Measuring Programming Experience

Janet Feigenspan, Christian Kistner,
University of Magdeburg Philipps University Marburg

Abstract—Programming experience is an important confound-
ing parameter in controlled experiments regarding program
comprehension. In literature, ways to measure or control pro-
gramming experience vary. Often, researchers neglect it or do
not specify how they controlled it. We set out to find a well-defined
understanding of programming experience and a way to measure
it. From published comprehension experiments, we extracted
questions that assess programming experience. In a controlled ex-
periment, we compare the answers of 128 students to these ques-
tions with their performance in solving program-comprehension
tasks. We found that self estimation seems to be a reliable way
to measure programming experience. Furthermore, we applied
exploratory factor analysis to extract a model of programming
experience. With our analysis, we initiate a path toward mea-
suring programming experience with a valid and reliable tool,
so that we can control its influence on program comprehension.

I. INTRODUCTION

In software-engineering experiments, program comprehen-
sion is frequently measured, for example, for the evaluation
of programming-language constructs or software-development
tools [3], [7], [13], [16], [26]. Program comprehension is an
internal cognitive process that we cannot observe directly.
Instead, controlled experiments are often conducted, in which
we observe the behavior of subjects and draw conclusions
about their program comprehension.

To conduct controlled experiments, we have to control
confounding parameters, which influence the outcome of an
experiment in addition to the evaluated concept [15]. One
important confounding parameter is programming experience:
The more experienced a subject, the better she understands a
program compared to an inexperienced subject. (Accidentally)
assigning more experienced subjects to one treatment can
seriously bias the results. Hence, programming experience
should always be considered in such kind of experiments.

However, there is no agreed way to measure programming
experience. Instead, researchers use different, sometimes not
specified, measures or do not asses it at all. However, a com-
mon understanding of programming experience can increase
the validity of experiments and helps interpreting results.

Our goal is to evaluate how reliable different ways to mea-
sure programming experience are. To this end, we conducted a
controlled experiment, in which subjects completed a question-
naire that contained questions related to programming experi-
ence based on a literature review. Additionally, subjects solved
programming tasks. Then, we compared the performance in
the programming tasks with the answers in the questionnaire.

As result, we identified two questions as indicator for
programming experience using stepwise regression: Self es-

Jorg Liebig and Sven Apel,

Stefan Hanenberg,

University of Passau University of Duisburg-Essen

timated programming experience compared to class mates
and self estimated experience with logical programming.
Furthermore, we present a five-factor model that describes
programming experience using exploratory factor analysis.
The contributions of this paper are the following:

o Literature review about the state of the art of measuring
and controlling the influence of programming experience.

o A questionnaire that contains the common questions to
measure programming experience.

o Reusable experimental design to evaluate the question-
naire.

o Initial evaluation of this questionnaire with sophomores.

o Proposal toward two relevant questions and a five-factor
model of programming experience.

II. LITERATURE REVIEW

To get an overview of whether and how researchers measure
programming experience, we conducted a literature review
based on the guidelines for systematic literature reviews
provided by Kitchenham and Chartes [20]. Due to space
restrictions, we only give a short summary of the extraction
process and the results. We considered the years 2001 to 2010
of highly ranked conferences and journals in the domain of
(empirical) software engineering and program comprehension:
International Conference on Software Engineering (ICSE),
European Software Engineering Conference/Foundations on
Software Engineering (FSE), International Conference on
Program Comprehension (ICPC)," International Symposium
on Software Engineering and Measurement (ESEM),> Em-
pirical Software Engineering Journal (ESE), Transactions on
Software Engineering (TSE), and Transactions on Software
Engineering and Methodology (TOSEM).

To extract the papers, we read title and abstract of each
paper. If an experiment with human subjects was mentioned,
we included the paper in our selection. If the abstract was
not conclusive, we skimmed the paper and searched for
the keywords (programming) experience, expert, expertise,
professional, subject, and participant, which are typical for
program-comprehension experiments. We extracted 288 (of
2161) papers. We read each paper of our selection and
excluded those papers that evaluated a concept too far away
from program comprehension (e.g., cost estimation of software
projects). When uncertain whether a concept was too far

'ICPC was a workshop until 2005 (IWPC), which we also included.
2ESEM first took place in 2007.

Years V

NliESE== i

B Fse

B TOSEM
BTSE

D ESE

N ESEM
HIcPc
A cse

Supervisor E

NI===
ZEEETITE—%&

0 5 10 15 20 25 30 35 40 45 50

Not controlled V

Not specified V

Fig. 1. Overview of how programming experience is operationalized.

away, we discussed it until we reached an agreement. The
literature-review team consisted of the first author and a
research assistant. When still in doubt, we included the paper
to have a broad overview of the understanding of programming
experience. The final selection consists of 161 papers. An
overview of our initial and final selection of papers is available
at the project’s website (http://fosd.net/PE).

In the selected papers, we found several ways of managing
programming experience, which we divide into 9 categories
(Fig. 1). The categories are not disjoint; when authors com-
bined indicators, the according paper counts for each category.

1) Years: In many papers (47), the years a subject was pro-
gramming at all or programming in a company or certain
language was used to measure programming experience.
For example, Sillito and others assessed the number of
years a subject was programming professionally [26].

2) Education: The education of subjects was used to in-
dicate their experience in 19 of the reviewed papers.
Education includes information such as the level of
education (e.g., undergraduate or graduate student) or
the grades of courses. For example, Ricca and others
recruited undergraduate students as low experience and
graduates as high-experience subjects [25].

3) Self estimation: In twelve experiments, subjects were
asked to estimate their experience themselves. For ex-
ample, Bunse let his subjects estimate their experience
on a five-point scale [7].

4) Unspecified questionnaire: Some authors applied a ques-
tionnaire to assess programming experience. For ex-
ample, Erdogmus and others let subjects fill out a
questionnaire before the experiment [11]. However, it
was not specified what the questionnaire looked like.

5) Size: The size of programs subjects had written was
used as indicator in six papers. For example, Miiller [23]
asked how many lines of code the largest program has
that subjects have implemented.

6) Unspecified pretest: In three experiments, a pretest was
conducted to assess the subjects’ programming expe-
rience. For example, Biffl and Grossmann [5] used a
pretest to create three groups of skill levels (excellent,

medium, little). However, it was not specified in the
papers what the pretest looked like.

7) Supervisor: In two experiments, in which professional
programmers were recruited as subjects, the supervising
manager estimated the experience of subjects [3], [17].

8) Not specified/not controlled: Often, the authors state
that they measured programming experience, but did
not specify how. This was the case in 39 papers. Even
more often (45 papers), programming experience was
not mentioned at all, which may threaten the validity of
the corresponding papers.

To summarize, the measurement of programming experience
is diverse. This could threaten the validity of experiments,
because researchers use their own definition of programming
experience without validating it. Furthermore, conducting meta
analysis on these experiments is difficult, because the influence
of programming experience is not clearly defined, making the
results across different experiments not comparable. To evalu-
ate the measurement of programming experience, we created
a questionnaire based on the results of the literature review.

III. QUESTIONNAIRE

Most measurements of programming experience we found
in literature can be performed as part of a questionnaire. Only
pretest and supervisor estimation require additional effort,
but are also rarely used in our analyzed papers. Hence,
we excluded both categories. Furthermore, we excluded the
category unspecified questionnaire, because the contents of
questionnaires were not specified in our analyzed papers.

We designed a single questionnaire, which includes ques-
tions of the following categories: years, education, self es-
timation, and size. For each category, we selected multiple
questions we found in literature. Additionally, we added ques-
tions that we found in previous experiments to be related to
programming experience. This way, we aim at having a more
exhaustive set of indicators for programming experience and,
consequently, a better definition of programming experience.
Some questions are specific to students; when working with
different subjects (e.g., experts), they need to be adapted.

Our goal is to evaluate which questions from which cat-
egories have the highest prediction power for programming
experience. In the long run, we plan to evolve our question-
naire (by removing questions with little prediction power, and
potentially adding others) into a standard questionnaire.

In Table I, we summarize our questionnaire. We also show
the scale of the answers, that is how subjects should answer the
questions. In column Abbreviation, we show the abbreviation
of each question, which we use in the remainder. The version
of the questionnaire we used in our experiment is available at
the project’s website. Next, we explain each question in detail.

A. Years

Questions of this category mostly referred to how many
years subjects were programming in general and profession-
ally. Programming in general includes the time when sub-
jects started programming, which includes hello-world-like

Source Question Scale Abbreviation
Self On a scale from 1 to 10, how do you estimate your programming experience? 1: very inexperienced to s.PE
estimation 10: very experienced
How do you estimate your programming experience compared to experts with 1: very inexperienced to s.Experts
20 years of practical experience? 5: very experienced
How do you estimate your programming experience compared to your class 1: very inexperienced to s.ClassMates
mates? 5: very experienced
How experienced are you with the following languages: Java/C/Haskell/Prolog 1: very inexperienced to s.Java/s.C/s.Haskell/
5: very experienced s.Prolog
How many additional languages do you know (medium experience or better)? Integer s.NumLanguages
How experienced are you with the following programming paradigms: 1: very inexperienced to s.Functional/s.Imperative/
functional/imperative/logical/object-oriented programming? 5: very experienced s.Logical/s.ObjectOriented
Years For how many years have you been programming? Integer y.Prog
For how many years have you been programming for larger software projects, Integer y.ProgProf
e.g., in a company?
Education What year did you enroll at university? Integer e.Years
How many courses did you take in which you had to implement source code? Integer e.Courses
Size How large were the professional projects typically? NA, <900, 900-40000, z.Size
>40000
Other How old are you? Integer 0.Age

Integer: Answer is an integer; Nominal: Answer is a string. The abbreviation of each question encodes also the category to which it belongs.

TABLE I

OVERVIEW OF QUESTIONS TO ASSESS PROGRAMMING-EXPERIENCE.

programs. Professional programming describes when subjects
earned money for programming, which typically requires a
certain experience level. In our questionnaire, we asked both
questions. We believe that both questions are an indicator
for programming experience, because the longer someone is
programming, the more source code she implemented and,
thus, the higher her programming experience should be.

B. Education

This category contains questions that assess educational
aspects. We asked subjects to state the number of courses
they took in which they implemented source code and the
year in which they enrolled (recoded into number of years a
subject has been enrolled). The number of courses roughly
indicates how much source code subjects had implemented.
With the years a subject is studying, we get an indicator of
the education level: The longer a subject has been studying, the
more experience she should have gained through her studies.

C. Self Estimation

In this category, we asked subjects to estimate their own
experience level. With the first question, we asked subjects to
estimate their programming experience on a scale from 1 to 10.
We did not clarify what we mean by programming experience,
but let subjects use their intuitive definition of programming
experience to not use a definition that felt unnatural. We used
a 10-point scale to have a fine-grained estimation. In the
remaining questions, we used a five-point scale, because we
think that a coarse-grained estimation is better for subjects to
estimate their experience in these more specific questions.

Next, we asked subjects to relate their programming experi-
ence to experienced programmers and their class mates to let
subjects think more thoroughly about their level of experience.

Additionally, we asked subjects how familiar they are with
certain programming languages. We chose Java, C, Haskell,
and Prolog, because these are common and are taught at
the universities our subjects were enrolled at. The more
programming languages developers are familiar with, the more
they have learned about programming in general and their
experience should be larger. Furthermore, experience with the
underlying programming language of the experiment can be
assessed. Beyond that, we asked subjects to list the number
of programming languages in which they are experienced at
least to a medium level. This way, we can assess familiarity
with many languages without listing each of them. The same
counts for familiarity with different programming paradigms.

D. Size

We asked subjects with professional experience about the
size of their projects. We used the categorization into small,
medium, and large based on the lines of code according to
van Mayrhauser and Vans [28].

In addition, we also included the age of subjects in the
questionnaire. This way, we aim at having a more exhaustive
understanding of programming experience.

IV. EMPIRICAL VALIDATION

Constructing and validating a questionnaire is a long and
tedious endeavor that requires several (replicated) experi-
ments [24]. In this paper, we start this process.

There are different ways to validate a questionnaire. We
could recruit programming experts and novices as subjects and
compare their answers in the questionnaire. Since there is a
difference in the experience between both groups, we should
also see a difference in the questionnaire. Another way is to
compare the answers in the questionnaire with performance in

tasks that are related to programming experience. The benefit
is that we do not need different groups of subjects; one group
is sufficient. We used the latter way with a group of students,
because we found in our review that they are often recruited
as subjects in software-engineering experiments. Hence, they
represent an important sample. Furthermore, students can be
comparable to experts under certain conditions [18], [27].
Since we recruit students, we expect only little variation for
some questions (e.g., 0.Age). We asked these questions any-

1
2
3
4

W

—_
[sENoRe RN NeN

way to have a more exhaustive data set. Of course, further ex- |4
periments with different groups of subjects (e.g., professional 12

programmers) are necessary. To this end, our experimenta
design can be reused, which we plan to do in future work.

113

14

To present our experiment, we use the guidelines suggested 15

by Jedlitschka and Ciolkowski [19]. For brevity, we describe '©

only necessary details to understand our experiment. More
information (e.g., tasks, overview of statistical analysis) is
available at the project’s website.

A. Objective

With our experiment, we aim at evaluating how the ques-
tions relate to programming experience. To this end, we need
an indicator for programming experience to which we can
compare the answers of our programming-experience ques-
tionnaire. Hence, we designed programming tasks that subjects
should solve in a given time. For each task, we measure
whether subjects solve a task correctly and how long they
need to complete a task. The first underlying assumption is that
the more experienced subjects are, the more tasks they solve
correctly. Since experienced subjects have seen more source
code compared to inexperienced subjects, they should have
less trouble in analyzing what source code does and, hence,
solve more tasks correctly. The second assumption is that ex-
perienced subjects are faster in analyzing source code, because
they have done it more often and know better what to look for.

As we are starting the validation, we have no hypotheses
about how our questions relate to the performance in the
programming tasks.

B. Material

We designed 10 program-comprehension tasks. We gave
subjects source code and asked what executing this code would
print. Furthermore, subjects should explain what the source
code is doing. In Figure 2, we show the source code of the
first task to give an impression (all other tasks are available
on the project’s website). The source code sorts an array of
numbers, so the correct answer is 5, 7, /4. The remaining
tasks were roughly similar: Two tasks were about a stack, five
about a linked list, one involved command-line parameters, and
the last was a bug-fixing task. An answer was correct when it
was result of running the program, ignoring whitespace. When
an answer diverged from the expected result, a programming
expert looked at subjects’ explanation of the source code and
decided whether the answer could be counted as correct.

To match the average experience level of undergraduates
(who we recruited as subjects), we selected typical algorithms

public class Classl {
public static void main(String[] args) {
int arrayl[] = {14,5,7};
for (int counterl = 0; counterl < array.length;
counterl++) |
for (int counter2 = counterl; counter2 > 0;
counter2--) {
if (array[counter2 - 1] > array[counter2]) {
int variablel = arrayl[counter2];
array|[counter2] = array[counter2 - 1];
array[counter2 - 1] = variablel;
}
}
}
for (int counter3 = 0; counter3 < array.length;

counter3++)
System.out.println (array[counter3]);

}

Fig. 2. Source code for the first task.

presented in introductory programming lectures. When repli-
cating this experiment with programming experts, it might
be necessary to adjust the tasks to match the high level
of experience. Only the last two tasks required a higher
experience level. In Task 9, we used command-line parameters,
which are not typically taught at sophomore level. In the
last task, we use source code of MobileMedia, a software
for manipulating multi-media data on mobile devices [14]. It
consists of 2,800 lines of code in 21 classes. We included the
last two tasks to identify highly experienced subjects among
sophomores, since some students start to program before there
studies. We expected that only highly experienced subjects
should be able to complete this task. All source code was in
Java, the language that subjects were most familiar with.

We had 10 tasks so that only experienced subjects would
be able to complete all tasks in the given time, which we
confirmed in a pretest with PhD students from the University
of Magdeburg. This way, we can better differentiate between
high and low experienced subjects. To make sure that subjects
are not disappointed with their performance in the experiment,
we explained that they would not be able to solve all tasks, but
should simply proceed as far as possible within given time.

To present the questionnaire, tasks, and source code, we
used our tool infrastructure PROPHET [12]. It lets subjects
enter answers, logs the time subjects spend on each task, and
logs the behavior of subjects (e.g., opening files). This way,
we control the influence of subjects’ familiarity with an IDE.
There may be other confounding parameters; our sample is
large enough to control their influence.

C. Subjects

Subjects came from the University of Passau (27), Philipps
University Marburg (31), and University of Magdeburg (70),
so we had 128 subjects in total. All universities are located in
Germany. Subjects from Passau and Marburg were in the end
of their third semester and attended a course on software en-
gineering. Subjects from Magdeburg were at the beginning of

their fourth semester and from different courses. The level of
education of all subjects was comparable, because no courses
took place between semesters and subject had to complete
similar courses at all universities. All subjects were offered
different kinds of bonus points for their course (e.g., omitting
one homework assignment) for participating in the experiment
independent of their performance. All subjects participated
voluntarily, were aware that they took part in an experiment,
and could quit anytime. Data was logged anonymously.

Since, we recruited subjects from different universities, we
actually have different samples. However, only the question
s.ClassMates is specific for each university, because subjects
can only compare themselves to the students of their university.
A Kruskal-Wallis test for s.ClassMates revealed no significant
differences between the three universities (X2 =1.275, df = 2,
p = 0.529) [1]. Furthermore, we selected the tasks to be typical
examples of what students learn in introductory programming
courses at their universities. Hence, we can treat our three
samples as one sample.

D. Execution

The experiments took place in January and April 2011 at
the Universities of Passau, Marburg, and Magdeburg as part
of a regular lecture session. First, we let subjects complete the
programming-experience questionnaire without knowing its
specific purpose. Then, we gave subjects an introduction about
the general purpose and proceeding of the experiment, without
revealing our goal. The introduction was given by the same
experimenter each time. After all questions were answered,
subjects worked on the tasks on their own. Since we had time
constraints, the time limit for the experiment was set to 40
minutes. After time ran out, subjects were allowed to finish
the task they were currently working on. Two to three experi-
menters checked that subjects worked as planned. After the ex-
periment, we revealed subjects the purpose of this experiment.

E. Deviation

We had a technical error for the presentation of the
programming-experience questionnaire, such that we could not
measure s.PE for all subjects. Hence, we only have the answer
of 70 out of 128 subjects for this question.

V. EXPERIMENT RESULTS

First, we describe descriptive statistics to get an overview
of our data. Second, we present how each question correlates
with the performance in the tasks. This way, we get an
impression of how important each question is as indicator for
programming experience in our sample.

A. Means and Standard Deviations

In Table II, we give an overview of how subjects solved the
tasks. Column Mean contains the average time in minutes of
subjects who completed a task. Since not all subjects finished
all tasks, they cannot be interpreted across tasks. We discuss
the most important values. Task 10 took the longest time to
complete (on average, 9.6 minutes). This is caused by the

Response time

Variable Distribution Mean N Correct
Task 1 r-[I-- 4.44 124 70
Task 2 -+ 3.65 123 90
Task 3 F-[--- 5.02 121 97
Task 4 [Eay 6.17 117 22
Task 5 - 4.06 118 46
Task 6 - 472 111 40
Task 7 - 234 92 31
Task 8 - 4.1 82 69
Task 9 HI-+ 1.94 78 11
Task 10 (A B 9.64 30 22
1 1T T T 1

N: number of subjects who completed this task;
Correct: number of subjects with correct solution.

TABLE II
OVERVIEW OF RESPONSE TIME FOR EACH TASK.

large underlying size of the source code for the last task with
over 2000 lines of code. To solve Task 9, subjects needed
on average 1.9 minutes; most likely, because its source code
consisted of only 10 lines. Furthermore, only 11 subjects
solved it correctly. To solve this task, subjects must be familiar
with command-line parameters, which is not typical for the
average sophomore. Considering the correctness of Task 4,
we see that only 22 subjects solved this task correctly. In this
task, elements were added to an initially empty linked list,
such that the list is sorted in a descending order after the
insertion. In most of the wrong answers, we found that the
order of the elements was wrong. We believe that subjects
did not analyze the insert algorithm thoroughly enough and
assumed an ascending order of elements.

In Fig. 3, we show the number of correctly solved tasks
per subject. As we expected, none of our subjects solved 9
or 10 tasks correctly. (cf. Section IV-B). Especially the last
two tasks (Task 9: command-line parameters; Task 10: 2,800
lines of code) required an experience level beyond that of
sophomores. More than half of the students (72) solved two to
four tasks correctly. Taking into account the time constraints
(40 minutes to solve 10 tasks), it is not surprising that the
number of tasks that a student solved correctly is rather low.

In Table III, we show the answers subjects gave in our
questionnaire. The median for s.PE varies between 2 and
3, which we would expect from sophomores. In general,
subjects felt very inexperienced with logical programming and
experienced with object-oriented programming. The median of
how long subjects are programming is 4 years, but only few
subjects said they were programming for more then 10 years.
Although subjects took a sophomore course, some subjects
were enrolled for more than 3 years,? which could also explain
why some subjects completed numerous courses in which they

3The German system allows subjects to take courses in somewhat flexible
order and timing.

25

20
|

Frequency
15

10

01 2 3 456 7 8

Number of correct answers

Fig. 3. Frequencies of number of correct answers.

Distribution N

R o I e 70
rr— . 126
S s N i 127
4 sJava [T 1 124
5 sC e B 127
6 s.Haskell — = 128
7

8

No. Question

1 s.PE
2 s.Experts
3 s.ClassMates

s.Prolog Cr—__ 128
s.NumLanguages 0L 1= 6 118

9 s.Functional = = 127
10 s.Imperative =1 128
11 s.Logical L 126
12 s.ObjectOriented - i 127

13 y.Prog 0 k-1 25 123

14 y.ProgProf o0+ 7 127

15 e.Years 0 3+ 9 126

16 e.Courses o H{IF- 20 123

17 o.Size L1l — 128

18 o0.Age 19 -+ 40 128
TABLE III

OVERVIEW OF ANSWERS IN QUESTIONNAIRE.

had to implement source code.

B. Correlations

In Table IV, we give an overview of the correlation of the
number of correct answers with the answers of the question-
naire. Since we correlate ordinal data, we use the Spearman
rank correlation [1]. For about half of the questions of self
estimation, we obtain small to strong correlations.* The highest
correlation with number of correct answer has s.PE. The low-
est significant correlation is with s.NumLanguages. Regarding
y.Prog and y.ProgProf, we have medium correlations with the
number of correct answers. E.Years does not correlate with
the number of correct answers. For the remaining questions,
we do not observe significant correlations.

For completeness, we show the correlations of response time
with each of the questions of our questionnaire in Table V.

4Small: +0.1 to +0.3; medium: +0.3 to +0.5; strong: +0.5 to £1 [8].

No. Question P N
1 s.PE .539 70
2 s.Experts 292 126
3 s.ClassMates 403 127
4 sJava 271 124
5 s.C .057 127
6 s.Hasekll 252 128
7 s.Prolog .186 128
8 s.NumLanguages 182 118
9 s.Functional 238 127

10 s.Imperative 244 128
11 s.Logical 128 126
12 s.0ObjectOriented 354 127
13 y.Prog .359 123
14 y.ProgProf .004 127
15 e.Years -.058 126
16 e.Courses 135 123
17 z.Size -.108 128
18 o.Age -.116 128

p: Spearman correlation; N: number of subjects;
gray cells denote significant correlations (p < .05).

TABLE IV
SPEARMAN CORRELATIONS OF NUMBER OF CORRECT ANSWERS WITH
ANSWERS IN QUESTIONNAIRE.

Only 23 correlations, of 180, are significant, which is in the
range of coincidence, given the common « level of 0.05. Since
there are so many correlations, a meaningful interpretation
is impossible without further analysis, for example a factor
analysis. However, such analysis typically requires a large
number of subjects. Since we have a decreasing number of
subjects with each task, we leave analyzing the response times
for future experiments.

VI. EXPLORATORY ANALYSIS

In this section, we explore the data. For this analysis, we
excluded question s.PE, because only 70 subjects answered
this question (cf. Section IV-E). Alternatively, we could have
removed subjects who did not answer this question from the
analysis, but this would have made our sample too small for
the exploratory analysis. Furthermore, we only use the number
of correct answers as indicator for program comprehension,
but not time, since only few subjects completed all tasks. We
decided not to compute the average response time for a task or
to analyze the response times for each task, because that would
be too inaccurate. Furthermore, we would have to compute
efficiency measure to deal with wrong answers [29].

For exploration, we use stepwise regression and exploratory
factor analysis. Both approaches are standard in psychology,
but rarely used in software-engineering research. Therefore,
we start each section with an overview of the methods, before
we present and interpret the results.

A. Stepwise Regression

Overview

So, which questions are the best indicators for programming
experience? The first obvious selection criterion is to include
all questions that have at least a medium correlation (> .30)

No. Question Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10 Number of subjects
1 s.PE -279 -417 -.042 .004 -.002 016 014 -.182 071 .085 68 — 27
2 s.Experts -300 -.177 047 -.026 006 -.075 -217 -.004 206 131 122 - 40
3 s.ClassMates -.189 -401 -084 -065 -053 -059 -163 -.061 .161 .100 123 — 40
4 s.Java 029 -.066 -.154 -.022 -.066 003 -.040 145 -170 -.222 105 - 34
5 s.C - 175 -124 018 .027 1260 -108 -.056 -.052 .043 .108 123 - 40
6 s.Haskell -171 -109 -144 -113 -014 -216 -153 -.183 .019 158 124 — 40
7 s.Prolog -174 -141 -079 -104 -027 -.039 076 -239 -.047 .146 124 — 40
8 s.NumLanguages -295 -339 -131 -121 -027 -103 -035 -.090 232 .168 115 - 34
9 s.Functional -148 -150 -150 -004 -017 -204 -120 -217 .027 175 123 - 40
10 s.Imperative -.283 331 -.033 -.089 -06 -129 -296 -.156 126 .043 124 — 40
11 s.Logical -209 -105 -158 -136 -022 -014 058 -257 -.191 .108 122 - 40
12 s.ObjectOriented -084 -232 -.008 012 -.093 -.034 025 -.060 156 .082 123 - 40
13 y.Prog -241 -379 -144 -071 010 -113 -258 -.159 273 180 120 - 38
14 y.ProgProf =217 -19% -012 -119 -130 071 =274 -.022 .044 -.010 123 - 39
15 e.Years -.032 .001 018 -.152 .059 047 -.119 037 -.092 -.173 122 - 40
16 e.Courses -146 -088 -040 -.062 071 028 -.053 -.004 .268 .058 120 - 38
17 z.Size -155 -160 -057 -.134 .059 003 -.201 .046 .000 -.023 124 — 40
18 o.Age .036 .014 .110 .082 131 102 -.081 .090 .059 .010 124 — 40
Gray cells denote significant correlations (p < .05).
TABLE V

SPEARMAN CORRELATIONS OF RESPONSE TIMES FOR EACH TASK WITH ANSWERS IN QUESTIONNAIRE.

with the number of correctly solved task, because they are typ-
ically considered relevant. However, the questions themselves
might correlate with each other. For example, the s.ClassMates
correlates with s.ObjectOriented with 0.552. Hence, we can
assume both questions are not independent from each other. If
we used both questions as indicator, we would overestimate the
relationship of both questions with programming experience,
that is we would count the common part of both questions
twice, although we should count it only once.

To account for the correlations between questions, we use
stepwise regression [22]. Stepwise regression builds a model
of the influence of the questions on the number of correct
answers in a stepwise manner. It starts by including the
question with the highest correlation, which, in our case, is
s.ClassMates. Then, it considers the question with the next
highest correlation, which is y.Prof. Using this question, it
computes the partial correlation with the number of correct
answers, describing the correlation of two variables cleaned
from the influence of a third variable [9]. Thus, the correlation
of y.Prog with the number of correct answers, cleaned from
the influence of s.ClassMates, is computed. If this cleaned
correlation is high enough, the question is included, else it
is excluded. The goal is to include questions with a high
correlation with the number of correct answers, such that as
few questions as possible are selected to have a model as
parsimonious as possible. This is repeated with all questions
of the questionnaire.

Results and Interpretation

In Table VI, we show the results for our questionnaire.
With stepwise regression (specifically, we used stepwise as
inclusion method), we extracted two questions: Experience
with logical programming (s.Logical) and self-estimated ex-

Question Beta t p

s.ClassMates .441 3.219 .002

s.Logical 286 2.241 .030
TABLE VI

RESULTING MODEL OF STEPWISE REGRESSION.

perience compared to class mates (s.ClassMates). The higher
the Beta value, the larger the influence of a question on the
number of correctly solved tasks. The model is significant
(Fo45 = 8.472,p < .002) and the adjusted R? is 0.241,
meaning that we explain 24.1 % of the variance in the number
of correct answers with our model (explaining the meaning of
the values exceeds the scope of this paper; see [22]).

Hence, the result of the stepwise-regression algorithm is
that the questions s.ClassMates and s.Logical contribute most
to the number of correct answers: The higher subjects estimate
their experience compared to class mates and their experience
with logical programming, the more tasks they solve correctly.
We believe that stepwise regression extracted s.ClassMates,
and not s.Experts, because we recruited students as subjects
and the tasks are taken from introductory programming lec-
tures. Hence, if a subject estimates her experience better than
her class mates, she should be better in solving the tasks.
However, we need further research to be sure about that.

Why was s.Logical extracted and not s.Java, which is closer
to our experiment? We believe that the reason is that our
subjects learn Java as one of their first programming language
and feel somewhat confident with it. In contrast, learning a
logical programming language is only a minor part of the
curriculum of all three universities. Hence, if students estimate
that they are familiar with logical programming, they may have

an interest in learning other ways of programming and pursue
it, which increases their programming experience.

The model received from stepwise regression describes Beta
values, which are weights for each question. For example,
if a subject estimates a 4 in s.ClassMates (more experienced
than class mates) and a 2 in s.Logical (unfamiliar with logical
programming), the resulting value for programming experience
is 0.441 %44 0.286 x 2 = 2.336 (we omitted a constant to add
as part of the model for simplicity).

Hence, we have identified two questions that explain 24.1 %
of the variance of the number of correct answers. We could
include more questions to improve the amount of explained
variance, but none of the questions contribute a significant
amount of variance. Since a model should be parsimonious,
stepwise regression excluded all other questions. Thus, for our
sample, these two questions provide the best indicators for
programming experience.

B. Exploratory Factor Analysis
Overview

Furthermore, to look for a pattern in our questions, we
analyzed whether questions in our questionnaire correlate. To
this end, we conducted an exploratory factor analysis [2]. The
goal is to reduce a number of observed variables to a small
number of underlying latent variables or factors (i.e., variables
that cannot be observed directly). To this end, the correlations
of the observed variables are analyzed to identify groups of
variables that correlate among each other. For example, the
experience with Haskell and functional programming are very
similar and might be explained by a common underlying
factor. The result of an exploratory factor analysis is a number
of factors that summarize observed variables into groups.
However, the meaning of the factors is not a result of the
analysis, but relies on interpretation.

Results and Interpretation

In Table VII, we show the results of our exploratory factor
analysis. The numbers in the table denote correlations or factor
loadings of the variables in our questionnaire with identified
factors. By convention, factor loadings that have an absolute of
smaller than .32 are omitted, because they are too small to be
relevant [10]. There are main loadings, which are the highest
factor loading of one variable, and cross loadings, which are
all other factor loadings of a variable that have an absolute of
more then .32. The higher the main loading and the smaller
the number of cross loadings, the more unambiguously the
influence of one factor on a variable is. If a variable has many
cross loadings, it is unclear what it exactly measures and more
investigations on this variable are necessary in subsequent
experiments.

The first factor of our analysis summarizes the variables
s.C, s.ObjectOriented, s.Imperative, s.Experts, and s.Java. This
means that these variables have a high correlation amongst
each other and can be described by this factor. Except for
s.Experts, this seems to make sense, because C and Java
and the corresponding paradigms are similar and often taught

Variable Factor 1 Factor 2 Factor 3 Factor 4 Factor 5
s.C 723

s.ObjectOriented .700 403
s.Imperative .673 333 303

s.Experts .600 326

s.Java .540 427

y.ProgProf .859

z.Size 764

s.NumLanguages 335 489 403
s.ClassMates 449 403 424
s.Functional .880

s.Haskell 879

e.Courses 195

e.Years -.460 573

y.Prog 493 554

s.Logical 905
s.Prolog .883

Gray cells denote main factor loadings.

TABLE VII
FACTOR LOADINGS OF VARIABLES IN QUESTIONNAIRE.

at universities. We conjecture that s.Experts also loads on
this factor, because it explains the confidence level with
mainstream programming languages. We can name this factor
experience with mainstream languages.

The second factor contains the variables y.ProgProf, z.Size,
s.NumLanguages, and s.ClassMates. These variables fit to-
gether well, because the longer a subject is programming
professionally, the more likely she has worked with large
projects and the more language she has encountered. Addi-
tionally, since it is not typical for second-year undergraduates
to program professionally, subjects that have programmed pro-
fessionally estimate their experience higher compared to their
class mates. We can name this factor professional experience.

Factor three and five group s.Functional/s.Haskell and
s.Logical/s.Prolog in an intuitive way. Hence, we name these
factors functional experience and logical experience.

The fourth factor summarizes the variables e.Courses,
e.Years, and y.Prog, which are all related to the subject’s
education. We can name this factor experience from education.

Now, we have to take a look at the cross loadings. As an
example, we look at e.Years, which also loads on functional
experience. This means that part of this variable can also be
explained by this factor. Unfortunately, we cannot unambigu-
ously define to which factor this variable belongs best, we
can only state e.Years has a higher loading of factor experience
from education. This could also mean that we need two factors
to explain this variable. However, with a factor analysis, we
are looking for a parsimonious model without having more
relationships than necessary.

To summarize the exploratory factor analysis, we extracted
five factors: experience with mainstream languages, profes-
sional experience, functional experience, experience from ed-
ucation, and logical experience that summarize the questions
of our questionnaire in our sample.

VII. THREATS TO VALIDITY

A first threat to validity is caused by the tasks. With
other tasks, results may look different. However, we selected
tasks representative for the experience level of undergraduates
and with varying difficulty. Thus, more experienced subjects
should perform better than less experienced subjects. Hence,
we argue that our task selection is appropriate for our purpose.

Another threat is that we did not compare self estimation
with all identified ways to measure programming experience.
For practical reasons, we neglected pretests and supervisor
assessment in this work, because this would have required too
much effort. Despite those, we considered all other identified
ways. Thus, we believe we controlled this threat sufficiently;
in future work, pretest and supervisor can be compared to self
estimation.

The major threat to external validity is our sample selection:
We only recruited undergraduate students. Our results can be
interpreted only in the context of subjects with similar expe-
rience, because our questions may have a different meanings
for professionals. For example, s.ClassMates is not suitable
for professional programmers, because they do not spent
their time with their class mates, but with their colleagues.
We could ask professional programmers to estimate their
experience compared to their colleagues, but it is also not
clear whether it has the same meaning as asking students
to estimate their experience compared to their class mates.
When applying the results to professional programmers, other
indicators, such as the years of programming (professionally)
may be a better indicator than self estimation. However, since
most experiments are conducted with students, our results are
useful for many researchers.

Furthermore, the results of our exploratory analysis cannot
be generalized without confirmatory analysis based on further
experiments. If we used the same data set, we could not show
that our model is valid in general, but for our specific data set.
However, confirmatory analysis requires considerable effort,
because we have to conduct another experiment. Furthermore,
we need a large sample, depending on the complexity of the
model. In our case, we would need at least 80 subjects to
confirm our model (i.e., the five factors with the different
questions that load on them) [4].

VIII. RECOMMENDATIONS

So far, we have combined different questions from different
categories found in literature into a single questionnaire.
We conducted a controlled experiment with undergraduate
students and explored our data for initial validation. What have
we learned in terms of recommendations for future research?

First, we showed that in literature, there are many different
ways to measure and control programming experience. Fur-
thermore, in many cases, the methods are not reported. We
recommend to mix questions from different categories into
a single questionnaire, of which we presented a draft. We
recommend to report precisely which measure was used and
how groups have been formed according to it. This helps to
judge validity and compare and interpret multiple studies.

Second, we can recommend self estimation questions to
judge programming experience among undergraduate students.
In our experiment, several self-estimation questions correlated
to a strong to medium degree (s.PE: .539; s.ClassMates: .403;
s.ObjectOriented: .354) with the number of correct answers —
much more than questions regarding the categories education,
size, and other. Among undergraduate students, answers to
questions from the latter categories differ only slightly. The
only medium correlation beyond self estimation is y.Prog
(.359), the number of years a subject is programming at all.

Third, if resource constraints allow it, researchers can com-
bine multiple questions, of which some serve as control ques-
tions to see whether subjects answered honestly, which is cus-
tom in designing questionnaires [24]. For example, in our case,
when using s.PE, s.ClassMates and s.ObjectOriented are suit-
able as control questions, since they both show a strong corre-
lation with s.PE (s.ClassMates: .625; s.ObjectOriented: .696).

Fourth, since correlations between questions confound the
strength of a question as indicator for programming experi-
ence (cf. Section VI-A), we extracted two relevant questions,
s.ClassMates and s.Logical, that together serve as best indica-
tor to predict the number of correct answers in our experiment
(each question can be supplied with control questions).

Fifth, our exploratory analysis indicates five factors for
programming experience that can serve as starting point for
developing a theory on programming experience. The results
do not help building a survey right away, but with additional
confirmation, such as confirmatory factor analysis on other
data sets, they can help understanding how programming
experience works and which kinds of questions query relevant
parameters. However, to that end, there is still a long way.

Overall note that while our literature review and the con-
struction of the questionnaire are intended for measuring
programming experience in general, we only validated it for
a specific setting: predicting programming experience among
a homogeneous group of undergraduate students. This way,
we achieve high internal validity, because our results are not
confounded by different backgrounds of the subjects. How-
ever, our recommendation remain limited to this setting. We
conjecture that with experienced programmers, questions from
the categories education, years, and size have more predictive
power. Whether self estimation remains a good indicator in
this setting remains an open question for future work.

We plan to validate the questionnaire with other groups
in further experiments. In this validation, we will reuse the
experimental design and methodology developed in this work.

IX. RELATED WORK

In general, related work to ours evaluated possible criteria
that can be used to categorize subjects upfront. For exam-
ple, Kleinschmager and Hanenberg analyzed the influence of
self estimation, university grades, and pre-tests on historical
data for programming experiments [21]. To this end, they
analyzed the data of two previously conducted programming
experiments with students as subjects. They compared self es-
timation, university grades, and pretests with the performance

of subjects in the experiments and found that self estimation
was not worse than university grades or pre-tests in order to
categorize subjects. These results complement ours, as we did
not look into pretests and grades.

Host and others analyze the suitability of students as sub-
jects [18]. The authors compared the performance of students
with the performance of professional software developers for
non-trivial tasks regarding judgment about factors affecting
the lead-time of software-development projects. They found
no differences between groups. Thus, classification of subjects
had no effect on their performance.

Bornat and others used a pre-test to categorize god and bad
novice programmers [6]. It relates to our work, in that we
also aim at measuring good and bad programmers, with the
difference that we seek a simple-to-apply questionnaire.

X. CONCLUSION

There is a strong need to assess programming experience in
an easy and cost-efficient way. Often, researchers do not spec-
ify their understanding of programming experience or do not
consider it at all, which threatens the validity of experiments
and makes interpretations across experiments difficult.

In a controlled experiment, we evaluated the measurement
of programming experience found in literature. We found
that within groups of undergraduate students, self estimation
indicates programming experience well. Specifically, we ex-
tracted programming experience compared to class mates and
experience with logical programming as relevant questions. In
conjunction with control questions, such programming expe-
rience in general or experience with Prolog, they can be used
as indicator for programming experience. Furthermore, we
extracted a five-factor model with the factors experience with
mainstream languages, professional experience, functional ex-
perience, experience from education, logical experience. The
next step are confirmatory analyses, in which we aim at
confirming the results of our experiment with different groups
of subjects or different tasks or different ways to measure
programming experience. To this end, we and other research
groups can reuse our experimental design.

ACKNOWLEDGMENTS

Feigenspan’s work is supported by BMBF project
01IM10002B, Kistner’s work by ERC grant #203099, and
Apel’s work by DFG projects #AP 206/2, #AP 206/4, and
LE 912/13. We thank Jana Schumann for her support in the
literature study and all experimenters for their support in
setting up and conducting the experiment.

REFERENCES

[1] T. Anderson and J. Finn. The New Statistical Analysis of Data. Springer,
1996.

[2] T. W. Anderson and H. Rubin. Statistical Inference in Factor Analysis. In
Proc. Berkeley Symposium on Mathematical Statistics and Probability,
Volume 5, pages 111-150. University of California Press, 1956.

[3] E. Arisholm. Evaluating Pair Programming with Respect to System
Complexity and Programmer Expertise. [EEE Trans. Softw. Eng.,
33(2):65-86, 2007.

[4] P. Bentler. Practical Issues in Structural Modeling. Sociological Methods
Research, 16(1):78-117, 1987.

[5]

[6]

[7]

[8]
[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]
[24]

[25]

[26]

[27]
(28]

[29]

S. Biffl and W. Grossmann. Evaluating the Accuracy of Defect
Estimation Models Based on Inspection Data from Two Inspection
Cycles. In Proc. Int’l Conf. Software Engineering (ICSE), pages 145—
154. IEEE CS, 2001.

R. Bornat, S. Dehnadi, and Simon. Mental Models, Consistency and
Programming Aptitude. In Proc. Conf. on Australasian Computing
Education - Volume 78, pages 53—61. Australian Computer Society, Inc.,
2008.

C. Bunse. Using Patterns for the Refinement and Translation of UML
Models: A Controlled Experiment. Empirical Softw. Eng., 11(2):227-
267, 2006.

J. Cohen. Statistical Power Analysis for the Behavioral Sciences.
Routledge Academic Press, second edition, 1988.

J. Cohen and P. Cohen. Applied Multiple Regression: Correlation
Analysis for the Behavioral Sciences. Addison Wesley, second edition,
1983.

A. B. Costello and J. W. Osborne. Best Practices in Exploratory
Factor Analysis: Four Recommendations for Getting the Most from your
Analysis. Practical Assessment, Research & Evaluation, 10(7):173-178,
2005.

H. Erdogmus, M. Morisio, and M. Torchiano. On the effectiveness
of the test-first approach to programming. [EEE Trans. Softw. Eng.,
31(3):226-237, 2005.

J. Feigenspan et al. PROPHET: Tool Infrastructure To Support Program
Comprehension Experiments. Int’l Symposium Empirical Software
Engineering and Measurement (ESEM), Poster.

J. Feigenspan et al. Using Background Colors to Support Program
Comprehension in Software Product Lines. In Proc. Int’l Conf. Eval-
uation and Assessment in Software Engineering (EASE), pages 66-75.
Institution of Engineering and Technology, 2011.

E. Figueiredo et al. Evolving Software Product Lines with Aspects:
An Empirical Study on Design Stability. In Proc. Int’l Conf. Software
Engineering (ICSE), pages 261-270. ACM Press, 2008.

C. Goodwin. Research in Psychology: Methods and Design.
Publishing, Inc., second edition, 1999.

S. Hanenberg, S. Kleinschmager, and M. Josupeit-Walter. Does Aspect-
Oriented Programming Increase the Development Speed for Crosscutting
Code? An Empirical Study. In Proc. Int’l Symposium Empirical Software
Engineering and Measurement (ESEM), pages 156-167. IEEE CS, 2009.
J. Hannay et al. Effects of Personality on Pair Programming. [EEE
Trans. Softw. Eng., 36(1):61-80, 2010.

M. Host, B. Regnell, and C. Wohlin. Using Students as Subjects — A
Comparative Study of Students and Professionals in Lead-Time Impact
Assessment. Empirical Softw. Eng., 5(3):201-214, 2000.

A. Jedlitschka, M. Ciolkowski, and D. Pfahl. Reporting Experiments
in Software Engineering. In Guide to Advanced Empirical Software
Engineering, pages 201-228. Springer, 2008.

B. Kitchenham and S. Charters. Guidelines for Performing Systematic
Literature Reviews in Software Engineering. Technical Report EBSE
2007-001, 2007.

S. Kleinschmager and S. Hanenberg. How to Rate Programming
Skills in Programming Experiments? A Preliminary, Exploratory, Study
Based on University Marks, Pretests, and Self-Estimation. In Proc.
ACM SIGPLAN Workshop on Evaluation and Usability of Programming
Languages and Tools, pages 15-24. ACM Press, 2011.

M. Lewis-Beck. Applied Regression: An Introduction. Sage Pubications,
1980.

M. Miiller. Are Reviews an Alternative to Pair Programming? Empirical
Softw. Eng., 9(4):335-351, 2004.

R. Peterson. Constructing Effective Questionnaires. Sage Publications,
2000.

F. Ricca et al. The Role of Experience and Ability in Comprehension
Tasks Supported by UML Stereotypes. In Proc. Int’l Conf. Software
Engineering (ICSE), pages 375-384. IEEE CS, 2007.

J. Sillito, G. C. Murphy, and K. De Volder. Asking and Answering
Questions during a Programming Change Task. [EEE Trans. Softw.
Eng., 34(4):434-451, 2008.

W. Tichy. Hints for Reviewing Empirical Work in Software Engineering.
Empirical Softw. Eng., 5(4):309-312, 2000.

A. von Mayrhauser and M. Vans. Program Comprehension During
Software Maintenance and Evolution. Computer, 28(8):44-55, 1995.
J. Yellott. Correction for Fast Guessing and the Speed Accuracy Trade-
off in Choice Reaction Time. Journal of Mathematical Psychology,
8:159-199, 1971.

Wiley

