
Measuring Programming Experience

Janet Feigenspan,
University of Magdeburg

Christian Kästner,
Philipps University Marburg

Jörg Liebig and Sven Apel,
University of Passau

Stefan Hanenberg,
University of Duisburg-Essen

Abstract—Programming experience is an important confound-
ing parameter in controlled experiments regarding program
comprehension. In literature, ways to measure or control pro-
gramming experience vary. Often, researchers neglect it or do
not specify how they controlled it. We set out to find a well-defined
understanding of programming experience and a way to measure
it. From published comprehension experiments, we extracted
questions that assess programming experience. In a controlled ex-
periment, we compare the answers of 128 students to these ques-
tions with their performance in solving program-comprehension
tasks. We found that self estimation seems to be a reliable way
to measure programming experience. Furthermore, we applied
exploratory factor analysis to extract a model of programming
experience. With our analysis, we initiate a path toward mea-
suring programming experience with a valid and reliable tool,
so that we can control its influence on program comprehension.

I. INTRODUCTION

In software-engineering experiments, program comprehen-

sion is frequently measured, for example, for the evaluation

of programming-language constructs or software-development

tools [3], [7], [13], [16], [26]. Program comprehension is an

internal cognitive process that we cannot observe directly.

Instead, controlled experiments are often conducted, in which

we observe the behavior of subjects and draw conclusions

about their program comprehension.

To conduct controlled experiments, we have to control

confounding parameters, which influence the outcome of an

experiment in addition to the evaluated concept [15]. One

important confounding parameter is programming experience:

The more experienced a subject, the better she understands a

program compared to an inexperienced subject. (Accidentally)

assigning more experienced subjects to one treatment can

seriously bias the results. Hence, programming experience

should always be considered in such kind of experiments.

However, there is no agreed way to measure programming

experience. Instead, researchers use different, sometimes not

specified, measures or do not asses it at all. However, a com-

mon understanding of programming experience can increase

the validity of experiments and helps interpreting results.

Our goal is to evaluate how reliable different ways to mea-

sure programming experience are. To this end, we conducted a

controlled experiment, in which subjects completed a question-

naire that contained questions related to programming experi-

ence based on a literature review. Additionally, subjects solved

programming tasks. Then, we compared the performance in

the programming tasks with the answers in the questionnaire.

As result, we identified two questions as indicator for

programming experience using stepwise regression: Self es-

timated programming experience compared to class mates

and self estimated experience with logical programming.

Furthermore, we present a five-factor model that describes

programming experience using exploratory factor analysis.

The contributions of this paper are the following:

• Literature review about the state of the art of measuring

and controlling the influence of programming experience.

• A questionnaire that contains the common questions to

measure programming experience.

• Reusable experimental design to evaluate the question-

naire.

• Initial evaluation of this questionnaire with sophomores.

• Proposal toward two relevant questions and a five-factor

model of programming experience.

II. LITERATURE REVIEW

To get an overview of whether and how researchers measure

programming experience, we conducted a literature review

based on the guidelines for systematic literature reviews

provided by Kitchenham and Chartes [20]. Due to space

restrictions, we only give a short summary of the extraction

process and the results. We considered the years 2001 to 2010

of highly ranked conferences and journals in the domain of

(empirical) software engineering and program comprehension:

International Conference on Software Engineering (ICSE),
European Software Engineering Conference/Foundations on
Software Engineering (FSE), International Conference on
Program Comprehension (ICPC),1 International Symposium
on Software Engineering and Measurement (ESEM),2 Em-
pirical Software Engineering Journal (ESE), Transactions on
Software Engineering (TSE), and Transactions on Software
Engineering and Methodology (TOSEM).

To extract the papers, we read title and abstract of each

paper. If an experiment with human subjects was mentioned,

we included the paper in our selection. If the abstract was

not conclusive, we skimmed the paper and searched for

the keywords (programming) experience, expert, expertise,

professional, subject, and participant, which are typical for

program-comprehension experiments. We extracted 288 (of

2161) papers. We read each paper of our selection and

excluded those papers that evaluated a concept too far away

from program comprehension (e.g., cost estimation of software

projects). When uncertain whether a concept was too far

1ICPC was a workshop until 2005 (IWPC), which we also included.
2ESEM first took place in 2007.



�������	
� 
��

����	�
�������

������
���

�������

�
��

%���
��

&
��

���� ����
'&�
�


���	&�
�


(�&��

� � �� �� �� �� $� $� �� �� ��

#��

!"���

!��

���

����

����

����

Fig. 1. Overview of how programming experience is operationalized.

away, we discussed it until we reached an agreement. The

literature-review team consisted of the first author and a

research assistant. When still in doubt, we included the paper

to have a broad overview of the understanding of programming

experience. The final selection consists of 161 papers. An

overview of our initial and final selection of papers is available

at the project’s website (http://fosd.net/PE).

In the selected papers, we found several ways of managing

programming experience, which we divide into 9 categories

(Fig. 1). The categories are not disjoint; when authors com-

bined indicators, the according paper counts for each category.

1) Years: In many papers (47), the years a subject was pro-

gramming at all or programming in a company or certain

language was used to measure programming experience.

For example, Sillito and others assessed the number of

years a subject was programming professionally [26].

2) Education: The education of subjects was used to in-

dicate their experience in 19 of the reviewed papers.

Education includes information such as the level of

education (e.g., undergraduate or graduate student) or

the grades of courses. For example, Ricca and others

recruited undergraduate students as low experience and

graduates as high-experience subjects [25].

3) Self estimation: In twelve experiments, subjects were

asked to estimate their experience themselves. For ex-

ample, Bunse let his subjects estimate their experience

on a five-point scale [7].

4) Unspecified questionnaire: Some authors applied a ques-

tionnaire to assess programming experience. For ex-

ample, Erdogmus and others let subjects fill out a

questionnaire before the experiment [11]. However, it

was not specified what the questionnaire looked like.

5) Size: The size of programs subjects had written was

used as indicator in six papers. For example, Müller [23]

asked how many lines of code the largest program has

that subjects have implemented.

6) Unspecified pretest: In three experiments, a pretest was

conducted to assess the subjects’ programming expe-

rience. For example, Biffl and Grossmann [5] used a

pretest to create three groups of skill levels (excellent,

medium, little). However, it was not specified in the

papers what the pretest looked like.

7) Supervisor: In two experiments, in which professional

programmers were recruited as subjects, the supervising

manager estimated the experience of subjects [3], [17].

8) Not specified/not controlled: Often, the authors state

that they measured programming experience, but did

not specify how. This was the case in 39 papers. Even

more often (45 papers), programming experience was

not mentioned at all, which may threaten the validity of

the corresponding papers.

To summarize, the measurement of programming experience

is diverse. This could threaten the validity of experiments,

because researchers use their own definition of programming

experience without validating it. Furthermore, conducting meta

analysis on these experiments is difficult, because the influence

of programming experience is not clearly defined, making the

results across different experiments not comparable. To evalu-

ate the measurement of programming experience, we created

a questionnaire based on the results of the literature review.

III. QUESTIONNAIRE

Most measurements of programming experience we found

in literature can be performed as part of a questionnaire. Only

pretest and supervisor estimation require additional effort,

but are also rarely used in our analyzed papers. Hence,

we excluded both categories. Furthermore, we excluded the

category unspecified questionnaire, because the contents of

questionnaires were not specified in our analyzed papers.

We designed a single questionnaire, which includes ques-

tions of the following categories: years, education, self es-
timation, and size. For each category, we selected multiple

questions we found in literature. Additionally, we added ques-

tions that we found in previous experiments to be related to

programming experience. This way, we aim at having a more

exhaustive set of indicators for programming experience and,

consequently, a better definition of programming experience.

Some questions are specific to students; when working with

different subjects (e.g., experts), they need to be adapted.

Our goal is to evaluate which questions from which cat-

egories have the highest prediction power for programming

experience. In the long run, we plan to evolve our question-

naire (by removing questions with little prediction power, and

potentially adding others) into a standard questionnaire.

In Table I, we summarize our questionnaire. We also show

the scale of the answers, that is how subjects should answer the

questions. In column Abbreviation, we show the abbreviation

of each question, which we use in the remainder. The version

of the questionnaire we used in our experiment is available at

the project’s website. Next, we explain each question in detail.

A. Years

Questions of this category mostly referred to how many

years subjects were programming in general and profession-

ally. Programming in general includes the time when sub-

jects started programming, which includes hello-world-like



Source Question Scale Abbreviation

Self
estimation

On a scale from 1 to 10, how do you estimate your programming experience? 1: very inexperienced to
10: very experienced

s.PE

How do you estimate your programming experience compared to experts with
20 years of practical experience?

1: very inexperienced to
5: very experienced

s.Experts

How do you estimate your programming experience compared to your class
mates?

1: very inexperienced to
5: very experienced

s.ClassMates

How experienced are you with the following languages: Java/C/Haskell/Prolog 1: very inexperienced to
5: very experienced

s.Java/s.C/s.Haskell/
s.Prolog

How many additional languages do you know (medium experience or better)? Integer s.NumLanguages
How experienced are you with the following programming paradigms:
functional/imperative/logical/object-oriented programming?

1: very inexperienced to
5: very experienced

s.Functional/s.Imperative/
s.Logical/s.ObjectOriented

Years For how many years have you been programming? Integer y.Prog
For how many years have you been programming for larger software projects,
e.g., in a company?

Integer y.ProgProf

Education What year did you enroll at university? Integer e.Years
How many courses did you take in which you had to implement source code? Integer e.Courses

Size How large were the professional projects typically? NA, <900, 900-40000,
>40000

z.Size

Other How old are you? Integer o.Age

Integer: Answer is an integer; Nominal: Answer is a string. The abbreviation of each question encodes also the category to which it belongs.

TABLE I
OVERVIEW OF QUESTIONS TO ASSESS PROGRAMMING-EXPERIENCE.

programs. Professional programming describes when subjects

earned money for programming, which typically requires a

certain experience level. In our questionnaire, we asked both

questions. We believe that both questions are an indicator

for programming experience, because the longer someone is

programming, the more source code she implemented and,

thus, the higher her programming experience should be.

B. Education

This category contains questions that assess educational

aspects. We asked subjects to state the number of courses

they took in which they implemented source code and the

year in which they enrolled (recoded into number of years a

subject has been enrolled). The number of courses roughly

indicates how much source code subjects had implemented.

With the years a subject is studying, we get an indicator of

the education level: The longer a subject has been studying, the

more experience she should have gained through her studies.

C. Self Estimation

In this category, we asked subjects to estimate their own

experience level. With the first question, we asked subjects to

estimate their programming experience on a scale from 1 to 10.

We did not clarify what we mean by programming experience,

but let subjects use their intuitive definition of programming

experience to not use a definition that felt unnatural. We used

a 10-point scale to have a fine-grained estimation. In the

remaining questions, we used a five-point scale, because we

think that a coarse-grained estimation is better for subjects to

estimate their experience in these more specific questions.

Next, we asked subjects to relate their programming experi-

ence to experienced programmers and their class mates to let

subjects think more thoroughly about their level of experience.

Additionally, we asked subjects how familiar they are with

certain programming languages. We chose Java, C, Haskell,

and Prolog, because these are common and are taught at

the universities our subjects were enrolled at. The more

programming languages developers are familiar with, the more

they have learned about programming in general and their

experience should be larger. Furthermore, experience with the

underlying programming language of the experiment can be

assessed. Beyond that, we asked subjects to list the number

of programming languages in which they are experienced at

least to a medium level. This way, we can assess familiarity

with many languages without listing each of them. The same

counts for familiarity with different programming paradigms.

D. Size

We asked subjects with professional experience about the

size of their projects. We used the categorization into small,

medium, and large based on the lines of code according to

van Mayrhauser and Vans [28].

In addition, we also included the age of subjects in the

questionnaire. This way, we aim at having a more exhaustive

understanding of programming experience.

IV. EMPIRICAL VALIDATION

Constructing and validating a questionnaire is a long and

tedious endeavor that requires several (replicated) experi-

ments [24]. In this paper, we start this process.

There are different ways to validate a questionnaire. We

could recruit programming experts and novices as subjects and

compare their answers in the questionnaire. Since there is a

difference in the experience between both groups, we should

also see a difference in the questionnaire. Another way is to

compare the answers in the questionnaire with performance in



tasks that are related to programming experience. The benefit

is that we do not need different groups of subjects; one group

is sufficient. We used the latter way with a group of students,

because we found in our review that they are often recruited

as subjects in software-engineering experiments. Hence, they

represent an important sample. Furthermore, students can be

comparable to experts under certain conditions [18], [27].

Since we recruit students, we expect only little variation for

some questions (e.g., o.Age). We asked these questions any-

way to have a more exhaustive data set. Of course, further ex-

periments with different groups of subjects (e.g., professional

programmers) are necessary. To this end, our experimental

design can be reused, which we plan to do in future work.

To present our experiment, we use the guidelines suggested

by Jedlitschka and Ciolkowski [19]. For brevity, we describe

only necessary details to understand our experiment. More

information (e.g., tasks, overview of statistical analysis) is

available at the project’s website.

A. Objective

With our experiment, we aim at evaluating how the ques-

tions relate to programming experience. To this end, we need

an indicator for programming experience to which we can

compare the answers of our programming-experience ques-

tionnaire. Hence, we designed programming tasks that subjects

should solve in a given time. For each task, we measure

whether subjects solve a task correctly and how long they

need to complete a task. The first underlying assumption is that

the more experienced subjects are, the more tasks they solve

correctly. Since experienced subjects have seen more source

code compared to inexperienced subjects, they should have

less trouble in analyzing what source code does and, hence,

solve more tasks correctly. The second assumption is that ex-

perienced subjects are faster in analyzing source code, because

they have done it more often and know better what to look for.

As we are starting the validation, we have no hypotheses

about how our questions relate to the performance in the

programming tasks.

B. Material

We designed 10 program-comprehension tasks. We gave

subjects source code and asked what executing this code would

print. Furthermore, subjects should explain what the source

code is doing. In Figure 2, we show the source code of the

first task to give an impression (all other tasks are available

on the project’s website). The source code sorts an array of

numbers, so the correct answer is 5, 7, 14. The remaining

tasks were roughly similar: Two tasks were about a stack, five

about a linked list, one involved command-line parameters, and

the last was a bug-fixing task. An answer was correct when it

was result of running the program, ignoring whitespace. When

an answer diverged from the expected result, a programming

expert looked at subjects’ explanation of the source code and

decided whether the answer could be counted as correct.

To match the average experience level of undergraduates

(who we recruited as subjects), we selected typical algorithms

1 public class Class1 {
2 public static void main(String[] args) {
3 int array[] = {14,5,7};
4 for (int counter1 = 0; counter1 < array.length;

counter1++) {
5 for (int counter2 = counter1; counter2 > 0;

counter2--) {
6 if (array[counter2 - 1] > array[counter2]) {
7 int variable1 = array[counter2];
8 array[counter2] = array[counter2 - 1];
9 array[counter2 - 1] = variable1;

10 }
11 }
12 }
13 for (int counter3 = 0; counter3 < array.length;

counter3++)
14 System.out.println(array[counter3]);
15 }
16 }

Fig. 2. Source code for the first task.

presented in introductory programming lectures. When repli-

cating this experiment with programming experts, it might

be necessary to adjust the tasks to match the high level

of experience. Only the last two tasks required a higher

experience level. In Task 9, we used command-line parameters,

which are not typically taught at sophomore level. In the

last task, we use source code of MobileMedia, a software

for manipulating multi-media data on mobile devices [14]. It

consists of 2,800 lines of code in 21 classes. We included the

last two tasks to identify highly experienced subjects among

sophomores, since some students start to program before there

studies. We expected that only highly experienced subjects

should be able to complete this task. All source code was in

Java, the language that subjects were most familiar with.

We had 10 tasks so that only experienced subjects would

be able to complete all tasks in the given time, which we

confirmed in a pretest with PhD students from the University

of Magdeburg. This way, we can better differentiate between

high and low experienced subjects. To make sure that subjects

are not disappointed with their performance in the experiment,

we explained that they would not be able to solve all tasks, but

should simply proceed as far as possible within given time.

To present the questionnaire, tasks, and source code, we

used our tool infrastructure PROPHET [12]. It lets subjects

enter answers, logs the time subjects spend on each task, and

logs the behavior of subjects (e.g., opening files). This way,

we control the influence of subjects’ familiarity with an IDE.

There may be other confounding parameters; our sample is

large enough to control their influence.

C. Subjects

Subjects came from the University of Passau (27), Philipps

University Marburg (31), and University of Magdeburg (70),

so we had 128 subjects in total. All universities are located in

Germany. Subjects from Passau and Marburg were in the end

of their third semester and attended a course on software en-

gineering. Subjects from Magdeburg were at the beginning of



their fourth semester and from different courses. The level of

education of all subjects was comparable, because no courses

took place between semesters and subject had to complete

similar courses at all universities. All subjects were offered

different kinds of bonus points for their course (e.g., omitting

one homework assignment) for participating in the experiment

independent of their performance. All subjects participated

voluntarily, were aware that they took part in an experiment,

and could quit anytime. Data was logged anonymously.

Since, we recruited subjects from different universities, we

actually have different samples. However, only the question

s.ClassMates is specific for each university, because subjects

can only compare themselves to the students of their university.

A Kruskal-Wallis test for s.ClassMates revealed no significant

differences between the three universities (χ2 = 1.275, df = 2,

p = 0.529) [1]. Furthermore, we selected the tasks to be typical

examples of what students learn in introductory programming

courses at their universities. Hence, we can treat our three

samples as one sample.

D. Execution

The experiments took place in January and April 2011 at

the Universities of Passau, Marburg, and Magdeburg as part

of a regular lecture session. First, we let subjects complete the

programming-experience questionnaire without knowing its

specific purpose. Then, we gave subjects an introduction about

the general purpose and proceeding of the experiment, without

revealing our goal. The introduction was given by the same

experimenter each time. After all questions were answered,

subjects worked on the tasks on their own. Since we had time

constraints, the time limit for the experiment was set to 40

minutes. After time ran out, subjects were allowed to finish

the task they were currently working on. Two to three experi-

menters checked that subjects worked as planned. After the ex-

periment, we revealed subjects the purpose of this experiment.

E. Deviation

We had a technical error for the presentation of the

programming-experience questionnaire, such that we could not

measure s.PE for all subjects. Hence, we only have the answer

of 70 out of 128 subjects for this question.

V. EXPERIMENT RESULTS

First, we describe descriptive statistics to get an overview

of our data. Second, we present how each question correlates

with the performance in the tasks. This way, we get an

impression of how important each question is as indicator for

programming experience in our sample.

A. Means and Standard Deviations

In Table II, we give an overview of how subjects solved the

tasks. Column Mean contains the average time in minutes of

subjects who completed a task. Since not all subjects finished

all tasks, they cannot be interpreted across tasks. We discuss

the most important values. Task 10 took the longest time to

complete (on average, 9.6 minutes). This is caused by the

Response time
Variable Distribution Mean N Correct

Task 1 ●●●●●●●● 4.44 124 70

Task 2 ●●●●●● 3.65 123 90

Task 3 ● ●● 5.02 121 97

Task 4 ● 6.17 117 22

Task 5 ● ● 4.06 118 46

Task 6 ● 4.72 111 40

Task 7 ●●● ●●● ● 2.34 92 31

Task 8 ● ●●● ● 4.1 82 69

Task 9 ●● 1.94 78 11

Task 10 ● 9.64 30 22

0 5 10 15 20 25

N: number of subjects who completed this task;
Correct: number of subjects with correct solution.

TABLE II
OVERVIEW OF RESPONSE TIME FOR EACH TASK.

large underlying size of the source code for the last task with

over 2000 lines of code. To solve Task 9, subjects needed

on average 1.9 minutes; most likely, because its source code

consisted of only 10 lines. Furthermore, only 11 subjects

solved it correctly. To solve this task, subjects must be familiar

with command-line parameters, which is not typical for the

average sophomore. Considering the correctness of Task 4,

we see that only 22 subjects solved this task correctly. In this

task, elements were added to an initially empty linked list,

such that the list is sorted in a descending order after the

insertion. In most of the wrong answers, we found that the

order of the elements was wrong. We believe that subjects

did not analyze the insert algorithm thoroughly enough and

assumed an ascending order of elements.

In Fig. 3, we show the number of correctly solved tasks

per subject. As we expected, none of our subjects solved 9

or 10 tasks correctly. (cf. Section IV-B). Especially the last

two tasks (Task 9: command-line parameters; Task 10: 2,800

lines of code) required an experience level beyond that of

sophomores. More than half of the students (72) solved two to

four tasks correctly. Taking into account the time constraints

(40 minutes to solve 10 tasks), it is not surprising that the

number of tasks that a student solved correctly is rather low.

In Table III, we show the answers subjects gave in our

questionnaire. The median for s.PE varies between 2 and

3, which we would expect from sophomores. In general,

subjects felt very inexperienced with logical programming and

experienced with object-oriented programming. The median of

how long subjects are programming is 4 years, but only few

subjects said they were programming for more then 10 years.

Although subjects took a sophomore course, some subjects

were enrolled for more than 3 years,3 which could also explain

why some subjects completed numerous courses in which they

3The German system allows subjects to take courses in somewhat flexible
order and timing.



0 1 2 3 4 5 6 7 8

Number of correct answers

F
re

q
u
e
n
c
y

0
5

1
0

1
5

2
0

2
5

3
0

Fig. 3. Frequencies of number of correct answers.

No. Question Distribution N

1 s.PE 70

2 s.Experts 126

3 s.ClassMates 127

4 s.Java 124

5 s.C 127

6 s.Haskell 128

7 s.Prolog 128

8 s.NumLanguages 0 ●●●●6 118

9 s.Functional 127

10 s.Imperative 128

11 s.Logical 126

12 s.ObjectOriented 127

13 y.Prog 0 ●● ●● ●● ●● 25 123

14 y.ProgProf 0 ●● ● ●●● ●● ● ●● ●●● ●● ● ●●● ●● ● ●● ●●● 7 127

15 e.Years 0 ●●● ●● ●● ●●● ●● ●● 9 126

16 e.Courses 0 ●●● ●●● ●●● ●●● 20 123

17 o.Size 128

18 o.Age 19 ● ●● ●●●●● ● ● ●●● ●● ●●●●● ● ● ●● 40 128

TABLE III
OVERVIEW OF ANSWERS IN QUESTIONNAIRE.

had to implement source code.

B. Correlations

In Table IV, we give an overview of the correlation of the

number of correct answers with the answers of the question-

naire. Since we correlate ordinal data, we use the Spearman

rank correlation [1]. For about half of the questions of self

estimation, we obtain small to strong correlations.4 The highest

correlation with number of correct answer has s.PE. The low-

est significant correlation is with s.NumLanguages. Regarding

y.Prog and y.ProgProf, we have medium correlations with the

number of correct answers. E.Years does not correlate with

the number of correct answers. For the remaining questions,

we do not observe significant correlations.

For completeness, we show the correlations of response time

with each of the questions of our questionnaire in Table V.

4Small: ±0.1 to ±0.3; medium: ±0.3 to ±0.5; strong: ±0.5 to ±1 [8].

No. Question ρ N

1 s.PE .539 70
2 s.Experts .292 126
3 s.ClassMates .403 127
4 s.Java .277 124
5 s.C .057 127
6 s.Hasekll .252 128
7 s.Prolog .186 128
8 s.NumLanguages .182 118
9 s.Functional .238 127

10 s.Imperative .244 128
11 s.Logical .128 126
12 s.ObjectOriented .354 127
13 y.Prog .359 123
14 y.ProgProf .004 127
15 e.Years -.058 126
16 e.Courses .135 123
17 z.Size -.108 128
18 o.Age -.116 128

ρ: Spearman correlation; N: number of subjects;
gray cells denote significant correlations (p < .05).

TABLE IV
SPEARMAN CORRELATIONS OF NUMBER OF CORRECT ANSWERS WITH

ANSWERS IN QUESTIONNAIRE.

Only 23 correlations, of 180, are significant, which is in the

range of coincidence, given the common α level of 0.05. Since

there are so many correlations, a meaningful interpretation

is impossible without further analysis, for example a factor

analysis. However, such analysis typically requires a large

number of subjects. Since we have a decreasing number of

subjects with each task, we leave analyzing the response times

for future experiments.

VI. EXPLORATORY ANALYSIS

In this section, we explore the data. For this analysis, we

excluded question s.PE, because only 70 subjects answered

this question (cf. Section IV-E). Alternatively, we could have

removed subjects who did not answer this question from the

analysis, but this would have made our sample too small for

the exploratory analysis. Furthermore, we only use the number

of correct answers as indicator for program comprehension,

but not time, since only few subjects completed all tasks. We

decided not to compute the average response time for a task or

to analyze the response times for each task, because that would

be too inaccurate. Furthermore, we would have to compute

efficiency measure to deal with wrong answers [29].

For exploration, we use stepwise regression and exploratory

factor analysis. Both approaches are standard in psychology,

but rarely used in software-engineering research. Therefore,

we start each section with an overview of the methods, before

we present and interpret the results.

A. Stepwise Regression

Overview

So, which questions are the best indicators for programming

experience? The first obvious selection criterion is to include

all questions that have at least a medium correlation (> .30)



No. Question Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10 Number of subjects

1 s.PE -.279 -.417 -.042 .004 -.002 .016 .014 -.182 .071 .085 68 – 27
2 s.Experts -.300 -.177 .047 -.026 .006 -.075 -.217 -.004 .206 .131 122 – 40
3 s.ClassMates -.189 -.401 -.084 -.065 -.053 -.059 -.163 -.061 .161 .100 123 – 40
4 s.Java .029 -.066 -.154 -.022 -.066 .003 -.040 .145 -.170 -.222 105 – 34
5 s.C -.175 -.124 .018 .027 .126 -.108 -.056 -.052 .043 .108 123 – 40
6 s.Haskell -.171 -.109 -.144 -.113 -.014 -.216 -.153 -.183 .019 .158 124 – 40
7 s.Prolog -.174 -.141 -.079 -.104 -.027 -.039 .076 -.239 -.047 .146 124 – 40
8 s.NumLanguages -.295 -.339 -.131 -.121 -.027 -.103 -.035 -.090 .232 .168 115 – 34
9 s.Functional -.148 -.150 -.150 -.004 -.017 -.204 -.120 -.217 .027 .175 123 – 40
10 s.Imperative -.283 .331 -.033 -.089 -.06 -.129 -.296 -.156 .126 .043 124 – 40
11 s.Logical -.209 -.105 -.158 -.136 -.022 -.014 .058 -.257 -.191 .108 122 – 40
12 s.ObjectOriented -.084 -.232 -.008 .012 -.093 -.034 .025 -.060 .156 .082 123 – 40

13 y.Prog -.241 -.379 -.144 -.071 .010 -.113 -.258 -.159 .273 .180 120 – 38
14 y.ProgProf -.217 -.196 -.012 -.119 -.130 .071 -.274 -.022 .044 -.010 123 – 39

15 e.Years -.032 .001 .018 -.152 .059 .047 -.119 .037 -.092 -.173 122 – 40
16 e.Courses -.146 -.088 -.040 -.062 .071 .028 -.053 -.004 .268 .058 120 – 38

17 z.Size -.155 -.160 -.057 -.134 .059 .003 -.201 .046 .000 -.023 124 – 40
18 o.Age .036 .014 .110 .082 .131 .102 -.081 .090 .059 .010 124 – 40

Gray cells denote significant correlations (p < .05).

TABLE V
SPEARMAN CORRELATIONS OF RESPONSE TIMES FOR EACH TASK WITH ANSWERS IN QUESTIONNAIRE.

with the number of correctly solved task, because they are typ-

ically considered relevant. However, the questions themselves

might correlate with each other. For example, the s.ClassMates

correlates with s.ObjectOriented with 0.552. Hence, we can

assume both questions are not independent from each other. If

we used both questions as indicator, we would overestimate the

relationship of both questions with programming experience,

that is we would count the common part of both questions

twice, although we should count it only once.

To account for the correlations between questions, we use

stepwise regression [22]. Stepwise regression builds a model

of the influence of the questions on the number of correct

answers in a stepwise manner. It starts by including the

question with the highest correlation, which, in our case, is

s.ClassMates. Then, it considers the question with the next

highest correlation, which is y.Prof. Using this question, it

computes the partial correlation with the number of correct

answers, describing the correlation of two variables cleaned

from the influence of a third variable [9]. Thus, the correlation

of y.Prog with the number of correct answers, cleaned from

the influence of s.ClassMates, is computed. If this cleaned

correlation is high enough, the question is included, else it

is excluded. The goal is to include questions with a high

correlation with the number of correct answers, such that as

few questions as possible are selected to have a model as

parsimonious as possible. This is repeated with all questions

of the questionnaire.

Results and Interpretation

In Table VI, we show the results for our questionnaire.

With stepwise regression (specifically, we used stepwise as

inclusion method), we extracted two questions: Experience

with logical programming (s.Logical) and self-estimated ex-

Question Beta t p

s.ClassMates .441 3.219 .002
s.Logical .286 2.241 .030

TABLE VI
RESULTING MODEL OF STEPWISE REGRESSION.

perience compared to class mates (s.ClassMates). The higher

the Beta value, the larger the influence of a question on the

number of correctly solved tasks. The model is significant

(F2,45 = 8.472, p < .002) and the adjusted R2 is 0.241,

meaning that we explain 24.1 % of the variance in the number

of correct answers with our model (explaining the meaning of

the values exceeds the scope of this paper; see [22]).

Hence, the result of the stepwise-regression algorithm is

that the questions s.ClassMates and s.Logical contribute most

to the number of correct answers: The higher subjects estimate

their experience compared to class mates and their experience

with logical programming, the more tasks they solve correctly.

We believe that stepwise regression extracted s.ClassMates,

and not s.Experts, because we recruited students as subjects

and the tasks are taken from introductory programming lec-

tures. Hence, if a subject estimates her experience better than

her class mates, she should be better in solving the tasks.

However, we need further research to be sure about that.

Why was s.Logical extracted and not s.Java, which is closer

to our experiment? We believe that the reason is that our

subjects learn Java as one of their first programming language

and feel somewhat confident with it. In contrast, learning a

logical programming language is only a minor part of the

curriculum of all three universities. Hence, if students estimate

that they are familiar with logical programming, they may have



an interest in learning other ways of programming and pursue

it, which increases their programming experience.

The model received from stepwise regression describes Beta

values, which are weights for each question. For example,

if a subject estimates a 4 in s.ClassMates (more experienced

than class mates) and a 2 in s.Logical (unfamiliar with logical

programming), the resulting value for programming experience

is 0.441∗4+0.286∗2 = 2.336 (we omitted a constant to add

as part of the model for simplicity).

Hence, we have identified two questions that explain 24.1 %

of the variance of the number of correct answers. We could

include more questions to improve the amount of explained

variance, but none of the questions contribute a significant

amount of variance. Since a model should be parsimonious,

stepwise regression excluded all other questions. Thus, for our

sample, these two questions provide the best indicators for

programming experience.

B. Exploratory Factor Analysis
Overview

Furthermore, to look for a pattern in our questions, we

analyzed whether questions in our questionnaire correlate. To

this end, we conducted an exploratory factor analysis [2]. The

goal is to reduce a number of observed variables to a small

number of underlying latent variables or factors (i.e., variables

that cannot be observed directly). To this end, the correlations

of the observed variables are analyzed to identify groups of

variables that correlate among each other. For example, the

experience with Haskell and functional programming are very

similar and might be explained by a common underlying

factor. The result of an exploratory factor analysis is a number

of factors that summarize observed variables into groups.

However, the meaning of the factors is not a result of the

analysis, but relies on interpretation.

Results and Interpretation

In Table VII, we show the results of our exploratory factor

analysis. The numbers in the table denote correlations or factor
loadings of the variables in our questionnaire with identified

factors. By convention, factor loadings that have an absolute of

smaller than .32 are omitted, because they are too small to be

relevant [10]. There are main loadings, which are the highest

factor loading of one variable, and cross loadings, which are

all other factor loadings of a variable that have an absolute of

more then .32. The higher the main loading and the smaller

the number of cross loadings, the more unambiguously the

influence of one factor on a variable is. If a variable has many

cross loadings, it is unclear what it exactly measures and more

investigations on this variable are necessary in subsequent

experiments.

The first factor of our analysis summarizes the variables

s.C, s.ObjectOriented, s.Imperative, s.Experts, and s.Java. This

means that these variables have a high correlation amongst

each other and can be described by this factor. Except for

s.Experts, this seems to make sense, because C and Java

and the corresponding paradigms are similar and often taught

Variable Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

s.C .723
s.ObjectOriented .700 .403
s.Imperative .673 .333 .303
s.Experts .600 .326
s.Java .540 .427

y.ProgProf .859
z.Size .764
s.NumLanguages .335 .489 .403
s.ClassMates .449 .403 .424

s.Functional .880
s.Haskell .879

e.Courses .795
e.Years -.460 .573
y.Prog .493 .554

s.Logical .905
s.Prolog .883

Gray cells denote main factor loadings.

TABLE VII
FACTOR LOADINGS OF VARIABLES IN QUESTIONNAIRE.

at universities. We conjecture that s.Experts also loads on

this factor, because it explains the confidence level with

mainstream programming languages. We can name this factor

experience with mainstream languages.

The second factor contains the variables y.ProgProf, z.Size,

s.NumLanguages, and s.ClassMates. These variables fit to-

gether well, because the longer a subject is programming

professionally, the more likely she has worked with large

projects and the more language she has encountered. Addi-

tionally, since it is not typical for second-year undergraduates

to program professionally, subjects that have programmed pro-

fessionally estimate their experience higher compared to their

class mates. We can name this factor professional experience.
Factor three and five group s.Functional/s.Haskell and

s.Logical/s.Prolog in an intuitive way. Hence, we name these

factors functional experience and logical experience.

The fourth factor summarizes the variables e.Courses,

e.Years, and y.Prog, which are all related to the subject’s

education. We can name this factor experience from education.

Now, we have to take a look at the cross loadings. As an

example, we look at e.Years, which also loads on functional
experience. This means that part of this variable can also be

explained by this factor. Unfortunately, we cannot unambigu-

ously define to which factor this variable belongs best, we

can only state e.Years has a higher loading of factor experience
from education. This could also mean that we need two factors

to explain this variable. However, with a factor analysis, we

are looking for a parsimonious model without having more

relationships than necessary.

To summarize the exploratory factor analysis, we extracted

five factors: experience with mainstream languages, profes-
sional experience, functional experience, experience from ed-
ucation, and logical experience that summarize the questions

of our questionnaire in our sample.



VII. THREATS TO VALIDITY

A first threat to validity is caused by the tasks. With

other tasks, results may look different. However, we selected

tasks representative for the experience level of undergraduates

and with varying difficulty. Thus, more experienced subjects

should perform better than less experienced subjects. Hence,

we argue that our task selection is appropriate for our purpose.
Another threat is that we did not compare self estimation

with all identified ways to measure programming experience.

For practical reasons, we neglected pretests and supervisor

assessment in this work, because this would have required too

much effort. Despite those, we considered all other identified

ways. Thus, we believe we controlled this threat sufficiently;

in future work, pretest and supervisor can be compared to self

estimation.
The major threat to external validity is our sample selection:

We only recruited undergraduate students. Our results can be

interpreted only in the context of subjects with similar expe-

rience, because our questions may have a different meanings

for professionals. For example, s.ClassMates is not suitable

for professional programmers, because they do not spent

their time with their class mates, but with their colleagues.

We could ask professional programmers to estimate their

experience compared to their colleagues, but it is also not

clear whether it has the same meaning as asking students

to estimate their experience compared to their class mates.

When applying the results to professional programmers, other

indicators, such as the years of programming (professionally)

may be a better indicator than self estimation. However, since

most experiments are conducted with students, our results are

useful for many researchers.
Furthermore, the results of our exploratory analysis cannot

be generalized without confirmatory analysis based on further

experiments. If we used the same data set, we could not show

that our model is valid in general, but for our specific data set.

However, confirmatory analysis requires considerable effort,

because we have to conduct another experiment. Furthermore,

we need a large sample, depending on the complexity of the

model. In our case, we would need at least 80 subjects to

confirm our model (i.e., the five factors with the different

questions that load on them) [4].

VIII. RECOMMENDATIONS

So far, we have combined different questions from different

categories found in literature into a single questionnaire.

We conducted a controlled experiment with undergraduate

students and explored our data for initial validation. What have

we learned in terms of recommendations for future research?
First, we showed that in literature, there are many different

ways to measure and control programming experience. Fur-

thermore, in many cases, the methods are not reported. We

recommend to mix questions from different categories into

a single questionnaire, of which we presented a draft. We

recommend to report precisely which measure was used and

how groups have been formed according to it. This helps to

judge validity and compare and interpret multiple studies.

Second, we can recommend self estimation questions to

judge programming experience among undergraduate students.

In our experiment, several self-estimation questions correlated

to a strong to medium degree (s.PE: .539; s.ClassMates: .403;

s.ObjectOriented: .354) with the number of correct answers —

much more than questions regarding the categories education,

size, and other. Among undergraduate students, answers to

questions from the latter categories differ only slightly. The

only medium correlation beyond self estimation is y.Prog

(.359), the number of years a subject is programming at all.

Third, if resource constraints allow it, researchers can com-

bine multiple questions, of which some serve as control ques-

tions to see whether subjects answered honestly, which is cus-

tom in designing questionnaires [24]. For example, in our case,

when using s.PE, s.ClassMates and s.ObjectOriented are suit-

able as control questions, since they both show a strong corre-

lation with s.PE (s.ClassMates: .625; s.ObjectOriented: .696).

Fourth, since correlations between questions confound the

strength of a question as indicator for programming experi-

ence (cf. Section VI-A), we extracted two relevant questions,

s.ClassMates and s.Logical, that together serve as best indica-

tor to predict the number of correct answers in our experiment

(each question can be supplied with control questions).

Fifth, our exploratory analysis indicates five factors for

programming experience that can serve as starting point for

developing a theory on programming experience. The results

do not help building a survey right away, but with additional

confirmation, such as confirmatory factor analysis on other

data sets, they can help understanding how programming

experience works and which kinds of questions query relevant

parameters. However, to that end, there is still a long way.

Overall note that while our literature review and the con-

struction of the questionnaire are intended for measuring

programming experience in general, we only validated it for

a specific setting: predicting programming experience among

a homogeneous group of undergraduate students. This way,

we achieve high internal validity, because our results are not

confounded by different backgrounds of the subjects. How-

ever, our recommendation remain limited to this setting. We

conjecture that with experienced programmers, questions from

the categories education, years, and size have more predictive

power. Whether self estimation remains a good indicator in

this setting remains an open question for future work.

We plan to validate the questionnaire with other groups

in further experiments. In this validation, we will reuse the

experimental design and methodology developed in this work.

IX. RELATED WORK

In general, related work to ours evaluated possible criteria

that can be used to categorize subjects upfront. For exam-

ple, Kleinschmager and Hanenberg analyzed the influence of

self estimation, university grades, and pre-tests on historical

data for programming experiments [21]. To this end, they

analyzed the data of two previously conducted programming

experiments with students as subjects. They compared self es-

timation, university grades, and pretests with the performance



of subjects in the experiments and found that self estimation

was not worse than university grades or pre-tests in order to

categorize subjects. These results complement ours, as we did

not look into pretests and grades.

Höst and others analyze the suitability of students as sub-

jects [18]. The authors compared the performance of students

with the performance of professional software developers for

non-trivial tasks regarding judgment about factors affecting

the lead-time of software-development projects. They found

no differences between groups. Thus, classification of subjects

had no effect on their performance.

Bornat and others used a pre-test to categorize god and bad

novice programmers [6]. It relates to our work, in that we

also aim at measuring good and bad programmers, with the

difference that we seek a simple-to-apply questionnaire.

X. CONCLUSION

There is a strong need to assess programming experience in

an easy and cost-efficient way. Often, researchers do not spec-

ify their understanding of programming experience or do not

consider it at all, which threatens the validity of experiments

and makes interpretations across experiments difficult.

In a controlled experiment, we evaluated the measurement

of programming experience found in literature. We found

that within groups of undergraduate students, self estimation

indicates programming experience well. Specifically, we ex-

tracted programming experience compared to class mates and

experience with logical programming as relevant questions. In

conjunction with control questions, such programming expe-

rience in general or experience with Prolog, they can be used

as indicator for programming experience. Furthermore, we

extracted a five-factor model with the factors experience with
mainstream languages, professional experience, functional ex-
perience, experience from education, logical experience. The

next step are confirmatory analyses, in which we aim at

confirming the results of our experiment with different groups

of subjects or different tasks or different ways to measure

programming experience. To this end, we and other research

groups can reuse our experimental design.

ACKNOWLEDGMENTS

Feigenspan’s work is supported by BMBF project

01IM10002B, Kästner’s work by ERC grant #203099, and

Apel’s work by DFG projects #AP 206/2, #AP 206/4, and

LE 912/13. We thank Jana Schumann for her support in the

literature study and all experimenters for their support in

setting up and conducting the experiment.

REFERENCES

[1] T. Anderson and J. Finn. The New Statistical Analysis of Data. Springer,
1996.

[2] T. W. Anderson and H. Rubin. Statistical Inference in Factor Analysis. In
Proc. Berkeley Symposium on Mathematical Statistics and Probability,
Volume 5, pages 111–150. University of California Press, 1956.

[3] E. Arisholm. Evaluating Pair Programming with Respect to System
Complexity and Programmer Expertise. IEEE Trans. Softw. Eng.,
33(2):65–86, 2007.

[4] P. Bentler. Practical Issues in Structural Modeling. Sociological Methods
Research, 16(1):78–117, 1987.

[5] S. Biffl and W. Grossmann. Evaluating the Accuracy of Defect
Estimation Models Based on Inspection Data from Two Inspection
Cycles. In Proc. Int’l Conf. Software Engineering (ICSE), pages 145–
154. IEEE CS, 2001.

[6] R. Bornat, S. Dehnadi, and Simon. Mental Models, Consistency and
Programming Aptitude. In Proc. Conf. on Australasian Computing
Education - Volume 78, pages 53–61. Australian Computer Society, Inc.,
2008.

[7] C. Bunse. Using Patterns for the Refinement and Translation of UML
Models: A Controlled Experiment. Empirical Softw. Eng., 11(2):227–
267, 2006.

[8] J. Cohen. Statistical Power Analysis for the Behavioral Sciences.
Routledge Academic Press, second edition, 1988.

[9] J. Cohen and P. Cohen. Applied Multiple Regression: Correlation
Analysis for the Behavioral Sciences. Addison Wesley, second edition,
1983.

[10] A. B. Costello and J. W. Osborne. Best Practices in Exploratory
Factor Analysis: Four Recommendations for Getting the Most from your
Analysis. Practical Assessment, Research & Evaluation, 10(7):173–178,
2005.

[11] H. Erdogmus, M. Morisio, and M. Torchiano. On the effectiveness
of the test-first approach to programming. IEEE Trans. Softw. Eng.,
31(3):226–237, 2005.

[12] J. Feigenspan et al. PROPHET: Tool Infrastructure To Support Program
Comprehension Experiments. Int’l Symposium Empirical Software
Engineering and Measurement (ESEM), Poster.

[13] J. Feigenspan et al. Using Background Colors to Support Program
Comprehension in Software Product Lines. In Proc. Int’l Conf. Eval-
uation and Assessment in Software Engineering (EASE), pages 66–75.
Institution of Engineering and Technology, 2011.

[14] E. Figueiredo et al. Evolving Software Product Lines with Aspects:
An Empirical Study on Design Stability. In Proc. Int’l Conf. Software
Engineering (ICSE), pages 261–270. ACM Press, 2008.

[15] C. Goodwin. Research in Psychology: Methods and Design. Wiley
Publishing, Inc., second edition, 1999.

[16] S. Hanenberg, S. Kleinschmager, and M. Josupeit-Walter. Does Aspect-
Oriented Programming Increase the Development Speed for Crosscutting
Code? An Empirical Study. In Proc. Int’l Symposium Empirical Software
Engineering and Measurement (ESEM), pages 156–167. IEEE CS, 2009.

[17] J. Hannay et al. Effects of Personality on Pair Programming. IEEE
Trans. Softw. Eng., 36(1):61–80, 2010.

[18] M. Höst, B. Regnell, and C. Wohlin. Using Students as Subjects – A
Comparative Study of Students and Professionals in Lead-Time Impact
Assessment. Empirical Softw. Eng., 5(3):201–214, 2000.

[19] A. Jedlitschka, M. Ciolkowski, and D. Pfahl. Reporting Experiments
in Software Engineering. In Guide to Advanced Empirical Software
Engineering, pages 201–228. Springer, 2008.

[20] B. Kitchenham and S. Charters. Guidelines for Performing Systematic
Literature Reviews in Software Engineering. Technical Report EBSE
2007-001, 2007.

[21] S. Kleinschmager and S. Hanenberg. How to Rate Programming
Skills in Programming Experiments? A Preliminary, Exploratory, Study
Based on University Marks, Pretests, and Self-Estimation. In Proc.
ACM SIGPLAN Workshop on Evaluation and Usability of Programming
Languages and Tools, pages 15–24. ACM Press, 2011.

[22] M. Lewis-Beck. Applied Regression: An Introduction. Sage Pubications,
1980.

[23] M. Müller. Are Reviews an Alternative to Pair Programming? Empirical
Softw. Eng., 9(4):335–351, 2004.

[24] R. Peterson. Constructing Effective Questionnaires. Sage Publications,
2000.

[25] F. Ricca et al. The Role of Experience and Ability in Comprehension
Tasks Supported by UML Stereotypes. In Proc. Int’l Conf. Software
Engineering (ICSE), pages 375–384. IEEE CS, 2007.

[26] J. Sillito, G. C. Murphy, and K. De Volder. Asking and Answering
Questions during a Programming Change Task. IEEE Trans. Softw.
Eng., 34(4):434–451, 2008.

[27] W. Tichy. Hints for Reviewing Empirical Work in Software Engineering.
Empirical Softw. Eng., 5(4):309–312, 2000.

[28] A. von Mayrhauser and M. Vans. Program Comprehension During
Software Maintenance and Evolution. Computer, 28(8):44–55, 1995.

[29] J. Yellott. Correction for Fast Guessing and the Speed Accuracy Trade-
off in Choice Reaction Time. Journal of Mathematical Psychology,
8:159–199, 1971.


