
Mining Configuration Constraints:
Static Analyses and Empirical Results

Sarah Nadi
University of Waterloo,

Canada

Thorsten Berger
IT University of

Copenhagen, Denmark

Christian Kästner
Carnegie Mellon
University, USA

Krzysztof Czarnecki
University of Waterloo,

Canada

ABSTRACT
Highly-configurable systems allow users to tailor the software to
their specific needs. Not all combinations of configuration options
are valid though, and constraints arise for technical or non-technical
reasons. Explicitly describing these constraints in a variability model
allows reasoning about the supported configurations. To automate
creating variability models, we need to identify the origin of such
configuration constraints. We propose an approach which uses build-
time errors and a novel feature-effect heuristic to automatically
extract configuration constraints from C code. We conduct an em-
pirical study on four highly-configurable open-source systems with
existing variability models having three objectives in mind: evaluate
the accuracy of our approach, determine the recoverability of exist-
ing variability-model constraints using our analysis, and classify the
sources of variability-model constraints. We find that both our ex-
traction heuristics are highly accurate (93 % and 77 % respectively),
and that we can recover 19 % of the existing variability-models
using our approach. However, we find that many of the remaining
constraints require expert knowledge or more expensive analyses.
We argue that our approach, tooling, and experimental results sup-
port researchers and practitioners working on variability model
re-engineering, evolution, and consistency-checking techniques.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and Enhance-
ment—Restructuring, reverse engineering, and reengineering; D.2.13
[Software Engineering]: Reusable Software

General Terms
Design, Measurement, Experimentation

Keywords
Variability models, feature models, software product lines, reverse engineer-
ing, static analysis, empirical software engineering

1. INTRODUCTION
Developing highly configurable software that can be tailored to

specific needs has been receiving increasing attention by practi-
tioners and researchers. Configuration options, or features, allow
customizing functionality to user needs. For example, providing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 – June 7, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2756-5/14/05 ...$15.00.

Figure 1: Overview of proposed approach and empirical study

options to reduce energy consumption and memory footprint when
building for embedded systems. Features can range from those
tweaking small functional- and non-functional aspects, to those
enabling whole subsystems of the software. Large configurable
systems can easily have thousands of features with complex con-
straints that restrict valid combinations and values. Examples of
such systems range from large industrial software product lines to
prominent open-source systems software, such as the Linux kernel
with currently more than 11,000 features [14, 41, 44].

Such configurable systems are usually divided into a problem
space and a solution space [18] as shown in Figure 1 (explained
shortly). The problem space describes the supported features and
their dependencies, while the solution space is the technical realiza-
tion of the system and the functionalities specified by the features
(i.e., code and build files). Thus, features cross both spaces: They
are described in the problem space and mapped to code artifacts in
the solution space.

Ideally, configurable systems have a formal, documented variabil-
ity model, describing the problem space. Automated and interactive
configurators use such models to support users in navigating a com-
plex configuration space [9, 21, 53, 54]. However, many systems
have no documented variability model or rely on informal textual
descriptions of constraints (e.g., the FreeBSD kernel [42]). As the

number of features and their dependencies increases, configuration
becomes more challenging [23, 42], and introducing an explicit vari-
ability model is often the way out to conquer complexity and have
one central—human- and machine-readable—place for documen-
tation. Manual extraction of constraints and construction of such
models for existing systems is a daunting task though, which calls
for automation.

Identifying the sources of configuration constraints is essential to
support automatically creating variability models. We expect a broad
spectrum of constraints in a variability model ranging from purely
low-level technical constraints, which reflect code dependencies
(e.g., multi-threaded I/O locking depends on threading support in an
operating system kernel), to purely non-technical constraints, which
reflect domain-specific knowledge (e.g., marketing requirements
placed by a project manager, or a sales department). The former can
be discovered by just analyzing the code, while the latter can be
found through talking to experts or looking at requirements docu-
ments, for example. However, additional sources of constraints may
lie between these two ends. For example, there may be technical con-
straints not discoverable except through specific tests on particular
platforms. We are not aware of any study that empirically investi-
gates how prevalent different sources of constraints are in existing
variability models. Such knowledge provides valuable insights into
the practicability of automatically constructing a variability model.

In this work, we investigate the different sources of configuration
constraints and to what extent we can automatically and accurately
extract constraints from existing implementations using static anal-
ysis techniques. Figure 1 shows an overview of the approach we
follow as well as our empirical evaluation. Our work has both a
significant engineering contribution (extracting constraints from C
code) and an empirical contribution (assessing recoverability and
classifying constraints in existing variability models).

Extracting Constraints. Our work focuses on C based systems
with build-time variability using the build system and C preprocessor.
Since many features are directly used in implementation files [33],
we assume that many of the configuration constraints are reflected
in the code. We design and implement a scalable approach to extract
constraints statically. We use two specifications: all valid configura-
tions should build correctly, and they should all yield different prod-
ucts. For both specifications, we propose novel scalable extraction
strategies based on the structural use of #IFDEF directives, on parser
and type errors, and on linker checks. Whereas prior work approxi-
mated constraints from preprocessor directives [28,42,45,48,55], we
design an infrastructure that accurately represents C code based on
our previous research on variability-aware parsing and type check-
ing [26, 27, 30]. In a nutshell, we statically analyze build-time vari-
ability effectively without examining an exponential number of
configurations. We demonstrate scalability by extracting constraints
from four large open-source systems (uClibc, BusyBox, eCos, and
the Linux kernel) and evaluate accuracy by comparing the con-
straints to existing developer-created models. Our results show that
our extraction is 93% and 77% accurate respectively for the two
specifications we use, and can scale to the size of the Linux kernel
in which we extract over 250,000 unique constraints.

Assessing Recoverability. We use our described infrastructure
to automatically measure how many of the constraints in the existing
variability models correspond to technical statically-discoverable
code dependencies. Our results show that on average, 19 % of
variability-model constraints reflect technical dependencies stat-
ically recoverable from code with our techniques. While around
3% prevent build-time errors, 15% of these model constraints corre-
spond to simple nesting relationships in the code.

Classifying Constraints. To classify the sources of configura-
tion constraints, we qualitatively inspect a sample of the variability-
model constraints our analysis could not recover. We find five cases
where the source of the constraint is beyond our analysis. For ex-
ample, we find that 28% of these constraints stem from domain-
knowledge. This includes knowing which features are related and
should thus appear in the same configurator menu or knowing which
functionalities only work on certain hardware. To the best of our
knowledge, our work is the first to quantify the recoverability of
variability-model constraints from code using an automated ap-
proach and to qualitatively analyze non-recovered ones.

Contributions and Perspectives. To summarize, our contri-
butions are: (i) an extension and combination of existing analyses
(e.g., linker analysis and type checking) to extract configuration con-
straints, (ii) a novel constraint extraction technique based on feature
use and code structure, (iii) a quantitative study of the effectiveness
of such techniques to recover constraints, and (iv) a qualitative study
of sources of constraints in existing models.

Our results can be used in various ways. For re-engineering
approaches, our analyses extract constraints that can be used to
(re-)construct variability models. For the evolution of systems, our
techniques provide the basis for detecting inconsistencies and propos-
ing fixes. Our empirical data, in particular identifying which types
of code analysis recover most variability-model constraints, can
help to design effective and optimized analysis techniques. Finally,
information about which constraints appear in the code, and where
they stem from (e.g., preventing a type error) may be useful for de-
velopers in understanding intricate dependencies when configuring
these systems [10, 23].

2. CONFIGURATION CONSTRAINTS
Variability support in configurable systems is usually divided into

a problem space and a solution space [18], as shown in Figure 1.
This separation allows users to make configuration decisions without
knowledge about low-level implementation details. Therefore, both
spaces need to be consistent, such that any feature dependencies
in the solution space are enforced in the problem space, and no
conflicts occur. We are interested in understanding the different
types of configuration constraints defined in the problem space, and
how much of these are technically reflected in the solution space.
This can be done by extracting configuration constraints from both
the problem and solution spaces and then comparing and classifying
them as shown in Figure 1.

2.1 Problem Space
Features and constraints are described in the problem space, with

varying degrees of formality—either informally in plain text, such
as in the FreeBSD kernel [42], or using a formal variability model
expressed in a dedicated language (e.g., Kconfig), as in our subject
systems. Given such a model, configurator tools can support users
in selecting valid configurations and avoiding invalid ones. Figure 2
shows the configurator of BusyBox, one of our subject systems.
The configurator displays features in a hierarchy, which can then be
selected by users, while enforcing configuration constraints, such
as propagating choices or graying out features that would lead to
invalid configurations. Constraints reside in the feature hierarchy
(a child implies its parent) and in additional specifications of cross-
tree constraints [13]. Specifically, the feature hierarchy is one of
the major benefits of a variability model [42], as it helps users to
configure a system and developers to organize features.

Enforced configuration constraints can stem from technical re-
strictions present in the solution space such as dependencies between

Figure 2: Configurator of the BusyBox system

two code artifacts. Additionally, they can stem from outside the so-
lution space such as external hardware restrictions. Constraints can
also be non-technical, stemming from either domain knowledge out-
side of the software implementation, such as marketing restrictions,
or from configurator-related restrictions, such as to organize features
in the configurator or to offer advanced choice propagation.

We illustrate these kinds of constraints with examples from two
of our subject systems. In the Linux kernel, a technical constraint
which is reflected in the code is that “multi-threaded I/O locking”
depends on “threading support” due to low-level code dependen-
cies. A technical constraint which cannot be detected from the code
is that “64GB memory support” excludes “386” and “486” CPUs,
which stems from the domain knowledge that these processors can-
not handle more than 4GB of physical memory. In BusyBox (see
Figure 2), a technical constraint is that “Enable ISO date format”
requires “date”, since the code of the former feature would just not
be compiled without the latter. A non-technical, configurator-related,
constraint is that feature “date” itself appears under the menu feature
“Coreutils” in the configurator hierarchy.

There has been much research to extract constraints from existing
variability models within the problem space [11, 40, 48]. Such ex-
tractors can interpret the semantics of different variability modeling
languages to extract both hierarchy and cross-tree constraints, as
shown in Figure 1.

2.2 Solution Space
The solution space consists of build and code files. Our focus is on

C-based systems that realize configurability with their build system
and the C preprocessor. The build system decides the source files
and the preprocessor the code fragments to be compiled. The latter
is realized using conditional-compilation preprocessor directives
such as #IFDEFs.

To compare constraints in the variability model to those in the
code, we must find ways to extract global configuration constraints
from the code (as opposed to localized code block constraints [48]).
We assume that there is a solution-space (code-level) constraint if
any configuration violating this constraint is ill-defined by some
specification. There may be several sources of constraints that fit
such a description. However, in this work, we identify two tractable
sources of constraints: (i) those resulting from build-time errors and
(ii) those resulting from the effect of features in build files and in
the structure of the code (e.g., #IFDEF usage). We now explain the
justification behind these two specifications.

2.2.1 Build-time Errors
Every valid configuration needs to build correctly. In C projects,

various types of errors can occur during the build: preprocessor
errors, parsing errors, type errors, and linker errors. Our goal is to
detect configuration constraints that prevent such build errors. We
derive configuration constraints from the following specification:

1 #ifndef Y
2 void foo() { ... }
3 #endif
4
5 #ifdef X
6 void bar() { foo (); }
7 #endif

(a) type error

1 #if defined(Z)&&defined(X)
2 ...
3 #ifdef W
4 ...
5 #endif
6 ...
7 #endif

(b) feature effect

Listing 1: Examples of constraint sources

Specification 1. Every valid configuration of the system
must not contain build-time errors, such that it can be suc-
cessfully preprocessed, parsed, type checked, and linked.

A naive, but not scalable, approach to extract these constraints
would be to build and analyze every single configuration in isolation.
If every configuration with feature X compiles except when feature
Y is selected, we could infer a constraint X→ ¬Y. For instance,
in Listing 1a, the code will not compile in some configurations,
due to a type error in Line 6: The function foo() is called under
condition X, while it is only defined under condition ¬Y; thus, the
constraint X→¬Y must always hold. The problem space needs to
enforce this constraint to prevent invalid configurations that break
the compilation. However, already in a medium-sized system such
as BusyBox with 881 Boolean features, this results in more than
2881 configurations to analyze, which is more than the number of
atoms in the universe. We show how this can be avoided in Section 3.

2.2.2 Feature Effect
Ideally, variability models should also prevent meaningless con-

figurations, such as redundant feature selections that do not change
the solution space. That is, if a feature A is selected in a configura-
tion, then we expect that A adds or changes some code functionality
that was not previously present. If a feature has no effect unless
other features are selected (or deselected), a configurator may hide
or disable it, simplifying the configuration process for users.

Determining if two variants of a program are equivalent is difficult
(even undecidable). We approximate this by comparing whether
the programs differ in their source code at all. If two different
configurations yield the same code, this suggests some anomaly (as
opposed to errors described in Section 2.2.1) in the model.

We extract constraints that prevent such anomalies. We use the
following specification as a simplified, conservative approximation
of our second source of constraints:

Specification 2. Every valid configuration of the system
should yield a lexically different program.

The use of features within the build system and the preprocessor
directives for conditional compilation provides information about
the context under which selecting a feature makes a difference in
the final product. In the code fragment in Listing 1b, selecting W
without selecting Z and X will not break the system. However, only
selecting W will not affect the compiled code, since the surrounding
block will not be compiled without Z and X also being selected.
Thus, W→ Z∧X is a feature-effect constraint that should likely be
in the model, even though violating it will not break the compilation.

2.3 Problem Statement
We can summarize that variability-model constraints arise from

different sources. We discussed two such sources above where the
constraints exist for technical reasons discoverable from the code.
Our work strives to automatically extract such constraints. However,

Figure 3: Variability-aware approach to extract configuration constraints from code

it is not clear if other sources of constraints exist beyond implemen-
tation artifacts and how prevalent they are. We, therefore, also strive
to identify the sources of any non-recovered constraints.

Improving empirical understanding of constraints in real systems
is crucial, especially since several studies emphasize configuration
and implementation challenges for developers and users due to
complex constraints [10,14,23,31]. Such knowledge not only allows
us to understand which parts of a variability model can be reverse
engineered and consistency-checked from code, and to what extent;
but also how much manual effort, such as interviewing developers
or domain experts, would be necessary to achieve a full model. For
example, a main challenge when reverse-engineering a variability
model from constraints is to disambiguate the hierarchy [42]. Thus,
this process could be supplemented by knowing which sources of
constraints relate to hierarchy information in the model.

We focus on the sources of constraints described in both specifica-
tions above, since such constraints can be extracted using decidable
and scalable static analysis techniques. There are, of course, also
other possible kinds of constraints in the code resulting from errors
or other specifications (e.g., buffer overflows or null-pointer derefer-
ence). However, many of these require looking at multiple runs of a
program (which does not scale well or requires imprecise sampling),
or produce imprecise or unsound results when extracted statically.

3. EXTRACTING CODE CONSTRAINTS
One of our main goals is to extract configuration constraints from

the solution space in order to compare them to the variability-model
constraints (cf. Figure 1). To do so, we use the two specifications
described in Section 2 to extract code constraints from preproces-
sor errors, parser errors, type errors, linker errors, and feature
effect. Figure 3 shows an overview of the approach we use and
which we explain in details in this section.

As shown in Figure 3, before analyzing the code in a specific C
file, we first need to know under which condition the build system
includes this file to be able to accurately derive constraints. We
use the term presence condition (PC) to refer to a propositional
expression over features that determines when a certain code artifact
is compiled. For example, a file with PC HUSH∨ASH is compiled
and linked iff the features HUSH or ASH are selected.

To avoid an intractable brute-force approach of analyzing every
possible configuration, and to avoid incompleteness from sampling
strategies, we build on our recent research infrastructure, TypeChef,
to analyze the entire configuration space of C code with build-time
variability at once [25–27]. Our overall strategy for extracting code
constraints is based on parsing C code without evaluating condi-
tional compilation directives. We extend and instrument TypeChef
to accomplish this. TypeChef only partially preprocesses a source

file: It resolves all #INCLUDEs and expands all macros, but preserves
conditional compilation directives. On alternative macro definitions
or #INCLUDEs, it explores all possibilities, similar to symbolic ex-
ecution. As shown in Figure 3, partial preprocessing produces a
token stream in which each token is guarded by a corresponding PC
(including the file PC), which is subsequently parsed into a condi-
tional abstract syntax tree, which can be subsequently type checked.
This variability-aware analysis is conceptually sound and complete
with regard to a brute-force approach of analyzing all configurations
separately. However, it is much faster since it does the analysis in
a single step and exploits similarities among implementations of
different configurations; see [25–27] for more details.

In previous research with TypeChef, it was typically called with
a given variability model such that it only emits error messages
for parser or type problems that can occur in valid configurations—
discarding all implementation problems that are already excluded by
the variability model. This is the classic approach to find consistency
errors, which a user can subsequently fix in the implementation
or in the variability model [19, 49, 50]. Since we need to extract
all constraints without knowledge of valid configurations, we use
TypeChef in a different context where we run it without a variability
model, and process all reported problems in all configurations.

We extend and instrument TypeChef, and implement a new frame-
work FARCE (FeAtuRe Constraint Extractor) [2], which analyzes
the output of TypeChef and the structure of the codebase with respect
to preprocessor directive nesting, derives constraints according to
our low-level specifications, and provides an infrastructure to com-
pare extracted constraints between a variability model and code. We
now explain our design decisions and methodology using the C code
in Listing 2, adapted from BusyBox, as a running example.

3.1 Preprocessor, Parser, and Type Constraints
Preprocessor errors, parser errors, and type errors are detected at

different stages of analyzing a file. However, the post-processing
used to extract constraints from them is similar; thus, we discuss
them together. In contrast, linker errors require a global analysis
over multiple files, which we discuss separately.

Preprocessor Errors. A normal C preprocessor stops on #ER-
ROR directives, which are usually intentionally introduced by devel-
opers to avoid invalid feature combinations. We extend the partial
preprocessor to log #ERROR directives with their corresponding
presence condition and to continue with the rest of the file instead
of stopping on the #ERROR message. In Listing 2, Line 3 shows a
#ERROR directive that occurs under the condition ASH∧NOMMU.

Parser Errors. Similarly, a normal C parser stops on syntax er-
rors, such as mismatched parentheses. Our TypeChef parser reports

0 #ifdef ASH //represents the file presence condition
1
2 #ifdef NOMMU
3 #error "... ash will not run on NOMMU machine"
4 #endif
5
6 #ifdef EDITING
7 static line_input_t ∗line_input_state;
8
9 void init() {

10 initEditing()
11
12 int maxlength = 1 ∗
13
14 #ifdef MAX_LEN
15 100;
16 #endif
17 }
18 #endif //EDITING
19
20 int main() {
21 #ifdef EDITING_VI
22 #ifdef MAX_LEN
23 line_input_state−>flags |= 100
24 #endif
25 #endif
26 }
27 #endif //ASH

Listing 2: Running example of C code with compile-time errors
(adapted from ash.c in Busybox)

an error message together with a corresponding presence condi-
tion, but continues parsing for other configurations. In Listing 2, a
parser error occurs on Line 12 because of a missing semicolon if
MAX_LEN is not selected. In this case, our analysis reports a parser
error under condition ASH∧EDITING∧¬MAX_LEN.

Type Errors. Where a normal type checker reports type errors in
a single configuration, TypeChef’s variability-aware type checker [25,
27] reports each type error together with a corresponding PC. In
Listing 2, we detect a type error in Line 23 if EDITING is not se-
lected since line_input_state is only defined under condition
ASH∧EDITING on Line 7. TypeChef would, thus, report a type error
under condition ASH∧EDITING_VI∧MAX_LEN∧¬EDITING.

Constraints. Following Specification 1, we expect that each file
should compile without errors. Every error message with a corre-
sponding condition indicates a part of the configuration space that
does not compile and should hence be excluded in the variability
model. For each condition φ of an error, we extract a configuration
constraint ¬φ . In our running example, we extract the following con-
straints (rewritten to equivalent implications): ASH→¬NOMMU
from the preprocessor, ASH→ (EDITING→MAX_LEN) from the
parser, and ASH→ ((EDITING_VI ∧ MAX_LEN)→ EDITING)
from the type system.

3.2 Linker Constraints
To detect linker errors in configurable systems, we build a condi-

tional symbol table for each file during type checking. The symbol
table describes all non-static functions as exported symbols and
all called but not defined functions as imports. All imports and
exports are again guarded by corresponding PCs. We check only
linkage within the application and discard all symbols defined in
libraries (with additional analysis though, we could also model li-
brary symbols with corresponding presence conditions). We show
the conditional symbol table (without type information) of our run-
ning example in Table 1, assuming that symbol initEditing is
defined under PC INIT in some other file (not shown). For more

Table 1: Example of two conditional symbol tables
file symbol kind presence condition

Listing 2 init export ASH∧EDITING
main export ASH
initEditing import ASH∧EDITING

other file initEditing export INIT

details on conditional symbol tables, see [6, 27].
In contrast to the file-local preprocessor, parser, and type analyses,

linker analysis is global across all files. From all conditional symbol
tables, we derive linker errors and corresponding constraints. A
linker error arises when a module imports a symbol that is not
exported (def/use) or when two modules export the same symbol
(conflict). We derive constraints for each symbol s as follows:

def/use(s) =
(∨
(f ,φ)∈imp(s)

φ
)
→
(∨
(f ,ψ)∈exp(s)

ψ
)

conflict(s) =
∧

(f1,ψ1)∈exp(s);(f2,ψ2)∈exp(s); f1 6= f2

¬(ψ1∧ψ2),

where imp(s) and exp(s) look up all imports and exports of symbol
s in all conditional symbol tables and return a set of tuples (f ,ψ),
each determining the file f in which s is imported/exported and PC
ψ . The def/use constraints ensure that the PC of an import implies at
least one PC of a corresponding export, while the conflict constraints
ensure mutual exclusion of the PCs of exports with the same function
name. An overall linker constraint can be derived by conjoining all
def/use and conflict constraints for each symbol in the set of all
symbols S:

∧
s∈S def/use(s)∧ conflict(s). If the two files shown in

Table 1 were the only files in the system, we would extract the
constraint ASH∧EDITING→ INIT for symbol initEditing.

3.3 Feature Effect
To ensure Specification 2 of lexically different programs in all

valid configurations, we detect the configurations under which a
feature has no effect on the compiled code and create a constraint
to disable the feature in those configurations. The general idea
is to detect nesting among #IFDEFs: When a feature occurs only
nested inside an #IFDEF of another feature, such as EDITING that
occurs only nested inside ‘#IFDEF ASH’ in our running example,
the nested feature does not have any effect when the outer feature
is not selected. Hence, we would create a constraint that the nested
feature should not be selected without the outer feature, because it
would not have any effect: EDITING→ ASH in our example.

Unfortunately, extraction is not that easy. Extracting constraints
directly from nesting among #IFDEF directives produces inaccurate
results, because features may occur in multiple locations inside
multiple files, and #IF directives allow complex conditions including
disjunctions and negations. Hence, we develop the following novel
and principled approach, deriving a constraint for each feature’s
effect from PCs throughout the system.

First, we collect all unique PCs of all code fragments occurring
in the entire system (in all files, including the corresponding file
PC as usual). Technically, we inspect the conditional token stream
produced by TypeChef’s partial preprocessor and collect all unique
PCs (note that this covers all conditional compilation directives,
#IF, #IFDEF, #ELSE, #ELIF, etc. including dynamic reconfigurations
with #DEFINE and #UNDEF).

To compute a feature’s effect, we use the following insights: Given
a set of PCs P found for code blocks anywhere in the project and the
set of features of interest F , then we say a feature f ∈ F has an no
effect in a PC φ ∈ P if φ [f ← True] is equivalent to φ [f ← False],

where X [f ← y] means substituting every occurrence of f in X by y.
In other words, if enabling or disabling a feature does not affect the
value of the PC, then the feature does not have an effect on selecting
the corresponding code fragments.

Furthermore, we can identify the exact condition when a feature
f has an effect on a PC φ . In all configurations in which the result of
substituting f is different (using xor: φ [f ← True]⊕ φ [f ← False]).
This method is also known as unique existential quantification.

Putting the pieces together, to find the overall effect of a feature
on the entire code in a project, we take the disjunction of all its
effects on all PCs. We then assume that the feature should only
selected if it has an effect, resulting in the following constraint:

f →
∨

φ∈P
φ [f ← True] ⊕ φ [f ← False]

This means that we choose to disable a feaure by default when it
does not have an effect on the build. Alternatively, we could enable
a feature by default and forbid disabling it when disabling has no
effect: We just need to negate f on the right side of the above
formula. However, we assume the more natural setting where most
features are disabled by default, and so we look for the effect of
enabling a feature.

In our running example, we can identify five unique PCs (exclud-
ing tokens for spaces and line breaks): ASH, ASH∧NOMMU, ASH∧
EDITING, ASH∧EDITING∧MAX_LEN, and ASH∧EDITING_VI
∧MAX_LEN. To determine the effect of MAX_LEN, we would sub-
stitute it with True and False in each of these conditions, and
create the the following constraint (assuming that MAX_LEN does
not occur anywhere else in the code):

MAX_LEN→
(
(ASH⊕ASH)∨(

(ASH∧NOMMU)⊕ (ASH∧NOMMU)
)
∨(

(ASH∧EDITING)⊕ (ASH∧EDITING)
)
∨(

(ASH∧EDITING∧True)⊕ (ASH∧EDITING∧False)
)
∨(

(ASH∧EDITING_VI∧True)⊕ (ASH∧EDITING_VI∧False)
))

≡MAX_LEN→ ASH∧ (EDITING∨EDITING_VI),

This confirms that MAX_LEN only has an effect iff ASH and ei-
ther EDITING or EDITING_VI are selected. In all other cases, the
constraint enforces that MAX_LEN remains deselected.

Additionally, to determine how many constraints the build system
alone provides, we do the same analysis for file PCs instead of PCs of
code blocks. Note that the feature effect analysis on the build system
alone is incomplete and provides only a rough approximation.

4. EMPIRICAL STUDY
We now study four real-world systems with existing variability

models. As shown in Figure 1, our objectives are: O1 to evaluate
accuracy and scalability of our extraction approach. This is done by
checking if the configuration constraints we extract from implemen-
tation are enforced in existing variability models. O2 to study the
recoverability of variability-model constraints using our approach.
Specifically, we are interested in how many of the existing model
constraints reflect implementation specifics that can be automati-
cally extracted. O3 to classify variability-model constraints. In other
words, we want to understand which constraints are technically
enforced and which constraints go beyond the code artifacts. This
allows us to understand what reverse-engineering approaches to
choose in practice. For all three objectives, we report the key re-
sults in this paper. Refer to our online appendix for full datasets,
additional statistics, and detailed qualitative results [5].

4.1 Study Setup

4.1.1 Subject Systems
We choose four highly-configurable open-source projects from

the systems domain. All are large, industrial-strength projects that
realize variability with the build system and the C preprocessor. Our
selection reflects a broad range of variability model and codebase
sizes, in the reported range of large commercial systems.

Our subjects comprise the following systems and variability
model sizes. The first three use the Kconfig [56], and the last one
uses the CDL [52] language and configurator infrastructure in the
problem space. We choose systems with exsiting variability models
to have a basis for comparison.

uClibc is an alternative, resource-optimized C library for em-
bedded systems. We analyze the x86_64 architecture in uClibc
v0.9.33.2, which has 1,628 C source files and 367 features described
in a Kconfig model. BusyBox is an implementation of 310 GNU
shell tools (ls, cp, rm, mkdir, etc.) within one binary executable.
We study BusyBox v1.21.0 with 535 C source files and 921 docu-
mented features described in a Kconfig model. The Linux kernel
is a general-purpose operating system kernel. We analyze the x86
architecture of v2.6.33.3, which has 7,691 C files and 6,559 features
documented in a Kconfig model. eCos is a highly configurable real-
time operating system intended for deeply embedded applications.
We study the i386PC architecture of eCos v3.0, which has 579 C
source files and 1,254 features described in a CDL model.

In all systems, the variability models have been created, main-
tained, and evolved by the original developers of the systems over
periods of up to 13 years. Using them reduces experimenter bias in
our study. Prior studies of the Linux kernel and BusyBox have also
shown that their variability models, while not perfect, are reasonably
well maintained [26, 27, 31, 36, 48]. In particular, eCos and Linux
have two of the largest publicly available variability models today.

4.1.2 Methodology and Tool Infrastructure
We follow the methodology shown in Figure 1. We first extract

hierarchy and cross-tree constraints from the variability models
of our subject systems (problem space). We rely on our previous
analysis infrastructures LVAT [4] and CDLTools [1], which can inter-
pret the semantics of Kconfig and CDL respectively to extract such
constraints and additionally produce a single propositional formula
representing all enforced constraints (see [11, 40] for details).

We then run TypeChef on each system, and use our developed
infrastructure FARCE to derive solution-space constraints from its
error output (Specification 1, cf. Section 2.2.1) and the conditional
token stream (Specification 2, cf. Section 2.2.2). As a prerequisite,
we extract file PCs from build systems by reusing our build-system
analysis tool KBuildMiner [3] for systems using KBUILD (BusyBox
and Linux), and a semi-manual approach for the others.

4.1.3 Evaluation Technique
After problem and solution-space constraints are extracted, we

compare them according to our three objectives. To address O1
(evaluate accuracy and scalability), we verify whether extracted
solution-space constraints hold in the propositional formula rep-
resenting the variability model (problem space) of each system.
We also measure the execution time of the involved analysis steps.
For this objective, we assume the existing variability model as the
ground truth, since it reflects the system’s configuration knowledge
which developers have specified.

To address O2 (recoverability of model constraints), we deter-
mine whether each existing variability model constraint holds in
the solution space constraint formulas we extract. We use the term

Table 2: Constraints extracted with each specification per system, and percentage holding in the variability model (VM)

Code Analysis uClibc BusyBox eCos Linux

extracted % found in VM # extracted % found in VM # extracted % found in VM # extracted % found in VM

Specification 1
Preprocessor Constr. 158 100 3 100 162 81 12,780 81
Parser Constr. 60 100 23 100 133 91 8,443 100
Type Checking Constr. 958 96 54 100 139 82 256,510 97
Linker Constr. 314 63 38 100 7 100 19,654 90
Total 1,340 90 118 100 441 85 284,914 96

Specification 2
Feature effect Constr. 55 75 359 93 263 62 2,961 95
Feature effect - Build Constr. 25 80 62 0 n/a n/a 2,552 97
Total 80 76 421 79 263 62 5,513 96

recoverability instead of recall, because we do not have a ground
truth in terms of which constraints can be extracted from the code.
Since no previous study has classified the kinds of constraints in
variability models, we cannot expect that 100% of them are enforced
in the code and can be automatically extracted. To address this gap
and O3 (classification of variability-model constraints), we show the
types of constraints we could automatically recover, and manually
investigate 144 randomly sampled non-recovered model constraints
to characterize constraints that are not found by our analysis. Note
that averages and numbers across subjects are geometric means.

4.2 O1: Accuracy and Scalability
We expect that all constraints extracted according to Specification

1 hold in the problem-space variability model, as these prevent any
failure in building a system. Constraints that do not hold either
indicate a false positive due to an inaccuracy of our implementation
or an error in the variability model or implementation—cases we
analyze separately. Such checks have been the standard approach in
previous work on finding bugs in configurable systems [19, 26, 50],
where inconsistencies between the model and implementation are
identified as errors. In contrast, Specification 2 prevents meaningless
configurations that lead to duplicate systems. Thus, we expect a large
number of corresponding constraints, but not all, to occur in the
variability model.

Measurement. We measure accuracy as follows. We keep con-
straints extracted in the individual steps of our analysis separate.
That is, for each build error (Specification 1) and each feature ef-
fect (Specification 2), we create a separate constraint φi. For each
extracted constraint φi, we check whether it holds in the formula
ψ representing all the problem-space constraints from the variabil-
ity model with a SAT solver, by determining whether ψ ⇒ φi is a
tautology (i.e., whether its negation is not satisfiable).

We record execution time of each analysis step separately to mea-
sure the scalability of our approach. For all analysis steps performed
by TypeChef and KBuildMiner, which can be parallelized, we report
the average and the standard deviation of processing each file. In
addition, we provide the total processing time for the whole systems,
assuming sequential execution of file analyses. For the derivation
of constraints, which can not be parallelized, we report the total
computation time per system.

Results. Table 2 shows the number of unique constraints extracted
from each subject system in each analysis step, and the percentage of
those constraints found in the existing variability model. On average
across all systems, constraints extracted with Specification 1 and
Specification 2 are 93 % and 77 % accurate, respectively.

Both results show that we achieve a very high accuracy across all
four systems. Specification 1 is a reliable source of constraints where
our tooling produces only few false positives (extracted constraints

Table 3: Duration, in seconds unless otherwise noted, of each
analysis step. Average time per file and standard deviation
shown for analysis using TypeChef. Global analysis time shown
for post-processing using FARCE

uClibc BusyBox eCos Linux

File PC Extraction manual 7 N/A 20

Ty
pe

C
he

f Lexing 7 ± 3 9 ± 1 10 ± 6 25 ± 12
Parsing 17 ± 7 20 ± 3 72 ± 1.6 108 ± 1.9
Type checking 4 ± 3 5 ± 1 3 ± 5 41 ± 14
Symbol Table creation 0.1 ± 0.1 0 ± 0.03 3 ± 20 2 ± 2
Sum for all files (Sequential) 13hr 5hr 7hr 376hr

FA
R

C
E

Feature effect - Build Constr. 3 3 N/A 24
Feature effect Constr. 20 8 1200 1.7hr
Preprocessor Constr. 0.7 0.7 8 1hr
Parsing Constr. 16 4 8 39min
Type Checking Constr. 15 6 5 1.3hr
Linker Constr. 120 60 840 5hr

Total FARCE Time 3min 1.4min 34min 10hr

that do not hold in the model). Interestingly, a 77 % accuracy rate
for Specification 2 suggests that variability models in fact prevent
meaningless configurations to a high degree.

Table 3 shows execution times of our tools, which were executed
on a server with two AMD Opteron processors (16 cores each) and
128GB RAM. Significant time is taken to parse files, which often
explode after expanding all macros and #INCLUDE preprocessor
directives. Our results show that our analysis scales reasonably
where a system as large as Linux can be analyzed in parallel within
twelve hours on our hardware.

Accuracy Discussion. Our approach is highly accurate given
the complexity of our real-world subjects. While further increasing
accuracy is conceptually possible: improving our prototypes into
mature tools would require significant, industrial-scale engineering
effort though, beyond the scope of a research project.

Regarding false positives, we identify the following reasons. First,
the variability model and the implementation have bugs. In fact,
we earlier found several errors in BusyBox and reported them to
the developers [27]. We also found one and reported it in uClibc.
Second, all steps involved in our analysis are nontrivial. For ex-
ample, we reimplemented large parts of a type system for GNU C
and reverse-engineered details of the Kconfig and CDL languages,
as well as the KBUILD build system. Little inaccuracies or incor-
rect abstractions are possible. After investigating false positives in
uClibc linker constraints, we found that many of these occur due
to incorrectly (manually) extracted file PCs. In general, intricate
details in Makefiles, such as shell calls [12], complicate their analy-
sis [47]. Third, our subjects implement their own mechanisms for
providing and generating header files at build-time, according to the
configuration. We implemented emulations of these project-specific
mechanisms to statically mimic their behavior, but such emulations
are likely incomplete. We are currently investigating using symbolic

Table 4: Number (and percentage) of variability model hierar-
chy constraints recovered from each code analysis

uClibc BusyBox eCos Linux

of VM Hierarchy Constraints 54 366 588 4,999

Count (%) Recovered from code

Specification 1
Preprocessor Constr. 0 (0 %) 0 (0 %) 0 (0 %) 1 (0 %)
Parser Constr. 0 (0 %) 0 (0 %) 3 (0 %) 1 (0 %)
Type Checking Constr. 0 (0 %) 1 (0 %) 0 (0 %) 0 (0 %)
Linker Constr. 0 (0 %) 1 (0 %) 1 (0 %) 1 (0 %)

Total (Unique) 0 (0 %) 2 (1 %) 4 (1 %) 3 (0 %)

Specification 2
Feature effect Constr. 8 (15 %) 251 (69 %) 60 (10 %) 325 (7 %)
Feature effect - Build Constr. 4 (7 %) 0 (0 %) - 1,337 (27 %)

Total (Unique) 9 (17 %) 251 (69 %) 60 (10 %) 1,661 (33 %)

Total Unique Constraints Recovered 9 (17 %) 253 (69 %) 64 (11 %) 1,664 (33 %)

execution of build systems [47] in order to accurately identify which
header files need to be included under different configurations.

Scalability Discussion. Our evaluation shows that our approach
scales, in particular to systems sharing the size and complexity of
the Linux kernel. However, we face many scalability issues when
combining complex constraint expressions into one formula, mainly
in Linux and eCos. Feature-effect constraints were particularly prob-
lematic due to the unique existential quantification (see Section 3.3),
which causes an explosion in the number of disjunctions in many
expressions, thus adding complexity to the SAT solver. To overcome
this, we omit expressions including more than ten features when
aggregating the feature effect formula. This resulted in using only
17 % and 51 % of the feature-effect constraints in Linux and eCos re-
spectively. The threshold was chosen due to the intuition that larger
constraints are too complex and likely not modeled by developers.

We faced similar problems in deriving other formulas, such as
the type formula in Linux, but mainly due to the huge number
of constraints and not their individual complexity. This required
several workarounds and required high memory consumption in the
conversion of the formula into conjunctive normal form, required
by our SAT solver. Thus, we conclude that extracting constraints
according to our specifications scales, but can require workarounds
or filtering expressions to deal with the explosion of constraint
formulas. Refer to our online appendix [5] for more details.

4.3 O2: Recoverability
We now investigate how many variability-model constraints can

be automatically extracted from the code.

Measurement Strategy. While the extraction approach directly
gives us individual constraints to count and compare, the situation
is more challenging when measuring constraints from the variabil-
ity model. Variability models in practice use different specification
languages. Semantics of a variability model are typically expressed
uniformly as a single large Boolean function expressed as a proposi-
tional formula describing the valid configurations. After experiment-
ing with several slicing techniques for comparing these propositional
formulas, we decide to exploit structural characteristics of variability
models that are commonly found. In all analyzed models, we can
identify child-parent relationships (hierarchy constraints), as well
as inter-feature constraints (cross-tree constraints). This way, we
count individual constraints as the developer modeled them, which
is intuitive to interpret, and allows us to investigate the different
types of model constraints. Note that we only account for binary
constraints as they are most frequent, whereas accounting for n-ary
constraints is an inherently hard combinatorial problem. Technically,
we perform the inverse comparison to that in Section 4.2: we com-
pare whether each individual problem-space constraint ψc holds in

Table 5: Number (and percentage) of variability model cross-
tree constraints recovered from each code analysis

uClibc BusyBox eCos Linux

of VM Cross-tree Constraints 118 265 315 7,759

Count (%) Recovered from code

Specification 1
Preprocessor Constr. 2 (2 %) 1 (0 %) 5 (2 %) 6 (0 %)
Parser Constr. 0 (0 %) 0 (0 %) 9 (2 %) 2 (0 %)
Type Checking Constr. 8 (7 %) 15 (6 %) 1 (0 %) 3 (0 %)
Linker Constr. 12 (10 %) 21 (8 %) 1 (0 %) 19 (0 %)

Total (Unique) 16 (14 %) 37 (14 %) 15 (5 %) 28 (0 %)

Specification 2
Feature effect Constr. 6 (5 %) 14 (5 %) 1 (0 %) 58 (1 %)
Feature effect - Build Constr. 3 (3 %) 0 (0 %) - 316 (4 %)

Total (Unique) 7 (6 %) 14 (5 %) 1 (0 %) 374 (5 %)

Total Unique Constraints Recovered 22 (19%) 51 (19 %) 16 (5 %) 402 (5 %)

the conjunction of all extracted solution-space constraints φi in each
code analysis category, i.e., whether (

∧
i φi)⇒ ψc is a tautology.

Results. In Tables 4 and 5, we show how many of the variabil-
ity models’ hierarchy and cross-tree constraints can be recovered
automatically from code. Since the same constraint can be recov-
ered by different analyses, we also show the total number of unique
constraints for each specification and for each system. Across the
four systems, we recover 26 % of hierarchy constraints, and 10 % of
cross-tree constraints.

To compare the two specifications we use to extract solution-space
constraints, we show the overlap between the total number of recov-
ered variability-model constraints (both hierarchy and cross-tree)
aggregated across both specifications in the Venn diagrams in Fig-
ure 4. These illustrate that in all systems, a higher percentage of the
variability-model constraints reflects feature-effect constraints in the
code (Specification 1). Overall, we can recover 19 % of variability-
model constraints using both specifications across the four systems.

Recoverability Discussion. We can see a pattern in terms of
where variability-model hierarchy and cross-tree constraints are
reflected in the code. As can be seen in Table 4, the structure of the
variability model (hierarchy constraints) often mirrors the structure
of the code. Specification 2 alone can extract an average 25 % of the
hierarchy constraints. An interesting case is Linux where already
27 % of the hierarchy constraints are mirrored in the nested directory
structure in the build system (i.e., file PCs). We conjecture that this
results from the highly nested code structure, where most individual
directories and files are controlled by a hierarchy of Makefiles,
almost mimicking the variability model hierarchy [12, 33]. On the
other hand, although harder to recover, cross-tree constraints seem
to be scattered across different places in the code (e.g., linker and
type information), and seem more related to preventing build errors
than hierarchy constraints are. Interestingly, Figure 4 shows that
there is no overlap (with the exception of one constraint in uClibc)
between the two specifications we use to recover constraints. This
aligns with the different reasoning behind them: one is based on
avoiding build errors while the other ensures that product variants
are different. The fact that our static analysis of the code could only
recover 19 % of the variability-model constraints suggests that many
of the remaining constraints require different types of analysis or
stem from sources other than the implementation. We look at this in
more details in our final objective.

4.4 O3: Classification of Variability Model
Constraints

To investigate which parts of a variability model can be automati-
cally extracted, our aim is to understand the kinds of constraints that

exist in variability models, and the analyses and knowledge needed
to identify them.

Measurement Strategy. To automate parts of the investigation,
we use the recoverability results from Section 4.3 to automatically
classify a large number of constraints as technical and statically
discoverable, which reduces manual investigation to the remaining
ones. To manually investigate the remaining constraints, we ran-
domly sample 144 non-recovered constraints (18 hierarchy and 18
cross-tree constraints from each subject systems). We then divide
these constraints among the authors for manual investigation.

Results. From our manual investigation of 144 non-recovered
constraints, we classify five cases in which constraints could not be
statically detected from the code with our approach. In Figure 1, we
summarize the overall classification of the sources of constraints
including those automatically found through our static analysis.

Case 1. Additional Analyses Required: We find 30 (21 %) con-
straints where the relationship might have been recovered by using
more expensive analysis, such as data flow analysis or testing (11 %),
more advanced build system analysis (5 %), system-specific anal-
ysis, such as the use of applets in BusyBox or the kernel module
system in Linux (3 %), or assembly analysis (2 %).

Case 2. More Relaxed Code Constraints: For 27 (19 %) con-
straints, we recover constraints that relate the two features, but
not directly as they appear in the variability model. For example,
our analysis would recover the following constraint in BusyBox,
BLKID_TYPE→ VOLUMEID_FAT ∨ BLKID while the variability
model constraint is BLKID_TYPE → BLKID. This suggests that
devlopers may use configuration features differently in the code than
what they enforce in the model.

Case 3. Domain Knowledge: For 40 (28 %), at least one of the
features is not used in implementation. We find two cases where
this occurs. The first is that the constraint is configurator-related
where that feature is used only internally in the variability model
to support its menu structure and constraint propagation in the con-
figurator. For example, HAS_NETWORK_SUPPORT in uClibc is
a menuconfig [41], which helps organizing networking features in
the configurator into a menu format. This happens in 27 (19 %)
constraints. From their domain knowledge, developers usually know
which features are related and are, thus, grouped together in the same
menu. For the remaining constraints, we find that this unused fea-
ture represents some form of platform or hardware knowledge. For
example, in Linux, SERIO_CT82C710→ X86_64, where the first
feature controls the port connection in that particular chip, but which
seems to only work with an X86_64 architecture. Such hardware
dependencies are not statically detectable in the code and can only
be found through testing the software on the different platforms. We
believe that developers use their domain expertise (usually gained
from previous testing experiences) to enforce such dependencies.

Case 4. Limitation in Extraction: In 5 (3 %) constraints, our
analyses could not recover the constraint because it indirectly de-
pends on some non-Boolean comparison which we do not handle or
because it depends on C++ code which we do not analyze.

Case 5. Unknown. We could not determine the rationale behind
the remaining 42 (29 %) constraints. First, this indicates that finding
constraints manually is a very difficult and time-consuming process
which enforces the need for automatic extraction techniques such as
those we present here. Second, the fact that we could not manually
extract the constraints that were not automatically recovered by our
analysis gives us confidence in our results. It might be that such
constraints also require additional analyses, which we could not
easily determine or that they rely on external developer knowledge.

(a) uClibc (b) BusyBox (c) eCos (d) Linux

Figure 4: Overlap between Specifications 1 and 2 in recovering
variability-model constraints. An overlap means that the same
model constraint can be recovered by both specifications

Classification Discussion. Our classification shows that many
(19 %) of the variability-model constraints can be statically extracted
with our approach. This seems motivating for automated extraction
tools. We have especially seen that 15 % of constraints are reflected
in the nesting structure and can be easily extracted using Specifica-
tion 2, since it only depends on extracting the file PCs and lexing the
files, which are cheaper steps in the analysis (see Table 3). However,
our manual analysis of the remaining constraints also shows that
many of the constraints can only be found through more expensive
analysis, such as testing. Additionally, it seems that several con-
straints in the model are non-technical and are simply responsible
for organizing the structure of the model for configuration purposes.
We have also come across constraints that could only stem from do-
main knowledge. Both these facts suggest that additional developer
and expert input may always be needed to create a complete model.

Finally, the constraints we find in Case 2 of our manual analysis
explain why an analysis may produce accurate constraints and yet
recover no variability-model constraints. For example, the type anal-
ysis in Linux extracts over 0.25 million constraints which are 97%
accurate (Table 2), and yet only recovers 3 cross-tree constraints
in Table 5. We plan to investigate the feasibility of comparing non-
binary constraints to overcome this.

5. THREATS TO VALIDITY
Internal validity. Our analysis extracts solution-space constraints

by statically finding configurations that produce build-time errors.
Conceptually, our tools are sound and complete with regard to the
underlying analyses (i.e., they should produce the same results
achievable with a brute-force approach, compiling all configurations
separately). Practically however, instead of well-designed academic
prototypes, we deal with complex real-world artifacts written in
several different, decades-old languages. Our tools support most
language features, but do not cover all corner cases (e.g., some
GNU C extensions, some unusual build-system patterns), leading to
minor inaccuracies, which can have rippling effects on other con-
straints. We manually sample extracted constraints to confirm that
inaccuracies reflect only a few corner cases that can be solved with
additional engineering effort (which however exceeds the possibili-
ties of a research prototype). We argue that the achieved accuracy,
while not perfect, is sufficient to demonstrate feasibility and support
our quantitative analysis.

Our static analysis techniques currently exploit all possible
sources of constraints addressing build-time errors. We are not aware
of other classes of build-time errors checked by the gcc/clang in-
frastructure. We could also check for warnings/lint errors, but those
are often ignored and would lead to many false positives. Other
extensions could include looking for annotations or comments in-
side the code, which may provide variability information. However,
even in the best case, this is a semi-automatic process. Furthermore,
dynamic analysis techniques, test cases or more expensive static
techniques, such as data-flow analysis, may also extract additional

information. However, the benefit gained from performing such
expensive analyses still needs investigation.

The percentage of recovered variability-model constraints in
Linux and eCos may effectively be higher, since we limit the number
of constraints we use in the comparison due to scalability issues.
Therefore, we can safely use the reported numbers as the worst
performance of our tools in these settings. Additionally, we cannot
analyze non-C codebases, which also decreases our ability to recover
technical constraints in systems such as eCos, where 13% of the
codebase comprises C++ and assembler code, which we excluded.

Construct validity. Different transformations or interpretations
of the variability model may lead to different comparison results than
the ones achieved (e.g., additionally looking at ternary relationships
in the model). Properly comparing constraints is a difficult problem,
and we believe the comparison methods we choose provide mean-
ingful results that can also be qualitatively analyzed. Additionally,
this strategy allowed us to use the same interpretation of constraints
in all subject systems.

External validity. Due to the significant engineering effort for
our extraction infrastructure, we limit our study to Boolean features
and to one language: C code with preprocessor-based variability.
We apply our analysis to four different systems that include the
largest publicly available systems with explicit variability models.
Although our systems vary in size and cover two different notations
of variability models, all systems are open source, developed in C,
and from the systems domain. Thus, our results may not generalize
beyond that setting.

6. RELATED WORK
This work builds upon, but significantly extends our prior work.

We reuse the existing TypeChef analysis infrastructure for ana-
lyzing #ifdef-based variability in C code with build-time variabil-
ity [26, 27, 30]. However, we use it for a different purpose and
extract constraints from various intermediate results in a novel way,
including an entirely novel approach to extract constraints from a
feature-effect heuristic. Furthermore, we double the number of sub-
ject systems in contrast to prior work. The work is complementary
to our prior reverse-engineering approach for feature models [42]
(an academic variability modeling notation [24]), where we showed
how to get from constraints to a feature model suitable for end users
and tools. Now, we focus on deriving constraints in the first place.

Techniques to extract features and their constraints have been de-
veloped before, mainly to support the re-engineering, maintenance,
and evolution of highly-configurable systems.

From a process and business perspective, researchers have de-
veloped approaches to re-engineer existing systems into an inte-
grated configurable system [8, 15, 43, 46]. These approaches include
strategies to make decisions: when to mine, which assets to mine,
and whom to involve. Others have developed re-engineering ap-
proaches by analyzing non-code artifacts, such as product compar-
isons [20, 22]. In contrast to techniques using non-code and domain
information, we extract technical constraints from code.

From a technical perspective, previous work has attempted to
extract constraints from code with #IFDEF variability [28, 42, 48].
Most attempts focus on the preprocessor code exclusively [28, 48],
looking for patterns in preprocessor use, but do not parse or even
type check the underlying C code. That is, they are (at most) roughly
equivalent to our partial-preprocessor stage. Prior attempts to parse
unpreprocessed code typically relied on heuristics (unsound) [35]
or could only process specific usage patterns (incomplete) [7]. For
instance, our previous work [42] used an inexact parser to approx-
imate parts of our Specification 1 and 2. Our new infrastructure
is sound and complete [26], allowing accurate subsequent syntax,

type, and linker analyses.
Complementary to analyzing build-time #IFDEF variability, some

researchers have focused on load-time variations through program
parameters. Rabkin and Katz design an approach to identify load-
time options from Java code, but not constraints among them [38].
Reisner et al. use symbolic execution to identify interactions and
constraints among configuration parameters by symbolically execut-
ing a system’s test cases [39]. Such dynamic analysis can identify
additional constraints as discussed in Section 4.4. However, scal-
ability of symbolic execution is limited to medium size systems
(up to 14K lines of code with up to 30 options in [39]), whereas
our build-time analysis scales to systems as the Linux kernel. We
also avoid using techniques such as data-flow analysis [16, 17, 30]
due to scalability issues. In future work, although challenging to
scale, we plan to investigate additional analysis approaches that
track load-time and runtime variability (e.g., from command-line
parameters). Data-flow analysis, symbolic execution, and testing
tailored to variability [16, 30, 34, 39] are interesting starting points.

Finally, researchers have investigated the maintenance and evolu-
tion of highly-configurable systems. There has been a lot of research
directed at studying and ensuring the consistency of the problem
and solution spaces [50]. However, most of this work has analyzed
features in isolation, either in the problem space [14, 37, 41, 51]
or in the solution space [29, 45] to identify modeling practices and
feature usage. Some work has also looked at both sides to study co-
evolution [31, 36] or to detect bugs due to inconsistencies between
models and code [26, 27, 32, 48, 49]. While our results can enhance
these consistency checking mechanisms, our goal is to clarify where
constraints arise from and to demonstrate to what extent we can
extract model constraints from the code.

7. CONCLUSIONS
We have engineered static analyses to extract configuration con-

straints and performed a large-scale study of constraints in four
real-world systems. Our results raise four main conclusions.

• Automatically extracting accurate configuration constraints
from large codebases is feasible to some degree. Our analyses
scale. We can recover constraints that in almost all (93%)
cases assure a correct build process. In addition, our new fea-
ture effect heuristic is surprisingly effective (77% accurate).
• However, variability models contain much more information

than we can extract from code. Our scalable static analysis
can only recover 19 % of the model constraints. Qualitative
analysis shows additional types of constraints resulting from
runtime or external dependencies (often already known by ex-
perts) or used for model structuring and configurator support.
• While cross-tree constraints in variability models mainly pre-

vent build-time errors, major parts of the feature hierarchy
(25%) can be found using our feature effect heuristic. The
feature hierarchy is one of the major benefits of using vari-
ability models. It helps users to configure, and developers
to organize features. With our results, reverse engineering a
feature hierarchy can be substantially supported.
• Manually extracting technical constraints is very hard for

non-experts of the systems, even when they are experienced
developers. We experienced this first-hand, giving a strong
motivation for automating the task.

8. ACKNOWLEDGMENTS
Partly supported by NSERC CGS-D2-425005, ARTEMIS JU

grant n◦ 295397 VARIES, and NSF grant CCF-1318808.

9. REFERENCES
[1] CDLTools.

https://bitbucket.org/tberger/cdltools.
[2] FARCE.

https://bitbucket.org/tberger/farce.
[3] KBuildMiner.

http://code.google.com/p/variability/
wiki/PresenceConditionsExtraction.

[4] LVAT. http://code.google.com/p/
linux-variability-analysis-tools.

[5] Online appendix.
http://gsd.uwaterloo.ca/farce.

[6] L. Aversano, M. Di Penta, and I. Baxter. Handling
preprocessor-conditioned declarations. In Proceedings of the
International Workshop Source Code Analysis and
Manipulation (SCAM), pages 83–92, 2002.

[7] I. Baxter and M. Mehlich. Preprocessor conditional removal
by simple partial evaluation. In Proceedings of the Working
Conference on Reverse Engineering (WCRE), pages 281–290.
IEEE Computer Society, 2001.

[8] J. Bayer, J.-F. Girard, M. Würthner, J.-M. DeBaud, and
M. Apel. Transitioning legacy assets to a product line
architecture. In Proceedings of the European Software
Engineering Conference/Foundations of Software Engineering
(ESEC/FSE), pages 446–463. Springer, 1999.

[9] D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated
analysis of feature models 20 years later: A literature review.
Information Systems, 35(6):615 – 636, 2010.

[10] T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker,
K. Czarnecki, and A. Wąsowski. A survey of variability
modeling in industrial practice. In Proceedings of the
International Workshop on Variability Modelling of
Software-intensive Systems (VaMoS), pages 7:1–7:8, 2013.

[11] T. Berger and S. She. Formal semantics of the CDL language.
Technical Note. Available at www.informatik.
uni-leipzig.de/~berger/cdl_semantics.pdf.

[12] T. Berger, S. She, K. Czarnecki, and A. Wąsowski.
Feature-to-Code mapping in two large product lines.
Technical report, University of Leipzig, 2010.

[13] T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki.
A study of variability models and languages in the systems
software domain. IEEE Transactions on Software
Engineering, 39(12):1611–1640, 2013.

[14] T. Berger, S. She, R. Lotufo, A. Wąsowski, and K. Czarnecki.
Variability modeling in the real: A perspective from the
operating systems domain. In Proceedings of the International
Conference Automated Software Engineering (ASE), pages
73–82. ACM Press, 2010.

[15] J. Bergey, L. O’Brian, and D. Smith. Mining existing assets
for software product lines. Technical Report
CMU/SEI-2000-TN-008, SEI, Pittsburgh, PA, 2000.

[16] E. Bodden, M. Mezini, C. Brabrand, T. Tolêdo, M. Ribeiro,
and P. Borba. Spllift - statically analyzing software product
lines in minutes instead of years. In Proceedings of the
Conference Programming Language Design and
Implementation (PLDI), pages 355–364. ACM Press, 2013.

[17] C. Brabrand, M. Ribeiro, T. Tolêdo, and P. Borba.
Intraprocedural dataflow analysis for software product lines.
In Proceedings of the International Conference
Aspect-Oriented Software Development (AOSD), pages 13–24.
ACM Press, 2012.

[18] K. Czarnecki and U. W. Eisenecker. Generative Programming:

Methods, Tools, and Applications. Addison-Wesley, Boston,
MA, 2000.

[19] K. Czarnecki and K. Pietroszek. Verifying feature-based
model templates against well-formedness OCL constraints. In
Proceedings of the International Conference Generative
Programming and Component Engineering (GPCE), pages
211–220. ACM Press, 2006.

[20] J.-M. Davril, E. Delfosse, N. Hariri, M. Acher,
J. Cleland-Huang, and P. Heymans. Feature model extraction
from large collections of informal product descriptions. In
Proceedings of the European Software Engineering
Conference/Foundations of Software Engineering
(ESEC/FSE), pages 290–300. ACM Press, 2013.

[21] D. Dhungana, P. Grünbacher, and R. Rabiser. The DOPLER
meta-tool for decision-oriented variability modeling: A
multiple case study. Automated Software Engineering,
18(1):77–114, 2011.

[22] N. Hariri, C. Castro-Herrera, M. Mirakhorli,
J. Cleland-Huang, and B. Mobasher. Supporting domain
analysis through mining and recommending features from
online product listings. IEEE Transactions on Software
Engineering, 39(12):1736–1752, 2013.

[23] A. Hubaux, Y. Xiong, and K. Czarnecki. A user survey of
configuration challenges in Linux and eCos. In Proceedings of
the International Workshop on Variability Modelling of
Software-intensive Systems (VaMoS), pages 149–155. ACM
Press, 2012.

[24] K. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson. Feature-Oriented Domain Analysis (FODA)
Feasibility Study. Technical Report CMU/SEI-90-TR-21, SEI,
Pittsburgh, PA, 1990.

[25] C. Kästner, S. Apel, T. Thüm, and G. Saake. Type checking
annotation-based product lines. ACM Trans. Softw. Eng.
Methodol. (TOSEM), 21(3):Article 14, 2012.

[26] C. Kästner, P. G. Giarrusso, T. Rendel, S. Erdweg,
K. Ostermann, and T. Berger. Variability-aware parsing in the
presence of lexical macros and conditional compilation. In
Proceedings of the International Conference Object-Oriented
Programming, Systems, Languages and Applications
(OOPSLA), pages 805–824. ACM Press, Oct. 2011.

[27] C. Kästner, K. Ostermann, and S. Erdweg. A variability-aware
module system. In Proceedings of the International
Conference Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA). ACM Press, 2012.

[28] D. Le, H. Lee, K. Kang, and L. Keun. Validating consistency
between a feature model and its implementation. In Safe and
Secure Software Reuse, volume 7925, pages 1–16. Springer,
2013.

[29] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze.
An analysis of the variability in forty preprocessor-based
software product lines. In Proceedings of the International
Conference Software Engineering (ICSE), volume 1, pages
105 –114, 2010.

[30] J. Liebig, A. von Rhein, C. Kästner, S. Apel, J. Dörre, and
C. Lengauer. Scalable analysis of variable software. In
Proceedings of the European Software Engineering
Conference/Foundations of Software Engineering
(ESEC/FSE), pages 81–91. ACM Press, 2013.

[31] R. Lotufo, S. She, T. Berger, K. Czarnecki, and A. Wąsowski.
Evolution of the Linux kernel variability model. In Software
Product Lines: Going Beyond, volume 6287, pages 136–150.
Springer, 2010.

https://bitbucket.org/tberger/cdltools
https://bitbucket.org/tberger/farce
http://code.google.com/p/variability/wiki/PresenceConditionsExtraction
http://code.google.com/p/variability/wiki/PresenceConditionsExtraction
http://code.google.com/p/linux-variability-analysis-tools
http://code.google.com/p/linux-variability-analysis-tools
http://gsd.uwaterloo.ca/farce
www.informatik.uni-leipzig.de/~berger/cdl_semantics.pdf
www.informatik.uni-leipzig.de/~berger/cdl_semantics.pdf

[32] S. Nadi and R. Holt. Mining Kbuild to detect variability
anomalies in Linux. In Proceedings of the European
Conference on Software Maintenance and Reengineering
(CSMR), pages 107–116, 2012.

[33] S. Nadi and R. Holt. The Linux kernel: A case study of build
system variability. Journal of Software: Evolution and
Process, 2013. Early online view.
http://dx.doi.org/10.1002/smr.1595.

[34] H. V. Nguyen, C. Kästner, and T. N. Nguyen. Exploring
variability-aware execution for testing plugin-based web
applications. In Proceedings of the International Conference
Software Engineering (ICSE), 2014.

[35] Y. Padioleau. Parsing C/C++ code without pre-processing. In
Proceedings of the International Conference Compiler
Construction (CC), pages 109–125. Springer, 2009.

[36] L. Passos, J. Guo, L. Teixeira, K. Czarnecki, A. Wąsowski,
and P. Borba. Coevolution of variability models and related
artifacts: A case study from the Linux kernel. In Proceedings
of the International Software Product Line Conference
(SPLC), pages 91–100. ACM Press, 2013.

[37] L. Passos, M. Novakovic, Y. Xiong, T. Berger, K. Czarnecki,
and A. Wąsowski. A study of non-Boolean constraints in
variability models of an embedded operating system. In
Proceedings of the International Software Product Line
Conference (SPLC), pages 2:1–2:8. ACM Press, 2011.

[38] A. Rabkin and R. Katz. Static extraction of program
configuration options. In Proceedings of the International
Conference Software Engineering (ICSE), pages 131–140.
ACM Press, 2011.

[39] E. Reisner, C. Song, K.-K. Ma, J. S. Foster, and A. Porter.
Using symbolic evaluation to understand behavior in
configurable software systems. In Proceedings of the
International Conference Software Engineering (ICSE), pages
445–454. ACM Press, 2010.

[40] S. She and T. Berger. Formal semantics of the Kconfig
language. Technical Note. Available at eng.uwaterloo.
ca/~shshe/kconfig_semantics.pdf.

[41] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki.
The variability model of the Linux kernel. In Proceedings of
the International Workshop on Variability Modelling of
Software-intensive Systems (VaMoS), 2010.

[42] S. She, R. Lotufo, T. Berger, A. Wąsowski, and K. Czarnecki.
Reverse engineering feature models. In Proceedings of the
International Conference Software Engineering (ICSE), pages
461–470. ACM Press, 2011.

[43] D. Simon and T. Eisenbarth. Evolutionary introduction of
software product lines. In Proceedings of the International
Software Product Line Conference (SPLC), volume 2379,
pages 272–282. Springer, 2002.

[44] J. Sincero, H. Schirmeier, W. Schröder-Preikschat, and
O. Spinczyk. Is the Linux kernel a software product line? In
Proceedings of the International Workshop on Open Source

Software and Product Lines (SPLC-OSSPL), 2007.
[45] J. Sincero, R. Tartler, D. Lohmann, and

W. Schröder-Preikschat. Efficient extraction and analysis of
preprocessor-based variability. In Proceedings of the
International Conference Generative Programming and
Component Engineering (GPCE), pages 33–42. ACM Press,
2010.

[46] C. Stoermer and L. O’Brien. MAP – Mining architectures for
product line evaluations. In Proceedings of the Working
Conference Software Architecture (WICSA), pages 35–44.
IEEE Computer Society, 2001.

[47] A. Tamrawi, H. A. Nguyen, H. V. Nguyen, and T. N. Nguyen.
Build code analysis with symbolic evaluation. In Proceedings
of the International Conference Software Engineering (ICSE),
pages 650–660. IEEE Computer Society, 2012.

[48] R. Tartler, D. Lohmann, J. Sincero, and
W. Schröder-Preikschat. Feature consistency in
compile-time-configurable system software: Facing the Linux
10,000 feature problem. In Proceedings of the European
Conference on Computer Systems (EuroSys), pages 47–60.
ACM Press, 2011.

[49] S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe
composition of product lines. In Proceedings of the
International Conference Generative Programming and
Component Engineering (GPCE), pages 95–104. ACM Press,
2007.

[50] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake. A
classification and survey of analysis strategies for software
product lines. ACM Computing Surveys, 2014. accepted for
publication Jan 30, 2014.

[51] T. Thüm, D. Batory, and C. Kästner. Reasoning about edits to
feature models. In Proceedings of the International
Conference Software Engineering (ICSE), pages 254–264.
IEEE Computer Society, 2009.

[52] B. Veer and J. Dallaway. The eCos component writer’s guide.
ecos.sourceware.org/ecos/docs-latest/
cdl-guide/cdl-guide.html.

[53] J. White, D. Schmidt, D. Benavides, P. Trinidad, and
A. Cortés. Automated diagnosis of product-line configuration
errors in feature models. In Proceedings of the International
Software Product Line Conference (SPLC), pages 225–234.
IEEE Computer Society, 2008.

[54] Y. Xiong, A. Hubaux, S. She, and K. Czarnecki. Generating
range fixes for software configuration. In Proceedings of the
International Conference Software Engineering (ICSE), pages
58–68. IEEE Computer Society, 2012.

[55] B. Zhang and M. Becker. Code-based variability model
extraction for software product line improvement. In
Proceedings of the International Software Product Line
Conference (SPLC), pages 91–98. ACM Press, 2012.

[56] R. Zippel and contributors. kconfig-language.txt. available
in the kernel tree at www.kernel.org.

http://dx.doi.org/10.1002/smr.1595
eng.uwaterloo.ca/~shshe/kconfig_semantics.pdf
eng.uwaterloo.ca/~shshe/kconfig_semantics.pdf
ecos.sourceware.org/ecos/docs-latest/cdl-guide/cdl-guide.html
ecos.sourceware.org/ecos/docs-latest/cdl-guide/cdl-guide.html
www.kernel.org

	Introduction
	Configuration Constraints
	Problem Space
	Solution Space
	Build-time Errors
	Feature Effect

	Problem Statement

	Extracting Code Constraints
	Preprocessor, Parser, and Type Constraints
	Linker Constraints
	Feature Effect

	Empirical Study
	Study Setup
	Subject Systems
	Methodology and Tool Infrastructure
	Evaluation Technique

	O1: Accuracy and Scalability
	O2: Recoverability
	O3: Classification of Variability ModelConstraints

	Threats to Validity
	Related Work
	Conclusions
	Acknowledgments
	References

