
Exploring Variability-Aware Execution
for Testing Plugin-Based Web Applications

Hung Viet Nguyen
ECE Department

Iowa State University

Christian Kästner
School of Computer Science
Carnegie Mellon University

Tien N. Nguyen
ECE Department

Iowa State University

ABSTRACT
In plugin-based systems, plugin conflicts may occur when two or
more plugins interfere with one another, changing their expected
behaviors. It is highly challenging to detect plugin conflicts due
to the exponential explosion of the combinations of plugins (i.e.,
configurations). In this paper, we address the challenge of executing
a test case over many configurations. Leveraging the fact that many
executions of a test are similar, our variability-aware execution runs
common code once. Only when encountering values that are differ-
ent depending on specific configurations will the execution split to
run for each of them. To evaluate the scalability of variability-aware
execution on a large real-world setting, we built a prototype PHP in-
terpreter called Varex and ran it on the popular WordPress blogging
Web application. The results show that while plugin interactions
exist, there is a significant amount of sharing that allows variability-
aware execution to scale to 250 configurations within seven minutes
of running time. During our study, with Varex, we were able to
detect two plugin conflicts: one was recently reported on WordPress
forum and another one was not previously discovered.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Algorithms, Experimentation, Measurement

Keywords
Variability-aware Execution, Testing, Configurable Code, Plugin-
based Web Applications, Software Product Lines

1. INTRODUCTION
A plugin is a software component that contributes functionality

and adds features to an existing software application. Plugin-based
applications offer a variety of benefits such as allowing third-party
developers to extend an application and supporting easy addition and
configuration of new features for different needs. For these reasons,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 – June 7, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2756-5/14/05 ...$15.00.

Program with optional plugins
(with variability)

Result for one plugin
configuration

Result for all plugin
configurations

Program with one concrete
selection of plugins

configure program

variability-aware
execution

normal
execution

extract results

aggregate results

Figure 1: Variability-aware vs. brute-force execution

plugin-based systems are becoming increasingly popular. Examples
include the Mozilla add-ons framework for the Firefox browser [5],
the add-in extension mechanisms used in Microsoft Office [4], the
plugin architecture of the Eclipse platform [2], and the WordPress
Web blogging software [12].

Plugin conflicts in such plugin-based systems are not uncom-
mon. Plugin conflicts arise in the cases where one plugin interferes
with another plugin’s behavior when they are used together, even
though both work as expected in isolation (also known as the feature-
interaction problem [19, 42]). Importantly, one plugin may acciden-
tally violate another plugin’s assumptions or override or bypass its
behavior by modifying shared state. In fact, the developers of Word-
Press have stated that plugin incompatibility is the top reason that
people feel unwilling to upgrade to WordPress’ latest version [10].

Plugin conflicts are notoriously hard to detect upfront. Plugin
behavior is rarely fully or even formally specified, making the ap-
proaches based on formal methods or requirements engineering used
for detecting feature interactions in telecommunication systems [19,
42] rather hard to apply on large-scale, plugin-based software like
WordPress. The developers could write test cases and execute them
on individual plugin configurations to detect conflicts. However,
executing the test cases for plugins is challenging due to the com-
binatorial explosion of the number of plugin configurations, which
in practice is often compensated only by manual and ad-hoc ap-
proaches, as reported for the Eclipse project [32].

In this paper, we tackle the challenge of executing a test case
exhaustively over all configurations of a software product (i.e., all
combinations of a set of plugins). The key observation that allows
us to scale such execution despite the exponential explosion is that
many executions of a test are similar. With a variability-aware inter-
preter, we execute common code only once and, only when encoun-
tering a configuration option, execute multiple branches with the
respective configurations, after which we continue to execute the
rest again only once if possible. Conceptually, we run a test case in
all configurations without configuring the program first. The result is
equivalent to configuring the program in all configurations, running
the configurations in isolation, and aggregating the results (Figure 1).

(a) WordPress’ source code (simplified)

1 // Initialize WordPress
2 include (‘ load .php’) ; ...
3 // Load plugins
4 $plugins = wp get active plugins () ;
5 foreach ($plugins as $plugin)
6 include ($plugin) ; ...
7 // Print scripts
8 foreach ($wp scripts as $script)
9 echo ‘‘< script type=‘text/ javascript ’ src=‘$script ’ />’’; ...

10 // Print content
11 $content = wp get content();
12 foreach ($wp content filters as $func)
13 $content = call user func array ($func, $content);
14 echo $content;

(b) The Smiley plugin

1 wp enqueue script($wp scripts [‘ jquery ’], ‘ jquery−1.7. js ’) ; ...
2 function convert smileys ($content) {
3 return $content. replace (‘:]’, get smiley (‘:]’)) ;
4 }
5 $wp content filters [] = ‘ convert smileys ’;

(c) The Weather plugin

1 wp enqueue script($wp scripts [‘ jquery ’], ‘ jquery−2.0. js ’) ; ...
2 function insert weather widget ($content) {
3 return $content. replace (‘[: weather :]’, get weather widget()) ;
4 }
5 $wp content filters [] = ‘ insert weather widget ’;

Figure 2: Simplified WordPress and two plugins

The efficiency of variability-aware interpretation depends on how
variability is used in the application. If plugins have local effects and
do not interact, it can be very efficient. A few interactions slow down
the execution since we need to compute with alternative values for
some variables, but still much sharing remains so that far fewer alter-
natives need to be explored than the brute-force approach. Thus, the
feasibility of variability-aware interpretation is mainly an empirical
question (prior work, though promising, has only investigated small
or artificial cases; see related work section).

We evaluate the feasibility of variability-aware interpretation in a
large-scale practical setting: executing a test case over WordPress
with optional plugins. We build Varex, a prototype variability-aware
interpreter for PHP to evaluate how variability from plugin activation
affects test execution in WordPress and how plugins interact. In our
empirical study on real-world plugins, we found that, nearly 28%
of executed statements and 89% of variables’ values are shared
among all plugin configurations. We found plugins in WordPress
are in fact mostly orthogonal or interact mostly in disciplined ways,
rendering our approach practical. Due to low interaction among
plugins, Varex was able to cover 250 possible configurations within
seven minutes. With these promising results, we hope that in the
long run, variability-aware execution will establish a scalable testing
and analysis mechanism for configurable systems of different kinds.

The key contributions of this paper include: (1) a variability-aware
execution technique for running PHP plugin-based Web applications,
(2) Varex, a prototype variability-aware PHP interpreter, and (3) an
empirical study showing the scalability of variability-aware execu-
tion for testing configurable systems in a large real-world scenario.

2. MOTIVATING EXAMPLE
In this section, by means of an example, we illustrate potential

conflicts in a plugin-based system, the challenges in detecting such
plugin conflicts, and the opportunities of sharing that we can exploit
for variability-aware execution.

(a) Output with Weather activated and Smiley deactivated

1 <script type=‘text/ javascript ’ src=‘jquery−2.0. js ’ /> ...
2 Weather forecast : <div>...Temperature: 76◦F...</div>

(b) Output with both Weather and Smiley activated

1 <script type=‘text/ javascript ’ src=‘jquery−1.7. js ’ /> ...
2 Weather forecast : [: weather

Figure 3: Conflict between Weather and Smiley

We selected the popular open-source, PHP-based blog software
WordPress [12] as the subject of our study, since it represents a
typical plugin architecture with over 25,000 available plugins, and is
broadly used on over 60 million websites (from basic blogs to large-
scale portals and enterprise websites). It is well-known for being
prone to plugin conflicts [6]. It exhibits common plugin conflict
characteristics as studied in other plugin systems [32].

WordPress is implemented as a classic framework, to which plug-
ins can contribute additional functionality by registering callback
functions to various events (following the observer and strategy
design patterns) or modifying shared global state. For illustration,
we show a strongly simplified core of WordPress and two plugins
in Figure 2. After initializing its own running environment (line 2),
WordPress retrieves plugins in alphabetical order from a database
(line 4) and initializes them by calling the PHP include function for
every plugin (lines 5-6). Plugins can register required JavaScript
libraries through shared states ($wp scripts), which are printed on
lines 8-9 as HTML <script> tags. Finally, WordPress receives a
blog post from the database and prints it after applying filters that
plugins may have registered (lines 11-14).

Plugin Conflicts. Plugin conflicts can arise when two or more plug-
ins interfere with one another’s behavior. While some conflicts such
as conflicting function names lead directly to crashes, others mani-
fest themselves silently and cause the page to display incorrectly. In
our simplified WordPress example, in Figure 2, the plugins Smiley
and Weather conflict: The Smiley plugin converts smiley codes
within a blog post (e.g., ‘:]’) into images, whereas the Weather
plugin injects a weather widget in the post; in addition, both plugins
use different versions of the same jQuery library. Both plugins work
well in isolation, but produce unexpected results when combined
as shown in Figure 3. As the first conflict, plugin Smiley replaces
string ‘:]’ in the ‘[:weather:]’ tag before plugin Weather can act,
resulting in unexpected output. Plugin Smiley also includes a ver-
sion of the jQuery library older than needed by plugin Weather,
resulting in runtime JavaScript errors. In this example, the plugin
that is initialized first affects the behavior of the plugin that follows;
however, in general, a plugin can also invalidate the effects of the
plugins that run before it.

Worse, platforms such as WordPress operate under an open-world
assumption, where third parties can contribute plugins and not all
plugins and contributors may be known. That is, plugin conflicts may
occur late when a user actually combines two (or more) plugins,
possibly from different sources, in the same environment. It is unre-
alistic for developers to anticipate all interactions with other plugins.

Challenges in Testing for Plugin Conflicts. Plugin conflicts are
notoriously hard to detect upfront. They typically arise from incom-
patible assumptions, inconsistent requirements, conflicting goals,
overlapping preconditions (e.g., both plugins replace overlapping
strings as in Figure 3), or conflicting postconditions (e.g., both
expect different library versions) [42].

Beyond opportunistic and ad-hoc testing of individual configura-
tions [32, 43], developers could write simple test cases validating

All All All AllS or W Smiley Context Weather ContextWeather ContextSmiley Context

2 4 5 8 11 12

2 4 5 6 8 9 11 12 13

2 4 5 6

Smiley

Weather 8 9 11 12 13

Smiley

Weather

2 4 5 6 Smiley 5 6 Weather 8 9 11 12 13 Smiley 12 13 Weather

14

12 14

12 14

12 14

5 6 Smiley 5 6 Weather 8 9 12 13 Smiley 12 13 Weather

5

5

5

8

8

8

Load plugins
Print

scripts
Print contentInitPlugin Config

Smiley=Inactive, Weather=Inactive

Smiley=Active, Weather=Inactive

Smiley=Inactive, Weather=Active

Smiley=Active, Weather=Active

Variability-aware execution
on all configs 12 148 11542

Figure 5: Shared statements among the execution of different plugin configurations

(a) Test case for the Weather plugin

1 function testWeather()
2 output = runWebPage(‘index.php’) // Execute the Web page
3 // Perform assertions on the output
4 assertContains (output.getElementByXPath(‘/html/body/div[1]’),

‘Temperature’);
5 assertEqualsOrNewer(output.get ... ByXPath(‘string(// script [1]/

src) ’) , ‘ jquery−2.0. js ’)

(b) Expected test results

Assertion failed at testWeather, L4 if Smiley∧Weather.
Assertion failed at testWeather, L5 if Smiley∧Weather.

Figure 4: Example test case for the Weather plugin

their assumptions. How to write such test cases is well established
and common practice [9]. As an illustration, in Figure 4a we show a
test case for the Weather plugin querying the main page and check-
ing whether the ‘[:weather:]’ tag has been replaced correctly and
whether the jQuery library has an up-to-date version. Such a test
can identify a plugin conflict when executed on a configuration with
both the Weather and the Smiley plugins.

To detect conflicts with test cases early, however, the test cases
need to be executed on individual plugin configurations. Every Word-
Press user can install and execute any combination of plugins in their
system. As more and more plugins are added, the number of possi-
ble combinations of plugins grows exponentially. With 20 plugins,
the number already runs into the millions; with more plugins brute
force quickly becomes entirely infeasible. Therefore, executing the
tests on many configurations in the development phase is expensive.
Sampling strategies, e.g. pairwise sampling [43, 24], can help to
reduce the test effort, but are intrinsically incomplete. Shipping test
cases with the plugins [32] delays test execution until a user actually
combines plugins, delays the detection and resolution of conflicts,
and shifts responsibilities to the users.

Approach Overview. We tackle the challenge of executing a
test case exhaustively over all configurations of a software product
(i.e., all combinations of a closed set of plugins from a repository).
The key observation that allows us to scale such execution despite
the exponential explosion is that many executions of a test are
very similar. For example, independent of the configurations, the
entire framework initialization (line 2 in Figure 2 for our motivating
example) and the retrieval of the posts (line 11) is always the same.
Plugins typically have local effects and rarely interact; some plugins
may not even affect the executed test case at all.

To highlight sharing in our example, we illustrate the shared
statements among the execution in four configurations in Figure 5.

For each configuration, a sequence of boxes shows the line numbers
of the statements in the main WordPress program (Figure 2) that are
executed. The statements in the plugins’ source code are grouped
together and denoted by Smiley and Weather, respectively. The
boxes across different configurations are aligned vertically to reveal
the shared code among them. Several statements (marked with a
dark background) are shared among all four configurations. The
amount of shared code in the actual WordPress system would be
even higher (e.g., the initialization step would include far more
statements than just the statement on line 2).

Leveraging such code sharing on the execution paths for different
plugin configurations, instead of running each configuration sepa-
rately, we develop a variability-aware interpreter that executes the
code for all configurations in a single run. The variability-aware
interpreter executes common code only once and when encounter-
ing a configuration option, it executes multiple branches with the
respective configurations. Our interpreter is able to operate on a data
representation capable of capturing alternative values of variables
during executing all configurations. As an illustration, the single exe-
cution trace of the variability-aware execution is shown at the bottom
part of Figure 5. For each statement, the interpreter keeps track of a
variability context, which describes which part of the configuration
space it is executing. For instance, statements 8 and 9 are executed
under the context that either Smiley or Weather is activated, while
statements 2 and 4 are executed for all configurations.

Our variability-aware interpreter executes all configurations once
and yields results equivalent to brute-force runs (Figure 1). Impor-
tantly, since variables can have alternative values in different con-
figurations, the test case may fail in only parts of the configuration
space, pinpointing plugin conflicts to the problematic configurations.
For example, the src property of tag <script> in the example’s
output is ‘jquery-1.7.js’ if Smiley is activated and ‘jquery-2.0.js’
otherwise. Thus, the assertion on line 5 of Figure 4a would fail if
and only if both Smiley and Weather were activated (Figure 4b).

3. VARIABILITY-AWARE EXECUTION
Informally, a regular execution for one program configuration

can be viewed as a sequence of computations on data. In contrast,
variability-aware execution is a sequence of computations on multi-
value data, whose values may differ between configurations. We
introduce Varex, a PHP variability-aware interpreter that performs
computations on multi-value data. Let us present its data representa-
tion and computations.

3.1 Variability-Aware Data Representation
Let us first formulate important concepts. Then, we explain Varex’s

data representation and how its variability-aware computation works.

1 $foo = PluginConfigOption(‘Foo’); // PluginConfigOption(‘X’) yields
2 $bar = PluginConfigOption(‘Bar’) ; // True iff X is activated
3 if ($foo)
4 $content = ‘Running [Foo]’;
5 else
6 $content = ‘Welcome’;
7 $content = str replace (‘[Foo]’, ‘Plugin Foo’, $content);
8 $status = ‘’;
9 if ($foo || $bar)

10 $status = ‘ (Plugins on) ’;
11 echo $content . $status ;

Figure 6: A PHP program with variability

DEFINITION 1 (CONFIGURATION OPTION). A (plugin) con-
figuration option for a plugin p is a Boolean variable that assumes
True if p is activated and False otherwise.

DEFINITION 2 (CONFIGURATION). A configuration is a spe-
cific assignment of Boolean values to configuration options that
specifies which plugins are activated.

DEFINITION 3 (PLUGIN-BASED APPLICATION). A plugin-
based application is a family of programs defined by the activation
of plugins. A configuration corresponds to a specific program.

DEFINITION 4 (CONFIGURATION SPACE). A configuration
space is the set of all possible configurations. A configuration space
for n plugins has 2n configurations.

DEFINITION 5 (VARIABILITY CONTEXT). A variability
context is a subset of the configuration space. We describe it
with a propositional formula over configuration options, which
yields True for all configurations belonging to the variability
context and False otherwise. The formula representing a variability
context is satisfiable iff the variability context contains at least
one configuration.

For example, variability context True contains all configurations,
variability context False contains none, and the context Foo∧¬Bar
describes the possibly very large set of configurations in which plu-
gin Foo is activated and plugin Bar is not activated (while all other
plugins can either be activated or not). The concepts can be extended
for non-Boolean configuration options with a finite domain.

In designing our variability-aware data representation, we aim to
achieve two goals: (1) the representation should be able to represent
a concrete value for every variable in every configuration, and (2) the
representation should be so compact that the same value in multiple
configurations are represented once instead of several times. Thus,
we partition the configuration space with variability contexts. For
all configurations inside a context, a variable shares the same value.

To illustrate the sharing, we show a simple PHP program with two
plugins in Figure 6. (The new example is simpler than the previous
one for readability, while still containing important PHP constructs
that will be used to explain our ideas.) As shown in Figure 7, instead
of keeping the values of $content for all four configurations, we
partition the configuration space into two parts (with contexts Foo
and ¬Foo) and maintain one distinct value for each context. Specifi-
cally, we manage data variability with an abstract data type called
MultiValue, with two concrete subtypes:

1. ConcreteValue: A ConcreteValue represents a concrete PHP
value that does not depend on any configurations.

2. Choice: A Choice models two alternative multi-values de-
pending on a variability context. Choice(φ , x, y) denotes that
the value is x for all configurations in the variability context
φ and y otherwise.

Plugin Config Value of $content before line 7, Figure 6
(1) Foo=False, Bar=False ‘Welcome’
(2) Foo=True, Bar=False ‘Running [Foo]’
(3) Foo=False, Bar=True ‘Welcome’
(4) Foo=True, Bar=True ‘Running [Foo]’

Variability-aware execution Choice(Foo, ‘Running [Foo]’, ‘Welcome’)
on all configs

Figure 7: Variability-aware data representation

To hierarchically partition the configuration space, choices can be
nested. Our representation roughly follows the Choice calculus [28].
In our example, we represent the two string values as Choice(Foo,
ConcreteValue(‘Running [Foo]’), ConcreteValue(‘Welcome’))
(last row in Figure 7). For readability, we omit the ConcreteValue
construct in the rest of the paper.

3.2 Variability-Aware Computation
Varex’s computation is realized with the following ideas:

1. Shared data. Varex aims to represent differences between
configurations compactly. It uses choices only for those variables
whose values actually differ. A choice between two equivalent values
can be simplified (Choice(φ , x, x) → x), and a choice of similar
objects can be compacted as one object with common values of the
objects’ fields being factored out.

2. Shared execution. Varex performs execution on shared code
just once and splits the current variability context only when vari-
ability occurs in values (e.g., a read variable has multiple values) or
in the control flow (e.g., the condition of an if statement evaluates to
different values). Varex shares execution as long as possible (called
late splitting, see Section 3.2.2). After a split, the next statements are
executed in restricted variability contexts (similar to path conditions
in symbolic execution). Then, the results from the computations in
those variability contexts are aggregated again into one compact
value and used for the next shared computations (early merging).
The goal is to execute each statement under the largest possible
variability context.

3.2.1 Store and Load Operations on Shared Data
As introduced above, the value of variables may depend on the

variability context. By representing sharing with MultiValue, we can
manage variables’ values compactly via a map from each variable’s
name to its corresponding MultiValue (line 1, Figure 8). During
execution, Varex maintains a current variability context φ , which can
change as the execution explores different parts of the configuration
space. The two key operations, storing and loading variables’ values,
are performed under a variability context φ as follows.

First, storing a value v to a variable (lines 2-6, Figure 8) means
that the variable will have its assigned value v in context φ and retain
its previous value in other configurations. Therefore, its new value is
represented by a Choice of the assigned value and its existing value
(line 4). If a variable does not have a previous value, we use a special
UNSET symbol as in a regular PHP interpreter to indicate that the
variable is uninitialized in some configurations. Helper function cre-
ateChoice performs some simplifications of the representation (lines
11-22). Second, loading a variable’s value in a given context φ (lines
7-10) is done by finding values in the variable’s MultiValue that
satisfy context φ via function extract (lines 24-32). It recursively
extracts values from the two branches of a Choice by eliminating
branches unsatisfiable to φ .
Compacting compound structures. In PHP Web applications, the
use of compound data structures such as objects and arrays is com-
mon. While such data structures can be large, differences often lie

1 map = Map[String, MultiValue]; // Maps variables ’ names to values
2 void storeVariable (String name, MultiValue value, Context φ) {
3 oldValue = map.contains(name) ? map[name] : UNSET;
4 newValue = createChoice(φ , value , oldValue) ;
5 map[name] = newValue;
6 }
7 MultiValue loadVariable (String name, Context φ) {
8 value = map[name];
9 return extract (value , φ) ;

10 }
11 MultiValue createChoice(Context φ , MultiValue x, MultiValue y) {
12 if (!satisfiable(¬φ)) return x;
13 if (!satisfiable(φ)) return y;
14 if (x == y) return x;
15 if (x is Object && y is Object) // Compact Choice of objects
16 obj = new Object();
17 for (f in (x. fields ∪ y. fields)) do
18 obj . addField(f , createChoice(φ , x[f], y[f])) ;
19 return obj ;
20 ... // Arrays are handled similarly to objects
21 else return Choice(φ , x, y) ;
22 }
23
24 MultiValue extract (MultiValue v, Context φ) {
25 if (v is Choice(ω , x, y))
26 x’ = extract(x, φ ∧ ω) ;
27 y’ = extract(y, φ ∧ ¬ω) ;
28 if (!satisfiable(φ ∧ ¬ω)) return x ’;
29 else if (!satisfiable(φ ∧ ω)) return y ’;
30 else return createChoice(ω , x ’, y ’) ;
31 else return v;
32 }

Figure 8: Storing and loading variables

only in individual fields. Thus, instead of representing choices be-
tween objects, we compactly represent a single object with choices
in its fields. For an object’s fields, we use the same storage repre-
sentation used for variables. When storing a value, Varex performs
this compression recursively in the helper function createChoice
(lines 15-19, Figure 8). The result is a compact representation of the
original objects, as illustrated below.

Original value : Choice(Foo, Object(x => 1, y => 2), Object(x =>
1, y => 3))

Compacted value: Object(x => 1, y => Choice(Foo, 2, 3))

Since PHP arrays are also associative maps from keys to values,
similarly to the handling of objects, Varex compacts a Choice of
arrays as an array of Choice elements.

3.2.2 Splitting and Merging of Variability Contexts
In a regular program, the result of a computation is always a

concrete value. For example, the evaluation of the condition at an
if statement returns either True or False, deciding which branch to
be run next. In a variability-aware execution, however, the result
can be a multi-value, i.e., its concrete value may depend on the
configuration. Thus, a variability-aware computation may need to
be executed on data under specific variability contexts (e.g., both
branches of an if statement can be run under different contexts in
which the condition evaluates to True and False, respectively).

Specifically, when a computation encounters multi-values, the
current variability context is split into subcontexts and the execution
continues in those subcontexts. The execution is sequential from
one context to another. Since the subcontexts can in turn split in
subcomputations, splitting can take place multiple times before the
original statement is entirely executed and the execution can proceed
with the original context (i.e., the subcontexts are merged to form the
original context). Splitting occurs on (1) a control statement with a
multi-value condition, resulting in execution in different branches, or
(2) a computation (e.g., expression) on multi-values (e.g., $a+$b),

1 MultiValue execute(IfStatement ifStmt , Context φ) {
2 MultiValue condValue = eval(ifStmt .condExpr, φ) ;
3 Context ω = whenTrue(condValue);
4 if (satisfiable(φ ∧ω))
5 execute(ifStmt .thenBranch, φ ∧ω) ;
6 if (ifStmt .hasElseBranch() and satisfiable (φ ∧¬ω))
7 execute(ifStmt .elseBranch, φ ∧¬ω) ;
8 }
9 Context whenTrue(MultiValue v) {

10 match (v)
11 case ConcreteValue(val)⇒ if (val) return True else return False ;
12 case Choice(φ ,x,y)⇒ return φ∧whenTrue(x) ∨ ¬φ∧whenTrue(y);
13 }

Figure 9: Context splitting on a control statement

causing the same computation to be executed multiple times in
different variability contexts.
Context splitting on a control statement. Since the value of the
condition of a control statement (e.g., if and while) can be a multi-
value, Varex first needs to determine the variability context ω in
which the value is True (using function whenTrue in Figure 9) and
the context in which the value is False (¬ω). For an if statement,
given the current variability context φ , Varex then runs the then and
else branches in restricted variability contexts φ ∧ω and φ ∧¬ω ,
respectively (lines 4-7). Note that in an empty context (i.e., if the
corresponding formula is not satisfiable), the corresponding branch
does not need to be executed. After running both branches, the
execution continues with the original context φ .

Figure 10 demonstrates the execution with the splitting and merg-
ing of variability contexts for our running example of Figure 6. The
boxes show snapshots of the variables’ values at different points in
the execution (unchanged values are abbreviated with ‘ ’). Executed
statements (the transitions between snapshots) are annotated with
line numbers and their corresponding variability contexts (in brack-
ets). The graph on the right visualizes the splitting and merging
of those contexts. The execution is sequential from one context to
another, yet variable accesses take effect in only their respective con-
texts as explained in Section 3.2.1. The splitting at an if statement is
illustrated by the first split (from L3[True] to L7[True]).

Other control statements (e.g., while) are handled similarly to an
if statement: If the condition returns a multi-value in which the True
value exists in some context, the loop will continue in that restricted
context. The body of a while may be repeatedly run in increasingly
smaller variability contexts until the loop terminates also in the last
configuration (i.e., the variability context is empty). Note that the
loop bound is concrete but may depend on the configuration.
Context splitting on a computation. If values involved in a com-
putation (e.g., the operands in expressions) are multi-values, Varex
will execute the computation multiple times for individual concrete
values represented by the multi-values in their corresponding vari-
ability contexts. In essence, for unary operations, we perform a map
over all concrete values of a multi-value. For binary operations, we
map over all combinations of concrete values (with their correspond-
ing intersected variability contexts). We sketch our algorithm in
Figure 11. Note that we compress the resulting value into a compact
one with the createChoice function. Nevertheless, binary operations
may lead to a combinatorial explosion of concrete values with small
variability contexts in the worst case. Finally, n-ary operations and
function calls with multiple arguments can be handled similarly.

Importantly, although any computation with multi-values can
always be done by mapping over all alternative values, Varex defers
this splitting if the computation itself can support multi-values (late
splitting). Specifically, for non-native computations such as a call
to a user-defined function, the execution continues without splitting

EXECUTION FLOW & MEMORY SNAPSHOTS

 $foo: Choice(Foo, True, False)
 $bar: Choice(Bar, True, False)

L3 [True]: if ($foo)

 $foo: _ , $bar: _ ,
 $content: Choice(Foo, ‘Running [Foo]’, null)

L4 [Foo]: $content = ‘Running [Foo]’;

 $foo: _ , $bar: _ , $content: Choice(Foo,
‘Running [Foo]’, ‘Welcome’)

L6 [¬Foo]: $content = ‘Welcome’;

 $foo: _ , $bar: _ , $content: _
 RetVal: Choice(Foo, ‘Running Plugin Foo’, null)

 $foo: _ , $bar: _ , $content: _ , RetVal:
 Choice(Foo, ‘Running Plugin Foo’, ‘Welcome’)

 $foo: _ , $bar: _ , $content: _ , $status: ‘’

L8 [True]: $status = ‘’;

L7 [Foo]: str_replace(…, $content)

L9 [True]: if ($foo || $bar)

 $foo: _ , $bar: _ , $content: _
 $status: Choice(Foo ∨ Bar, ‘ (Plugins on)’, ‘’)

L10 [Foo ∨ Bar]: $status = ‘ (Plugins on)’;

L11 [True]: echo $content . $status;

 $foo: _ , $bar: _ , $content: _ , $status: _
 $Output = Concat(Choice(Foo, ‘Running Plugin Foo’,
 ‘Welcome’), Choice(Foo ∨ Bar, ‘ (Plugins on)’, ‘’))

 $foo: _ , $bar: _ , $content: Choice(Foo,
‘Running Plugin Foo’, ‘Welcome’)

VARIABILITY CONTEXT

L1 [True]: $foo = PluginConfigOption(‘Foo’);
L2 [True]: $bar = PluginConfigOption(‘Bar’);

L7 [True]: $content = str_replace(‘[Foo]’,
‘Plugin Foo’, $content);

L7 [¬Foo]: str_replace(…, $content)

L7 [True]: $content = str_replace(...);

L1 [True]
L2 [True]

L3 [True]

L4 [Foo]

L6 [¬Foo]

L7 [True]

L7 [Foo]

L7 [¬Foo]

L7 [True]

L8 [True]

L9 [True]

L10 [Foo ∨ Bar]

L11 [True]

Split

Merge

Split

Merge

 No-op
[¬(Foo ∨ Bar)]

Figure 10: Variability-aware execution for the program in Figure 6

at the call site, since variability can be handled later inside the
function’s body. For native PHP operations such as addition or
logical conjunction, and calls to native PHP functions (e.g., strpos),
we either extend the interpreter to enable the native construct itself to
handle multi-values or (by default) let the execution split the context
using the algorithm in Figure 11. The splitting at a call to a native
PHP function (str replace) is illustrated at the (upper) L7[True]
statement in Figure 10.

3.2.3 Evaluation Rules
Let us summarize our evaluation rules for common PHP program

constructs in Table 1. The current context φ is initialized with the
entire configuration space (True).

R1-R6. Variable reading/writing and control statements are han-
dled as explained in Sections 3.2.1 and 3.2.2.

R7. Rule R7 handles control-flow breaking statements (e.g., re-
turn, break, continue) and exceptions. Within a block of statements,
when such instructions are encountered, a controlFlag variable will
get a non-null value, indicating that the remaining statements will
not be executed. In the case of an exception, Varex reports the cur-
rent context φ where the exception occurs. Since controlFlag can
be a multi-value, we use helper function whenNull (analogous to
whenTrue), and continue the execution only in configurations with
a null control flag. If a control flag is activated in all configurations
(i.e., the remaining variability context is empty), the execution stops
for that block of statements.

1 // Execute a unary operation on a multi−value
2 MultiValue execute(Op op, MultiValue v, Context φ) {
3 match (v)
4 case ConcreteValue(val) :
5 return executeConcrete(op, val , φ) ;
6 case Choice(ω , x, y) :
7 val1 = execute(op, x, φ ∧ω) ;
8 val2 = execute(op, y, φ ∧¬ω)) ;
9 return createChoice(ω , val1 , val2) ;

10 }
11 // Execute a binary operation on two multi−values
12 MultiValue execute(Op op, MultiValue a, MultiValue b, Context φ){
13 if (a is Choice(α , a1, a2))
14 return createChoice(α , execute(op, a1, b, φ ∧α) ,

execute(op, a2, b, φ ∧¬α)) ;
15 else if (b is Choice(β , b1, b2))
16 return createChoice(β , execute(op, a, b1, φ ∧β) ,

execute(op, a, b2, φ ∧¬β)) ;
17 else if (a is ConcreteValue(a’) and b is ConcreteValue(b’))
18 return executeConcrete(op, a ’, b ’, φ) ;
19 }

Figure 11: Context splitting on a computation

R8-R10. Expressions and native function calls with potential
multi-values are handled as explained in Section 3.2.2.

R11-R12. To make string concatenations with possible multi-
values at echo/print statements efficient, Varex uses a data type
called Concat, which represents a concatenation of string values
or multi-values. In R12, $Output is used for the output string. For
example, the output value of the code in Figure 6 is shown in the
snapshot box after L11 in Figure 10.

R13. Rule R13 supports testing of Web applications using assert
statements. Since the value of an asserted expression can be a multi-
value, Varex collects all the contexts in which that value evaluates
to False and reports those contexts.

3.2.4 Implementation
With the main goal of exploring the feasibility of variability-

aware execution in a large-scale practical setting, we extended the
open-source full-scale PHP 5 interpreter Quercus, written in Java [7].
For specifying variability contexts and checking satisfiability, we
use TypeChef’s library for propositional formulas with a JavaBDD
backend [34, 3]. We extended Quercus’ type system to support
multi-values such that concrete values occurring in a regular execu-
tion still behave as expected. However, the interpreter now needs to
handle operations involving multi-values. Since rewriting all exist-
ing operations on regular values into variability-aware operations
on multi-values at once is a daunting task, we implemented them
incrementally. During execution, we dynamically logged the code lo-
cations where operations on multi-values were attempted but not yet
supported. We implemented variability-aware alternatives for those
operations until no further unsupported operations were logged.

Limitations. Currently, our interpreter implements variability in all
operations needed in our evaluation, but not for all of PHP’s large
API. For instance, we did not implement a variability-aware version
of function count (determining the length of an array) yet, because
it was never called on arrays of variable length in our system.

Generally, Varex is limited regarding side effects outside the con-
trol of the interpreter, e.g., if a plugin writes to a file or makes a
state-changing request to a web server. Varex may execute the corre-
sponding code multiple times under different variability contexts,
changing the behavior compared to brute-force execution. We did
not address this issue yet, because it was not relevant for our experi-
ments. There are many strategies to explore, such as an abstraction
layer for a variability-aware file system or a mechanism to avoid
joining after potentially uncontrolled side effects [35, 37, 13, 53].

Table 1: Evaluation Rules

PHP Syntax Evaluation Rule in Satisfiable Context φ

eval(E, φ)

R1. $V = E storeVariable(V, eval(E, φ), φ)

R2. $V loadVariable(V, φ)

R3. $V->k = E v=loadVariable(V, φ), map=getKeysVals(v)
or $V[k] = E map.storeVariable(k, eval(E, φ), φ)

R4. $V->k v=loadVariable(V, φ), map=getKeysVals(v)
or $V[k] map.loadVariable(k, φ)

R5. if (E) S1 ω = whenTrue(eval(E, φ))
else S2 if (sat(φ ∧ω)) execute(S1, φ ∧ω)

if (sat(φ ∧¬ω)) execute(S2, φ ∧¬ω)

R6. while (E) while (true)
S φ = φ ∧ whenTrue(eval(E, φ))

if (sat(φ)) execute(S, φ) else break

R7. {S1 ... Sn} for (i = 1 to n) do
controlFlag = execute(Si, φ)
if (controlFlag is exception) report φ

φ = φ ∧ whenNull(controlFlag)
if (!sat(φ)) break

R8. ⊗E execute(⊗, eval(E, φ), φ)

R9. E1 ⊗ E2 execute(⊗, eval(E1, φ), eval(E2, φ), φ)

R10. native_func({Ei}) execute(native_func, {eval(Ei, φ)})

R11. E1 . E2 Concat(eval(E1, φ), eval(E2, φ))

R12. echo E eval($Output = $Output . E, φ)

R13. assert(E) χ = ¬whenTrue(eval(E, φ)), report φ ∧χ

Correctness. To ensure that our implementation is correct, we com-
pared Varex’s results with those of the execution of individual con-
figurations, following the schema in Figure 1. Specifically, we au-
tomated comparing the HTML output and all values in the heap at
the end of the execution (except for nondeterministic values, such
as the current time). For 10 plugins, we performed this comparison
against all 1024 configurations (brute force). For additional plugins,
we sampled the configuration space. We executed the comparison
for the test described in Section 5 and obtained equivalent results,
which gives us confidence in the correctness of Varex.

4. TESTING FRAMEWORK
With its variability-aware execution technique, Varex provides a

framework to run a test case in all possible plugin configurations.
The process consists of three steps:

1. Initializing optional plugins. In WordPress, the activated plu-
gins are stored in an array in which each value points to an activated
plugin’s path. To make plugin activation optional, we instrument
that code and create an array in which all entries are optional; each
of them is guarded by its corresponding configuration option:

if (PluginConfigOption(‘Smiley’)) $plugins [] = ‘Smiley path ’;
if (PluginConfigOption(‘Weather’)) $plugins [] = ‘Weather path ’;
...// Note that PluginConfigOption(‘P’) yields Choice(P,True,False)

2. Executing a test on a web page. In general, test cases can
be written according to common practice for testing Web applica-
tions [9] without any further consideration for variability (Figure 4a).
Varex then runs the test case. In contrast to a regular execution in
which the output is a concrete string value, Varex’s variability-aware
execution typically returns a multi-value, representing the output
values for all possible plugin configurations.

3. Performing assertions and reporting test results. Assertions
in the test case are checked against the (possibly multi-value) output
and may throw an exception only in specific variability contexts.
Thus, Varex can report that the test succeeds for all configurations
or pinpoint failed assertions to specific variability contexts (out of
which sample configurations can be generated with a SAT solver).

Table 2: Excerpt of 50 Tested WordPress Plugins
Contribution

Plugin Name Version Files LOC Chars Stmts

1 Jetpack 2.2.5 123 50,605 78 2,836
2 Types 1.4.0.1 164 46,071 0 1,719
3 Google Analyticator 6.4.4.3 64 41,287 0 2,614
4 WP Photo Album Plus 5.1.2 56 30,156 3,513 3,655

12 My Calendar 2.1.3 27 12,614 7,940 35,313

25 WP SlimStat 3.3.2 15 4,733 344 4,320

48 R. Simple CAPTCHA 1.6 2 293 0 16
49 WP Facebox 1.2.2 1 109 914 4,171
50 Lazy Load 0.5 1 64 312 844

Total size of plugins: 1,478 463,374
Size of WordPress 3.4.2: 388 183,502

For example, Varex reports that the two assertions in Figure 4a failed
in variability context Smiley ∧ Weather (as shown in Figure 4b),
thereby indicating a conflict between Smiley and Weather plugins.

5. EMPIRICAL STUDY
In this case study, we want to assess the feasibility of variability-

aware execution in a large real-world scenario. Specifically, we aim
at answering the following questions.

(RQ1) Sharing and interaction among plugins. The key idea
that allows the variability-aware execution technique to scale is
to take advantage of the sharing among plugins. Thus, we study
the sharing and interactions among plugins from three different as-
pects: the output, computations, and values of variables. For each as-
pect, we ask: How many characters/computations/values are shared
among all plugin configurations? How many of them depend on one
or more configuration options? How often do plugins interact? In
addition, we report all detected plugin conflicts.

(RQ2) Scalability of variability-aware execution. How much
time does it take to run Varex in a large configuration space?
Experiment Setup. To address our research questions, we installed
the WordPress system with a set of 50 plugins of various domains
and sizes. We selected the 40 most popular plugins as listed on
WordPress website and 10 plugins that are reported to have had
conflicts with some other plugins (to bias our selection slightly
toward hard and interacting plugins). Table 2 shows the sizes of
the largest and smallest plugins in our set, together with the size
of WordPress shown in the last row. The complete list of plugins
is available on our website [8]. Next, we created a test case that
generated the home page of WordPress with a single blog post and
initialized optional plugins as described in Section 4. We then ran
the test case with Varex and collected data.

5.1 Sharing and Interactions of Plugins - RQ1

5.1.1 Sharing and Interactions Observed in Output
Since the main purpose of a Web application is to generate an

HTML output, we first report how plugin interactions manifest in
this output. In the multi-value output produced by the execution,
we can derive a variability context φ for each character, indicating
the configurations in which it appears. If the character is produced
in variability context True, it is shared by all configurations; if it
depends on two or more plugin configuration options appearing
in φ , it indicates that the character has been produced through an
interaction among the corresponding plugins. We counted the dis-
tinct configuration options in each character’s variability context
and reported the aggregated numbers.

Figure 12 shows that around 9,000 characters are shared by all
configurations (column 0), and nearly 22,200 characters depend on

8,960

22,191

914 347 183 127 23 203 0
0

5,000

10,000

15,000

20,000

25,000

0 1 2 3 4 5 6 7 8-50

N
u

m
b

e
r

o
f

ch
ar

ac
te

rs

Number of configuration options

Contributions of plugins

My Calendar

WP Photo
Album Plus

Figure 12: Variability in the program’s output

71,512

143,131

6,610 11,380 13,671 8,929
0

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

0 1 2 3-5 6-9 10-16 17-50

N
u

m
b

e
r

o
f

st
ae

tm
e

n
ts

Number of configuration options

Contributions of plugins

My Calendar

Figure 13: Variability in computations

exactly one configuration option (column 1). That is, 94 % of the
output either is common among all configurations or is contributed
by plugins independently. The pie chart and Table 2 detail the contri-
bution exclusive to each plugin. It shows that plugins My Calendar
and WP Photo Album Plus contribute the most to the output; they
display a calendar widget and a photo slide show in the test web
page. Some plugins (29 out of 50 plugins) do not contribute to the
main page’s output at all.

A few fragments in the output are produced only if multiple
plugins are combined, with a maximum of 7 plugins (columns 2-
7). We found that most of those fragments are related to interac-
tions in declaring JavaScript libraries, since several different plugins
register the same JavaScript libraries with WordPress (as demon-
strated in Section 2). For example, plugin Cardoza (CAR) will print
a jQuery script if plugins WP Facebox (FAC) and WP Photo Al-
bum Plus (WPP) have not already done so. Therefore, the follow-
ing HTML fragment is displayed under variability context CAR∧
¬FAC∧¬WPP: <script ...jquery.js?ver=1.7.2’></script>.

5.1.2 Sharing and Interactions in Computations
After studying the output, we are interested in variability of inter-

nal computations. We counted each executed statement and analyzed
the corresponding variability context and aggregating results as for
the output. Figure 13 reports the sharing and interactions among
executed statements. As seen, 28 % of the executed statements are
shared among all configurations. 56 % of them are specific to one
plugin, as further detailed in the pie chart and Table 2. All plugins
are executed, with My Calendar contributing the most to the ex-
ecution. Interactions among multiple plugins account for 16% of
the executed statements and involve a maximum of 16 plugins. The
highest interaction involves plugins accessing the same WordPress
filters to register callback functions. Another common interaction of
plugins occurs in function get locale of WordPress:

L28: function get locale () { ...
L31: if (isset ($locale))
L32: return apply filters (‘ locale ’, $locale) ;

Among others, plugins with IDs ADV, ALL, BET, DIS, and GOO2
attempt to retrieve the locale of the system via get locale, in which
the global variable $locale is set if it was not set earlier. Thus, when
plugin Google Analytics for WordPress (GOO2) calls get locale,
line 32 is executed when GOO2 is activated, and $locale is set (i.e.,

1

10

100

1000

10000

100000

0 1 2 3 4 5 6 7 8 9 10 11 All

N
u

m
b

e
r

o
f

va
ri

ab
le

s

Depth

0 option

1 option

2 options

3-9 options

10-16 options

Figure 14: Variability in values (logarithmic scale)

one of the other plugins is activated). Thus, the variability context at
line 32 is GOO2∧ (ADV∨ALL∨BET∨DIS).

Note that if we executed WordPress in a brute-force fashion for all
250 configurations, we would execute statements in columns 0 and
1 each 250 and 249 times, respectively. In contrast, in a variability-
aware execution, those statements are executed only once, reducing
execution effort significantly.

We also measured how often a computation in a statement is split
into two or more subcomputations (due to context splitting). Out
of 255,233 executed statements, there are only 3,225 such cases. In
90 % of those cases, the context is split into only two subcontexts.
In the following worst case, the context is split into 48 subcontexts:

// WordPress−3.4.2/wp−includes/post−template.php
L166: $content = apply filters (‘ the content ’, $content);
L167: $content = str replace (‘]]>’, ‘]]> ;’, $content);

Here, the blog-post content (variable $content) is modified by
different plugins that registered to contribute to the WordPress
the content filter (line 166). Unless some values can be merged,
the number of values of $content doubles with every optional filter,
reaching 48 alternative unique values in our case. Subsequently, at
line 167, since str replace is a native function call, Varex splits the
current context into 48 subcontexts and executes the call multiple
times for concrete values of $content. Conceptually, the combina-
torial explosion can be avoided by providing a variability-aware
implementation of str replace that can handle multi-value strings.

5.1.3 Sharing and Interactions in Values
To see plugin interactions in variables’ values, we counted the

number of configuration options that the value of a variable depends
on. A variable can be a compound structure (object or array), whose
fields/keys can in turn be other compound structures. Thus, when
measuring plugin interactions, we take the nesting levels (or depths)
of values into account. Specifically, top-level variables are at depth
0; fields/keys of a compound structure at depth k are treated as
variables of depth k+1. Since a variable’s value may change during
the execution, we take snapshots of variables’ values throughout the
execution (every 10,000 executed statements and at the end, totaling
26 snapshots). We record the maximum number of configuration
options that each variable’s value depends on during the execution.

Figure 14 shows that at all different depths (with a maximum
depth of 11), most variables depend on zero or one configuration
option. Overall, 88.8 % of variables share the same value in all
configurations, and 9.8 % of them have values depending on only
one configuration option (column All). We found that high-degree
interactions (involving 10-16 plugins) are mostly associated with
the variables named wp filter id, which are incremented each time
a plugin registers a WordPress filter. Since all plugins are optional,
its value varies depending on many configuration options.

Sharing inside compound structures (depth > 0) is beneficial if
large objects differ only in individual fields. To study the impact of
the compact algorithm that enables this inner sharing (Section 3.2.1),
we additionally explored the size of the heap without this inner
sharing. For 152 out of 158 top-level objects, we would need to

0

100

200

300

400

500

0 10 20 30 40 50

Ex
e

cu
ti

o
n

 t
im

e

(i
n

 s
e

co
n

d
s)

Number of plugins

va-execution
pairwise sampling
5-wise s.
10-wise s.

Figure 15: Running time (with standard deviation)

store 774,960 instead of 13,020 fields, whereas we could not even
compute the size of 6 top-level objects without inner sharing due to a
combinatorial explosion (we waited more than an hour and stopped
at about 6,000,000 fields). These results show that the compact
algorithm significantly reduces the size of compound structures by
exploiting the sharing inside them.
Summary. Overall, the data of our experiment shows that there
exist some high-degree plugin interactions, which are hard to catch
with random or combinatorial testing. However, we found that the
interactions among plugins did not result in severe exponential
explosions and that the interactions remain mostly local. Importantly,
there exists a significant amount of sharing in terms of computations
and data values that motivates variability-execution testing.

5.2 Scalability - RQ2
To evaluate Varex’s scalability, we measured the time for running

variability-aware execution with different numbers of plugins (wall-
clock time). For each number of plugins, we selected 20 random
subsets from the set of 50 plugins, except for sets of size 0 and 50
which have only one possible selection. We then ran Varex on these
subsets and reported average and standard deviation; for sets of size
0 and 50, we ran it 20 times each. The experiment was carried out
on a computer with Intel Core i5 2.30 GHz CPU and 6.00 GB RAM,
running Windows 7 64-bit and JVM 7 64-bit with 4.00 GB heap size.
We did not even attempt to measure brute-force execution of 250

configurations, but can extrapolate a runtime of 35 million years.
The results are plotted in Figure 15. The standard deviation is

high due to the large differences in plugin size and complexity and
the random selection of plugins. As seen, performance degrades
with additional plugins, due to additional code and interactions, but
there is no obvious exponential explosion. The overhead for SAT
solving is negligible. Varex executes 20 plugins in about one minute
and all 50 plugins (covering 250 configurations) in less than seven
minutes. In comparison, executing WordPress with the standard
Quercus interpreter took 0.7 second without any plugins and 3.4
seconds with all 50 plugins activated (excluding one conflicting
plugin causing a crash, which we discuss next).

In Figure 15, we additionally plot performance for combinatorial
testing and brute-force execution (extrapolated based on theoretical
bounds [1]). Pairwise testing suffices with small sampling sets that
can be executed very quickly. Larger sampling sets are expensive to
compute [44], but can still outperform variability-aware execution to
some degree. However, in contrast to variability-aware execution, all
sampling strategies are necessarily incomplete. Computing n-way
samples for large n (such as n = 16, as would be needed to guarantee
covering all interactions that we detected) approaches brute-force
effort, as the sample will have to include at least 2n configurations.

5.3 Anecdotal Evidence of Plugin Conflicts
Although we did not explicitly search for plugin conflicts (e.g.,

by writing test cases as outlined in Sections 2 and 4), we found two

plugin conflicts that provide anecdotal evidence of the potential of
variability-aware execution for testing.

Case 1. ‘Undefined function’ error caused by plugins ‘Contact
Form 7 (CON)’ and ‘Really Simple CAPTCHA (REA)’. At the end of
the variability-aware execution on all 50 plugins, Varex reported an
exception occurring in the variability context CON∧REA (via rule
R7 in Table 1), indicating that a crash occurs at a call to an undefined
function win is writable in the cleanup function of REA when both
plugins are activated. Examining the error, we found that when
CON is also activated, it is the only plugin that calls the cleanup
function of REA. This interaction causes REA to invoke the function
win is writable, which leads to the crash because WordPress at
version 3.4.2 does not yet support it. This error is also confirmed on
WordPress website [11].

//Plugin REA: really−simple−captcha/really−simple−captcha.php
Line 228: function cleanup (...) {
Line 236: ... win is writable ($dir) : is writable ($dir) ...
//Plugin CON: contact−form−7/modules/captcha.php
Line 418: return $wpcf7 captcha−>cleanup();

Case 2. Accidental URL overwriting between ‘My Calendar
(CAL)’ and ‘WP to Twitter (WPT)’. After executing all 50
plugins and examining the program’s multi-value output, we
found that the text displaying an image URL provided by the
CAL plugin is not a concrete value as expected; instead, it is
a Choice between two values depending on configuration op-
tion WPT: Choice(WPT, ‘...plugins/my-calendar/...event.png’,
‘...plugins///my-calendar/...event.png’). That is, the URL does
not have its expected value when WPT is activated together with
CAL. This error occurred since the plugins accidentally used the
same variable name $wp plugin url. When activated, the WPT plu-
gin overwrote a different value to the value that was assigned earlier
by the CAL plugin. This error can be detected by running Varex on
a test case as in Figure 4.

//Plugin CAL: my−calendar/my−calendar.php
Line 87: $wp plugin url = plugin dir url (FILE) ;
//Plugin WPT: wp−to−twitter/wp−to−twitter.php
Line 39: $wp plugin url = plugins url () ;

5.4 Threats to Validity
We focused engineering effort to support a single but large-scale

and real-world system, because we expect more insights into char-
acteristics of real-world systems than using diverse but smaller or
synthetic benchmarks. Although we selected a broadly used sys-
tem with a typical framework architecture and selected a relatively
large set of ‘difficult’ plugins (popular plugins and plugins that are
known to be conflicting), our study was on only the main page of
one system with a set of 50 plugins written in PHP; thus, limiting
external validity. To cope with the large traces, we had to rely on
proxy metrics (measuring statements as computations, sampling
snapshots of variable values) which may threaten construct validity.
We counted distinct configuration options in formulas as proxy char-
acterizing interactions; most formulas do not contain disjunctions
but for those that do we may report slightly higher numbers than
interaction-degree metrics used in combinatorial testing [30]. Perfor-
mance measurements are influenced by JIT compilation and caching
effects of the used SAT solver; as a consequence we reported only
startup performance by restarting the JVM between every run.

6. RELATED WORK
Variability-aware execution was proposed at least three times

independently in the last year. (1) We proposed variability-aware

execution in a previous paper [35] and experimented with a hand-
written interpreter for the WHILE language and toy examples and
experienced the potential for orders-of-magnitude performance im-
provements over exhaustive brute-force execution. (2) Kim et al.
independently extended the interpreter of Java Pathfinder into a
variability-aware interpreter for Java named shared execution [37].
They experimented with small academic product lines (up to 146
configurations) and reported a possible speedup of up to 50 % com-
pared to exhaustive brute-force execution. (3) Austin and Flanagan’s
proposal of multiple facets use a form of variability-aware execution
for accurate dynamic information-flow analysis (instead of config-
uration options they consider different access rights as a reason
for tracking alternative values) [13]. They extended a metacircular
JavaScript interpreter. On a 300 lines MD5 encryption algorithm
with up to 8 configuration options, they demonstrated significant
speedups over a sequential brute-force strategy.

Although there are several technical differences among the ap-
proaches (e.g., whether to represent variability contexts with propo-
sitional formulas or sets, whether and when to merge alternative
values), conceptually (with regard to the strategies explained in
Section 3) and implementation-wise they are all similar. All prior
implementations changed a nonstandard interpreter (which intro-
duced significant interpretative overhead compared to the typical
optimized execution environment), and demonstrated speedups only
on small examples. The feasibility of these approaches depends
on the characteristics of the executed program. An important open
question, which we now addressed, is whether such approach scales
to a large real-world scenario. Our results show that testing plugin-
based systems is a promising application that justifies a full-fledged
variability-aware execution environment.

In delta execution [53], Tucek et al. experimented with forking
and merging two variants of an instrumented C program, differing
in a small patch. However, it is limited to differences between two
program variants. While they could gain moderate performance
improvements, variability-aware execution excels in scenarios with
many configurations.
Symbolic Execution. Variability-aware execution is similar to dy-
namic symbolic execution [31, 49, 17] and model checking [22], but
has both conceptual and technical differences. The key conceptual
difference is that Varex operates on conditional concrete values in-
stead of symbolic values. In Varex, a variable may have different
values in different configurations, but all values are concrete. Config-
uration options can be viewed as symbolic, but they are used only to
map between concrete values and configurations. In contrast to sym-
bolic execution, concrete values never intermix with symbolic ones
and we have a clear notion of executing statements conditionally
in a variability context. Notice how our PluginConfigOption in Figures
6 and 10 assigns the concrete values True and False depending on a
configuration option (v=Choice(φ , True, False)).

In symbolic execution and model checking, scalability to large-
scale systems remains a challenge [18]. Reisner et al. have used dy-
namic symbolic execution to entirely explore the configuration space
of 3 mid-size Java systems [47]. Symbolic execution was expensive
in their case, requiring 80 machine weeks for 319 tests in three 10k
line applications with less than 30 configuration options each. They
do not exploit sharing beyond a common prefix of execution traces.
Variability-Aware Analysis. Variability-aware execution has been
inspired by recent work on static analysis of product lines [26, 51, 51,
33, 40, 16, 15, 23, 21]. A community of researchers has investigated
how to perform type checking [33, 40, 21, 51], model checking [23,
39], data-flow analysis [16, 15, 40], and other analyses [26, 34] on
multiple compile-time configurations of a system at a time. This

community has explored how to represent and reason about partial
but finite configuration spaces compactly with BDDs or SAT solvers
(as used in our variability contexts) [14, 33, 41], how to represent
choices of structures [28] and in complex structures [29, 40]. For an
overview of the field see a recent survey [52].

Recently, several empirical studies have shown that static analysis
of product lines can scale to systems of the size of Linux kernel (over
6000 configuration options in 6 million LOCs) and can outperform
some sampling strategies due to the high sharing among the config-
urations [40, 15, 33]. While these results are encouraging, it was
unclear whether they also translate to variability-aware execution,
as due to control and data dependencies, we expect more nonlocal
effects and interactions among configurations than in type checking
or data-flow analysis. Our results confirm this expectation, but also
indicate that there is still significant sharing to exploit.
Other Testing Strategies. In product-line testing [45] and frame-
work testing [32] it is a common strategy to unit test components or
plug-ins in isolation, while integration tests are often neglected or
performed only for specific configurations. Testing product lines is
still considered a “rather immature area” [27]. Greiler et al. suggest
shipping test cases with plug-ins and running them in the configured
client system [32]. In essence, this is a strategy that postpones tests
of configurations until the configuration is actually used.

Moreover, combinatorial testing allows to compute a set of con-
figurations that cover all combinations among all n-sized sets of
configuration options [43, 24]. Pairwise combinatorial testing is
efficient to detect all interactions among all pairs of options, but the
sample size and effort to compute the sample quickly grows with
larger n; sample sets for n > 5 are challenging to compute—our
example would require n = 16 to guarantee full coverage of all
actual interactions. Sampling does not need specialized execution
environments and can be much faster, as shown in Figure 15, but, by
its nature, may miss configuration-related paths. Other methods aim
to reduce test cases or configurations via impact analysis [46, 48].

Kim et al. and Shi et al. have explored static and dynamic anal-
yses to avoid reexecutions of configurations that have exactly the
same execution path [36, 38, 50]. They demonstrated in only one
large industrial application and mostly small examples for unit tests
with few configuration options. In WordPress scenario however,
all plugins always influence the execution (even if only because
each plugin is initialized); i.e., such analysis could not exclude any
configuration, resulting in a brute-force approach.

In several scenarios multiple program variants are executed in
parallel for security reasons [25, 20]. Executions are synchronized,
but similarities among variants are not exploited.

7. CONCLUSIONS
Variability-aware execution has been proposed recently to im-

prove performance over brute-force execution for testing config-
urable systems; however, it has been demonstrated on only small
examples. In this paper, we addressed the question of whether such
an approach can scale to large real-world scenarios. Running our
variability-aware PHP interpreter Varex on the WordPress web ap-
plication with 250 configurations, we found that there exists a signif-
icant amount of sharing across plugin configurations, which allows
Varex to scale. The results showed that developing variability-aware
execution environments for testing is a promising direction.

8. ACKNOWLEDGMENTS
This project is funded in part by US National Science Foundation

(NSF) CCF-1018600, CNS-1223828, CCF-1318808, CCF-1349153,
and CCF-1320578 grants.

9. REFERENCES
[1] Covering array tables. http://www.public.asu.edu/

~ccolbou/src/tabby/catable.html.
[2] Eclipse website. http://www.eclipse.org/.
[3] JavaBDD website. http://javabdd.sourceforge.net/.
[4] Microsoft Office website.

http://office.microsoft.com/.
[5] Mozzila add-ons website.

https://developer.mozilla.org/en-US/addons.
[6] Plugin conflicts. http://wiki.simple-press.com/

installation/troubleshooting/plugin-conflicts/.
[7] Quercus website. http://quercus.caucho.com/.
[8] Varex website. http://home.engineering.iastate.

edu/~hungnv/Research/Varex/.
[9] Web site test tools and site management tools.

http://www.softwareqatest.com/qatweb1.html.
[10] WordPress plugin compatibility beta. http://wordpress.

org/news/2009/10/plugin-compatibility-beta/.
[11] WordPress support website. http://wordpress.org/

support/topic/call-to-undefined-function-win_

is_writable-on-line-236.
[12] WordPress website. http://wordpress.org/.
[13] T. H. Austin and C. Flanagan. Multiple facets for dynamic

information flow. In Proc. Symp. Principles of Programming
Languages (POPL), pages 165–178, New York, 2012. ACM
Press.

[14] D. Batory. Feature models, grammars, and propositional
formulas. In Proc. Int’l Software Product Line Conference
(SPLC), volume 3714 of Lecture Notes in Computer Science,
pages 7–20, Berlin/Heidelberg, 2005. Springer-Verlag.

[15] E. Bodden, T. Tolêdo, M. Ribeiro, C. Brabrand, P. Borba, and
M. Mezini. Spllift: Statically analyzing software product lines
in minutes instead of years. In Proc. Conf. Programming
Language Design and Implementation (PLDI), pages
355–364, New York, 2013. ACM Press.

[16] C. Brabrand, M. Ribeiro, T. Tolêdo, and P. Borba.
Intraprocedural dataflow analysis for software product lines.
In Proc. Int’l Conf. Aspect-Oriented Software Development
(AOSD), pages 13–24, New York, 2012. ACM Press.

[17] C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted and
automatic generation of high-coverage tests for complex
systems programs. In Proc. USENIX Conf. Operating Systems
Design and Implementation (OSDI), pages 209–224, Berkeley,
CA, 2008. USENIX Association.

[18] C. Cadar, P. Godefroid, S. Khurshid, C. S. Păsăreanu, K. Sen,
N. Tillmann, and W. Visser. Symbolic execution for software
testing in practice: Preliminary assessment. In Proc. Int’l Conf.
Software Engineering (ICSE), pages 1066–1071, New York,
2011. ACM Press.

[19] M. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec.
Feature interaction: A critical review and considered forecast.
Computer Networks, 41(1):115–141, 2003.

[20] R. Capizzi, A. Longo, V. N. Venkatakrishnan, and A. P. Sistla.
Preventing information leaks through shadow executions. In
Proc. Annual Computer Security Applications Conference
(ACSAC), pages 322–331, Washington, DC, 2008. IEEE.

[21] S. Chen, M. Erwig, and E. Walkingshaw. Extending type
inference to variational programs. ACM Trans. Program. Lang.
Syst. (TOPLAS), 2013.

[22] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking.
MIT Press, 1999.

[23] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F.
Raskin. Model checking lots of systems: Efficient verification
of temporal properties in software product lines. In Proc. Int’l
Conf. Software Engineering (ICSE), pages 335–344, New
York, 2010. ACM Press.

[24] M. B. Cohen, M. B. Dwyer, and J. Shi. Interaction testing of
highly-configurable systems in the presence of constraints. In
Proc. Int’l Symp. Software Testing and Analysis (ISSTA),
pages 129–139, New York, 2007. ACM Press.

[25] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson,
J. Knight, A. Nguyen-Tuong, and J. Hiser. N-variant systems:
A secretless framework for security through diversity. In Proc.
USENIX Security Symposium (USENIX-SS), Berkeley, CA,
USA, 2006. USENIX Association.

[26] K. Czarnecki and K. Pietroszek. Verifying feature-based
model templates against well-formedness OCL constraints. In
Proc. Int’l Conf. Generative Programming and Component
Engineering (GPCE), pages 211–220, New York, 2006. ACM.

[27] E. Engström and P. Runeson. Software product line testing - A
systematic mapping study. Information and Software
Technology (IST), 53(1):2–13, 2011.

[28] M. Erwig and E. Walkingshaw. The choice calculus: A
representation for software variation. ACM Trans. Softw. Eng.
Methodol., 21(1):6:1–6:27, 2011.

[29] M. Erwig and E. Walkingshaw. Variation programming with
the choice calculus. In Generative and Transformational
Techniques in Software Engineering IV, pages 55–100.
Springer Berlin Heidelberg, 2013.

[30] B. J. Garvin and M. B. Cohen. Feature interaction faults
revisited: An exploratory study. In Proc. Int’l Symp. Software
Reliability Engineering (ISSRE), pages 90–99, Los Alamitos,
CA, 2011. IEEE Computer Society.

[31] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
automated random testing. In Proc. Conf. Programming
Language Design and Implementation (PLDI), pages
213–223, New York, 2005. ACM Press.

[32] M. Greiler, A. van Deursen, and M.-A. Storey. Test
confessions: A study of testing practices for plug-in systems.
In Proc. Int’l Conf. Software Engineering (ICSE), pages
244–254, Piscataway, NJ, 2012. IEEE Press.

[33] C. Kästner, S. Apel, T. Thüm, and G. Saake. Type checking
annotation-based product lines. ACM Trans. Softw. Eng.
Methodol. (TOSEM), 21(3):14:1–14:39, 2012.

[34] C. Kästner, P. G. Giarrusso, T. Rendel, S. Erdweg,
K. Ostermann, and T. Berger. Variability-aware parsing in the
presence of lexical macros and conditional compilation. In
Proc. Int’l Conf. Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), pages 805–824, New
York, 2011. ACM Press.

[35] C. Kästner, A. von Rhein, S. Erdweg, J. Pusch, S. Apel,
T. Rendel, and K. Ostermann. Toward variability-aware
testing. In Proc. GPCE Workshop on Feature-Oriented
Software Development (FOSD), pages 1–8, New York, 2012.
ACM Press.

[36] C. H. P. Kim, D. S. Batory, and S. Khurshid. Reducing
combinatorics in testing product lines. In Proc. Int’l Conf.
Aspect-Oriented Software Development (AOSD), pages 57–68,
New York, 2011. ACM Press.

[37] C. H. P. Kim, S. Khurshid, and D. Batory. Shared execution
for efficiently testing product lines. In Proc. Int’l Symp.
Software Reliability Engineering (ISSRE), pages 221–230,
Los Alamitos, CA, 2012. IEEE Computer Society.

http://www.public.asu.edu/~ccolbou/src/tabby/catable.html
http://www.public.asu.edu/~ccolbou/src/tabby/catable.html
http://www.eclipse.org/
http://javabdd.sourceforge.net/
http://office.microsoft.com/
https://developer.mozilla.org/en-US/addons
http://wiki.simple-press.com/installation/troubleshooting/plugin-conflicts/
http://wiki.simple-press.com/installation/troubleshooting/plugin-conflicts/
http://quercus.caucho.com/
http://home.engineering.iastate.edu/~hungnv/Research/Varex/
http://home.engineering.iastate.edu/~hungnv/Research/Varex/
http://www.softwareqatest.com/qatweb1.html
http://wordpress.org/news/2009/10/plugin-compatibility-beta/
http://wordpress.org/news/2009/10/plugin-compatibility-beta/
http://wordpress.org/support/topic/call-to-undefined-function-win_is_writable-on-line-236
http://wordpress.org/support/topic/call-to-undefined-function-win_is_writable-on-line-236
http://wordpress.org/support/topic/call-to-undefined-function-win_is_writable-on-line-236
http://wordpress.org/

[38] C. H. P. Kim, D. Marinov, S. Khurshid, D. Batory, S. Souto,
P. Barros, and M. D’Amorim. Splat: Lightweight dynamic
analysis for reducing combinatorics in testing configurable
systems. In Proc. Europ. Software Engineering
Conf./Foundations of Software Engineering (ESEC/FSE),
pages 257–267, New York, 2013. ACM Press.

[39] K. Lauenroth, K. Pohl, and S. Toehning. Model checking of
domain artifacts in product line engineering. In Proc. Int’l
Conf. Automated Software Engineering (ASE), pages 269–280,
Los Alamitos, CA, 2009. IEEE Computer Society.

[40] J. Liebig, A. von Rhein, C. Kästner, S. Apel, J. Dörre, and
C. Lengauer. Scalable analysis of variable software. In Proc.
Europ. Software Engineering Conf./Foundations of Software
Engineering (ESEC/FSE), pages 81–91, New York, 2013.
ACM Press.

[41] M. Mendonça, A. Wąsowski, and K. Czarnecki. SAT-based
analysis of feature models is easy. In Proc. Int’l Software
Product Line Conference (SPLC), pages 231–240, New York,
2009. ACM Press.

[42] A. Nhlabatsi, R. Laney, and B. Nuseibeh. Feature interaction:
The security threat from within software systems. Progress in
Informatics, pages 75–89, 2008.

[43] C. Nie and H. Leung. A survey of combinatorial testing. ACM
Comput. Surv., 43(2):11:1–11:29, 2011.

[44] J. Petke, S. Yoo, M. B. Cohen, and M. Harman. Efficiency and
early fault detection with lower and higher strength
combinatorial interaction testing. In Proc. Europ. Software
Engineering Conf./Foundations of Software Engineering
(ESEC/FSE), pages 26–36, New York, 2013. ACM Press.

[45] K. Pohl, G. Böckle, and F. J. van der Linden. Software
Product Line Engineering: Foundations, Principles and
Techniques. Springer-Verlag, Berlin/Heidelberg, 2005.

[46] X. Qu, M. Acharya, and B. Robinson. Impact analysis of

configuration changes for test case selection. In Proc. Int’l
Symp. Software Reliability Engineering (ISSRE), pages
140–149, Washington, DC, 2011. IEEE Computer Society.

[47] E. Reisner, C. Song, K.-K. Ma, J. S. Foster, and A. Porter.
Using symbolic evaluation to understand behavior in
configurable software systems. In Proc. Int’l Conf. Software
Engineering (ICSE), pages 445–454, New York, 2010. ACM
Press.

[48] B. Robinson, M. Acharya, and X. Qu. Configuration selection
using code change impact analysis for regression testing. In
Proc. Int’l Conf. Software Maintenance (ICSM), pages
129–138, Washington, DC, 2012. IEEE Computer Society.

[49] K. Sen, D. Marinov, and G. Agha. Cute: A concolic unit
testing engine for C. In Proc. Europ. Software Engineering
Conf./Foundations of Software Engineering (ESEC/FSE),
pages 263–272, New York, 2005. ACM Press.

[50] J. Shi, M. Cohen, and M. Dwyer. Integration testing of
software product lines using compositional symbolic
execution. In Proc. Int’l Conf. Fundamental Approaches to
Software Engineering, volume 7212 of Lecture Notes in
Computer Science, pages 270–284, Berlin/Heidelberg, 2012.
Springer-Verlag.

[51] S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe
composition of product lines. In Proc. Int’l Conf. Generative
Programming and Component Engineering (GPCE), pages
95–104, New York, 2007. ACM Press.

[52] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake. A
classification and survey of analysis strategies for software
product lines. ACM Computing Surveys, 2014. to appear.

[53] J. Tucek, W. Xiong, and Y. Zhou. Efficient online validation
with delta execution. In Proc. Int’l Conf. Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), pages 193–204, New York, 2009. ACM Press.

	Introduction
	Motivating Example
	Variability-aware Execution
	Variability-Aware Data Representation
	Variability-Aware Computation
	Store and Load Operations on Shared Data
	Splitting and Merging of Variability Contexts
	Evaluation Rules
	Implementation

	Testing Framework
	Empirical Study
	Sharing and Interactions of Plugins - RQ1
	Sharing and Interactions Observed in Output
	Sharing and Interactions in Computations
	Sharing and Interactions in Values

	Scalability - RQ2
	Anecdotal Evidence of Plugin Conflicts
	Threats to Validity

	Related Work
	Conclusions
	Acknowledgments
	References

