfuscating the
source code.
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To avoid these problems when developing SPLs with
fine-grained extensions in a concise fashion, we built a tool,
called CIDE, that simplifies SPL development. It is based
on preprocessor semantics but uses background colors
instead of source code statements and by providing the
possibility to hide features it avoids obfuscating the code.
CIDE restricts features to structural code elements in order
to simplify usage for developers while still providing fine
granularity. Finally, CIDE supports developers in under-
standing features with navigation and projection facilities
and the possibility to export the SPL into distinct feature
modules.

In two case studies we showed the advantage of CIDE
over existing compositional approaches. It was possible to
implement fine-grained features including statement and
expression extensions and even signature changes without
resorting to workarounds. With CIDE we could implement
additional features that were not reasonably possible with
compositional approaches and reduce code replication of
earlier implementations.

In ongoing and future work, we add support for addi-
tional artifact types (e.g., C, C#, JavaScript, Grammars,
XML) and formalize the criteria when an element can be
colored. We intend to extend our export facility with ad-

54



ditional target languages to analyze modular reasoning.
Further, we plan to extend CIDE as a round-trip engineer-
ing tool where it is possible to edit the exported code and
reimport it back to CIDE. This will eventually enable us to
use CIDE to provide additional views on existing SPLs.

Acknowledgments. We thank Don Batory and Peter Kim
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Feature CI CR MI Extended Methods

Prog 1 0 0 -
Benchmark 0 1 7 -
Directed 4 0 0 -
Undirected 4 0 0 -
BFS 2 1 3 Vertex.display
DFS 2 1 3 Vertex.display
Weighted 0 2 2 Edge.display, Edge.adjust
Transpose 0 1 1 -
Connected 1 2 1 Vertex.display, Graph.run
Cycle 1 2 1 Vertex.display, Graph.run
MSTKruskal 0 2 1 Vertex.display, Graph.run
MSTPrim 0 2 1 Vertex.display, Graph.run
Number 1 2 1 Vertex.display, Graph.run
Shortest 0 2 1 Vertex.display, Graph.run
StronglyC. 2 2 1 Vertex.display, Graph.run

CI: class introductions; CR: class refinements; MI: method introductions

Table 1: Feature Statistics for GPL.
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