
Beyond Testing Configurable Systems:
Applying Variational Execution to

Automatic Program Repair and Higher Order Mutation Testing
Chu-Pan Wong

Carnegie Mellon University, USA
Jens Meinicke

Carnegie Mellon University, USA
University of Magdeburg, Germany

Christian Kästner
Carnegie Mellon University, USA

ABSTRACT
Generate-and-validate automatic program repair and higher order
mutation testing often use search-based techniques to find opti-
mal or good enough solutions in huge search spaces. As search
spaces continue to grow, finding solutions that require interactions
of multiple changes can become challenging. To tackle the huge
search space, we propose to use variational execution. Variational
execution has been shown to be effective in exhaustively exploring
variations and identifying interactions in a huge but often finite
configuration space. The key idea is to encode alternatives in the
search space as variations and use variational execution as a black-
box technique to generate useful insights so that existing search
heuristics can be informed. We show that this idea is promising and
identify criteria for problems in which variational execution is a
promising tool, which may be useful to identify further applications.

CCS CONCEPTS
• Software and its engineering → Dynamic analysis; Soft-
ware testing and debugging;

KEYWORDS
Variational execution, configurable systems, information flow, au-
tomatic program repair, mutation testing

ACM Reference Format:
Chu-Pan Wong, Jens Meinicke, and Christian Kästner. 2018. Beyond Test-
ing Configurable Systems: Applying Variational Execution to Automatic
Program Repair and Higher Order Mutation Testing . In Proceedings of
the 26th ACM Joint European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering (ESEC/FSE ’18), November
4–9, 2018, Lake Buena Vista, FL, USA. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3236024.3264837

1 INTRODUCTION
The past decade has seen substantial improvement in automatic
program repair and mutation testing. Several approaches in these
two areas essentially solve a search problem, in which optimal or
near-optimal solutions are sought in a (often huge) search space

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00
https://doi.org/10.1145/3236024.3264837

of candidate solutions, guided by some heuristics and some form
of fitness function that distinguishes good solutions from bad so-
lutions. For generate-and-validate automatic program repair, the
search problem is to find patches among all possible edits to fix
a given buggy program [11, 14]. For mutation testing, a recent
search problem was to find interesting combinations of mutants,
called strongly subsuming higher order mutants, among possible
mutations to increase subtlety, reduce testing effort, and reduce
equivalent mutants [8]. Current search-based approaches face scal-
ability issues as the search spaces continue to grow. Search-based
automatic program repair and higher order mutation testing have a
search space of many possible edits/mutations and an exponential
number of combinations, a search space so large that is impossible
to exhaustively explore each variant separately.

In this work, we propose a novel integration of variational ex-
ecution [13, 16, 25] into search-based automatic program repair
and higher order mutation testing. Variational execution has been
designed for configuration testing of highly configurable systems
and for dynamic information flow tracking in privacy-sensitive
systems, both of which demonstrate that variational execution is
effective in exploring variations. More importantly, variational ex-
ecution enables fine-grained observations of interactions among
variations, while sharing commonalities to efficiently explore even
exponential search spaces in many practical settings. At a high level,
our approach encodes patch candidates and mutants as program
variations and uses variational execution as a black-box execution
engine to accelerate evaluations of fitness and derive useful insights
for a more efficient navigation of the search space.

To gauge the potential of this work, we carefully analyze key el-
ements that lead to successful applications of variational execution
and show that those elements manifest in search-based automatic
program repair and higher order mutation testing. The analysis
of potential gives us confidence that this direction is promising.
We envision that similar applications could be beneficial for other
search-based problems, as long as they exhibit all the key elements
of applying variational execution. We hope that this work can pro-
vide a new perspective of improving automatic program repair,
mutation testing, and other related areas.

2 VARIATIONAL EXECUTION AND EXISTING
APPLICATIONS

We first introduce essential concepts of variational execution and
two successful applications: configuration testing [16] and infor-
mation flow tracking [2]. We then derive key elements that enable
promising applications of variational execution, which are later
used to predict potential of this work.

https://doi.org/10.1145/3236024.3264837
https://doi.org/10.1145/3236024.3264837

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Chu-Pan Wong, Jens Meinicke, and Christian Kästner

Listing 1: Simplied implementation of a blogging system

1 boolean SMILEY;
2 boolean WEATHER;
3
4 public String toHTML () {
5 String h = getHTMLHeader ();
6 String c = getContent ();
7 if (SMILEY)
8 c = c.replace(":]", "<img...>");
9 if (WEATHER)

10 c = c.replace("[:w:]", getWeather ());
11 String f = getHTMLFooter ();
12 return h + c + f;
13 }

SMILEY = 〈α, true, false〉
WEATHER = 〈β, true, false〉

h = 〈“<header>...</header>”〉

c = 〈“It’s [:w:]”〉

c = 〈α, “It’s [:w”, “It’s [:w:]”〉

c = 〈α, “It’s [:w<img...>” , 〈β, “It’s 86◦F”, “It’s [:w:]”〉〉

f = 〈“<footer>...</footer>”〉

L5[true]: String h = getHTMLHeader();

L6[true]: String c = getContent();

L7[true]: if (SMILEY) L8[α]: c = c.replace(":]","<img...>");

L9[true]: if (WEATHER) L10[β]: c = c.replace("[:w:]", getWeather());

L11[true]: String f = getHTMLFooter();

L12[true]: return h + c + f;

Figure 1: An example showing how variational execution is used for configuration testing, modeled after WordPress [13].
Listing 1 on the left shows the source code. The graph on the right shows the execution trace of variational execution.

Variational execution is a dynamic analysis technique that ex-
ploits sharing among similar executions with minor differences [13,
16, 25]. The idea is similar to symbolic execution [10] in that con-
crete values are replaced with abstract values that represent many
possible concrete values. While symbolic values in symbolic execu-
tion usually represent all possible values of a given type, conditional
values in variational execution represent a finite and often small
set of alternative concrete values, each of which is distinguished by
a propositional formula that shows the condition under which this
concrete value exists. Conditional values are typically expressed
as possibly-nested choices over propositional formulas, such as
int x = ⟨α , ⟨¬β ∨ γ , 1, 3⟩, 2⟩, which means x has the value 1 if
α ∧ (¬β ∨ γ), 3 if α ∧ ¬(¬β ∨ γ), and 2 if ¬α . Note that concrete
values (e.g., 1, 2, 3) and symbolic conditions (e.g., α , β , γ) do not
intermix. Operations on a conditional value are guarded by variabil-
ity contexts, which limit the set of concrete values that are affected
inside the conditional values. The concept of variability contexts is
analogous to path condition in symbolic execution. Computations
on conditional values are repeated on all alternative concrete values
in the corresponding contexts.

There exist different implementations of variational execution [2,
3, 13, 16, 22, 25]. Current implementations have nontrivial overhead
because they need to track conditions and conditional values at
runtime, but this overhead can be often justified when exploring
very large configuration spaces. We use VarexC [25], a state-of-the-
art implementation based on Java bytecode transformation.

2.1 Configuration Testing
Computer programs often comewith variations that adjust function-
alities on demand, in the form of command-line options, plugins, or
extensions. These variations are often called features or options. Fea-
tures offer great flexibility, but also incur risk of feature interaction
problems [4, 18], where one feature interferes with another when
used together. To detect feature interactions, Nguyen et al. [16]
applied variational execution to test WordPress with different com-
binations of 50 plugins, yielding 250 different configurations. Their

results show that variational execution can analyze the huge config-
uration space efficiently and exhaustively and identify a previously
unknown feature interaction bug.

Figure 1 illustrates how variational execution is used for con-
figuration testing. The code listing on the left shows a simplified
implementation of a blogging system [13]. In the current implemen-
tation, there is an issue: if both SMILEY and WEATHER are enabled,
the replacement of smiley image takes precedence and breaks the
expansion of weather information, resulting in outputs like “[:w ”.
The execution trace on the right shows how variational execution
would detect this unexpected feature conflict. Each execution step
represents execution of one line along with the variability context.
Updated program states are shown in rounded boxes. Notice the
sharing of executions before Line 7 and after Line 10.

With variational execution, we can spot the problematic interac-
tion by looking at the content of c. In fact, all possible interactions
are recorded and detectable by inspecting conditional values. With-
out variational execution, we would need to run the same program
for 4 times in order to ensure absence of feature conflicts like this.
Brute-force testing of all configurations does not scale when the
number of features is large, but variational execution can efficiently
execute the program once and record all possible interactions of
features if there is sufficient sharing among executions.

2.2 Information Flow Tracking
Information leaks in security-focused systems have gained substan-
tial attention recently, especially leaks that are caused by subtle
implicit information flow. Dynamic information flow struggles with
implicit flows, especially from paths that are not executed [1, 5].
Austin and Flanagan [2] proposed a form of variational execution
to track information flows precisely, called faceted execution, which
separates the executions of high confidentiality (denoted as H) and
low confidentiality (denoted as L) so that sensitive information does
not flow from H to L. The key idea is to compress information of
both H and L into a conditional value. When H and L have the same
value, the executions are shared to reduce overhead. When H and L
have different values, both values are accessed or updated accord-
ing to some security-preserving semantics. Multiple principles (i.e.,

Beyond Testing Configurable Systems. . . ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

1 boolean f(boolean x) {
2 boolean y, z = true;
3 if (x)
4 y = false;
5 if (y)
6 z = false;
7 return z;
8 }

x = 〈α, true, false〉

y, z = 〈true〉

y = 〈α, false, true〉

z = 〈α, true, false〉

L2[true]: boolean y, z = true;

L3[true]: if (x) L4[α]: y = false;

L5[true]: if (y) L6[¬α]: z = false;

L7[true]: return z;

Figure 2: An example illustrating how variational execution
can be used to handle implicit information flow.

multiple pairs of H and L) are also supported and their interactions
are explored at runtime. This line of work was later extended to
support different languages and database systems [3, 21, 22, 26].

Figure 2 shows an example of how to use variational execution to
protect sensitive data. The goal is to hide the secret value of x from
public observers. As we can see, x is initialized with a conditional
value so that private observers see its real value true and public
observers see a different value. Using variational execution, values
of H and L are separated safely. Finally, public and private observers
see different values of z, so that the secret value of x is protected.

2.3 Key to Successful Applications
Studies have shown that variational execution is useful for config-
uration testing and information flow tracking, but we expect more
application areas, where this specific flavor of sharing computations
with multiple concrete values is effective to explore large spaces. By
comparing the above-mentioned applications and their limitations,
we derive three key characteristics from the application domains
that determine applicability of variational execution.
Finite Variations. The problem domain should have many but
finite variations of interest to begin with. In configuration testing
and information flow tracking, variations are different features and
different privacy principles, respectively.
Interactions. Conditional values are especially useful for explor-
ing interactions among variations at runtime. The overhead of
variational execution is easier to justify when exhaustively explor-
ing an exponential search space of all combinations of multiple
variations. In configuration testing, developers are interested in
the interaction of multiple options; In information flow tracking,
interactions among multiple principles need to be tracked soundly
to avoid leaking sensitive information in unexpected ways.
Sharing. Variational execution is effective if there is substantial
sharing among executions of different variations and their interac-
tions. Variational execution stores and computes all concrete values
for all configurations, but it exploits shared values and shared op-
erations to reduce overhead so that it can explore an exponentially
large configuration space. If there is no sharing at all among exe-
cutions, variational execution suffers from the same combinatorial
explosion as a brute-force strategy. However, studies have shown
that sharing is very common in practice for testing [13, 20]. In
information flow tracking, sharing is common in parts that are not
affected by principles. Interactions are common, but not among all

options at all times [13, 20]. That is, variational execution is effective
in large search spaces when interactions among multiple variations
are important but not all variations interact on all computations.

3 PROMISING APPLICATIONS
Beyond configuration testing and information flow tracking, we sus-
pect that variational execution is useful for many other applications.
In this section, we discuss the potential of applying variational exe-
cution to search-based automatic program repair and higher order
mutation testing and explain why we expect that they will benefit
from variational execution.

3.1 Automatic Program Repair
Automatic program repair has gained a lot of attention in recent
years [14]. One of the most representative search-based approaches
is GenProg [24], a technique that uses genetic programming to
search for a patch that passes all provided test cases. We suggest
applying variational execution to such search-based approaches.

GenProg takes as input a buggy program and a test suite that re-
veals the bugs. Then it runs a genetic programming loop iteratively
to find a patch. Each loop iteration is called a generation, mimicking
biological evolutions in genetic programming. In each generation,
a new set of patch candidates is generated, each of which often
changes one statement of the original buggy program. Then, for
each patch candidate, GenProg applies it and calculates a fitness
value by running the test suite. Based on fitness values, GenProg
discards a subset of patch candidates and then moves on to the next
generation, unless a patch is found or the resource limit is reached.
Approach. Our idea is to encode multiple patch candidates as
boolean options in the program, and then evaluate them and their
combinations altogether by executing the test suite once with vari-
ational execution. The following code snippet illustrates how varia-
tional execution can inform generation of multi-edit patches. This
example is extracted from a real bug fix from theDefects4J dataset [9].
Two changes are required to pass all the test cases: change1 is nec-
essary to pass test cases t1, t2 and t3, and change2 is required to
pass t3. Traditional search-based approaches might miss change2
because applying it alone does not pass any failing test cases. The
root cause to this problem is that fitness function defined as the
number of passing test cases is a poor proxy of partial bug fix,
and thus combinations of patches are rarely explored in targeted
fashion. However, with variational execution, the combination of
these two changes (along with many other patch candidates) can
be explored and tracked while executing the test suite. Since varia-
tional execution provides a bigger picture of patch candidates, it
can inform the search of valuable combinations of changes, such
as change1 and change2 in our example.
1 public Complex divide(Complex divisor) {
2 //..
3 if (change1) return NaN; // actual fix
4 else return isZero ? NaN : INF; // buggy , see MATH -657
5 //..
6 }
7 public Complex divide(double divisor) {
8 //..
9 if (change2) return NaN; // actual fix
10 else return isZero ? NaN : INF; // buggy , see MATH -657
11 //..
12 }

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Chu-Pan Wong, Jens Meinicke, and Christian Kästner

Characteristics. Patch search is a promising application because
it has all key enablers of variational execution. Variations are
patch candidates that modify a tiny part of the program. Often-
times a lot of patch candidates are generated. Interactions of patch
candidates are important to observe because they might provide
insights of synthesizing multi-edit patches, which is still an open
challenge. Researchers have empirically shown that more than 70 %
of bug fixes in practice require more than two repair actions [27].
Using variational execution, we could determine that multiple patch
candidates are required to pass a test suite. Sharing is very likely
because of two reasons. On the one hand, patch candidates are
generated independently, and thus often modify unrelated states
of the program. On the other hand, the whole test suite is invoked
again and again to calculate fitness, causing a lot of redundancy in
executing test cases. Since each test case often tests a small part of
the program, it is likely that each test case only touches on a small
number of patch candidates. With the potentially abundant shar-
ing, variational execution might be able to speed up the evolving
cycles of genetic programming, especially with regard to exploring
combinations of patches. As a side benefit, we can also inspect how
patches affect value differences at runtime and use the insights to
guide the search of more promising patch candidates.
RelatedWork. Different techniques have been proposed to speed
up the process of finding patches or improve the quality of gen-
erated patches [14]. Our application of variational execution is
orthogonal to most recent advances in automatic program repair, as
none of the existing work tries to replace the execution engine used
for evaluating fitness. There exist other techniques like synthesis-
based program repair [12, 15, 19], but we envision that search-based
approaches benefit more directly from variational execution.

3.2 Higher Order Mutation Testing
Higher order mutation testing is a technique that seeks valuable
combinations of mutants to generate higher order mutants that are
likely to denote more subtle faults. Since the set of candidate combi-
nations of mutants is exponentially large, Jia et al. proposed to use
search-based optimization techniques like genetic programming
to search valuable higher order mutants iteratively [8]. In each
iteration, several mutants are randomly combined and evaluated
using a given test suite. Iterations go on until valuable mutant com-
binations like strongly subsuming higher order mutants are found,
or resource limit is reached. The goal is to search for combinations
of mutants that can only be killed by a subset of test cases that
kill the constituent mutants. This way, higher order mutants can
replace the constituent mutants without affecting the accuracy in
assessing the quality of the test suite, but with fewer executions of
tests.
Approach. Our idea is to encode all mutants as options, and use
variational execution to explore all mutants at the same time. Since
first order mutants usually modify programs at the expression
level, changes can be encoded using ternary operators, as shown
in the code snippet below where 4 mutants are encoded. We can
then derive useful higher order mutants by transforming specifi-
cations of higher order mutants into a satisfiability problem and
use SAT solvers or BDDs to get solutions. This idea has been ex-
plored recently and the results are promising: the approach based

on variational execution generates a more complete set of strongly
subsuming higher order mutants using an order of magnitude less
time when compared to the state-of-the-art on Triangle, the classic
example in mutation testing literature [6].

1 //..
2 if ((m1 ? (a != b) : (a == b))) {
3 trian = (m2 ? (trian - 1) : (trian + 1));
4 }
5 if ((m3 ? (a != c) : (a == c))) {
6 trian = (m4 ? (trian - 2) : (trian + 2));
7 }
8 //..

Characteristics. Higher order mutation testing has all the key
enablers of variational execution. Variations are used to encode
mutants, so we can easily get many variations by generating mu-
tants randomly. Sharing is very likely due to the random genera-
tion of mutants and local effect of many mutants. With variational
execution, we can execute the test suite once and observe the effect
of all mutants, avoiding repeated executions of the same test suite.
Interactions are interesting to inspect because we could detect
valuable higher order mutants that are much harder to kill than its
constituent mutants. Moreover, we can identify equivalent mutants
by inspecting mutant interactions to further reduce testing effort.
Related Work. Jia et al. [8] proposed to generate higher-order
mutants using search strategies such as genetic algorithms and
greedy algorithms. However, the search process is expensive and
ineffective. Wang et al. [23] proposed to reduce redundant evalua-
tions of mutants by identifying equivalent states and compressing
executions of those mutants into the same process. Using varia-
tional execution, we could achieve a more fine-grained sharing of
mutant executions. Heymans et al. [7] proposed a conceptually
similar mutation analysis, but it only works on models and exploits
only prefix sharing.

4 CONCLUSION
Variational execution has been independently shown to be use-
ful in applications like configuration testing and information flow
tracking, but has rarely been explored beyond, with the exception
of an outline for detecting semantic merge conflicts [17]. By ana-
lyzing successful applications, we derive three key characteristics
that determine effectiveness of variational execution: variations,
sharing, and interactions. Using these elements, we discuss the
potential of applying variational execution to two new domains:
automatic program repair and higher order mutation testing. We
hope that this work can stimulate research on automatic program
repair, higher order mutation testing, and other domains that face
similar challenges.

ACKNOWLEDGMENTS
This work has been supported in part by the NSF (awards 1318808,
1552944, and 1717022) and AFRL and DARPA (FA8750-16-2-0042).
We thank Eduardo Figueiredo, João Paulo de Freitas Diniz, and
Serena Chen for exploring early ideas and prototypes. We also
thank Claire Le Goues and Yingfei Xiong for early discussions of
this work.

Beyond Testing Configurable Systems. . . ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

REFERENCES
[1] Thomas H. Austin and Cormac Flanagan. 2009. Efficient Purely-Dynamic In-

formation Flow Analysis. In Proceedings of the ACM SIGPLAN Workshop on
Programming Languages and Analysis for Security (PLAS). ACM, 113–124.

[2] Thomas H. Austin and Cormac Flanagan. 2012. Multiple Facets for Dynamic
Information Flow. In Proceedings of the ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL). ACM, 165–178.

[3] Thomas H. Austin, Jean Yang, Cormac Flanagan, and Armando Solar-Lezama.
2013. Faceted Execution of Policy-Agnostic Programs. In Proceedings of the ACM
SIGPLAN Workshop on Programming Languages and Analysis for Security (PLAS).
ACM, 15–26.

[4] Muffy Calder, Mario Kolberg, Evan H. Magill, and Stephan Reiff-Marganiec.
2003. Feature Interaction: A Critical Review and Considered Forecast. Computer
Networks 41, 1 (Jan. 2003), 115–141.

[5] Deepak Chandra and Michael Franz. 2007. Fine-Grained Information Flow Anal-
ysis and Enforcement in a Java Virtual Machine. In Proceedings of the Annual
Computer Security Applications Conference (ACSAC). IEEE, 463–475.

[6] Serena Chen. 2018. Finding Higher Order Mutants Using Variational Execution.
Technical Report 1809.04563. arXiv. Accepted to SPLASH’18 Student Research
Competition.

[7] Xavier Devroey, Gilles Perrouin, Mike Papadakis, Axel Legay, Pierre-Yves
Schobbens, and Patrick Heymans. 2016. Featured Model-Based Mutation Analy-
sis. In Proceedings of the International Conference on Software Engineering (ICSE).
ACM, 655–666.

[8] Yue Jia and Mark Harman. 2009. Higher Order Mutation Testing. Information
and Software Technology 51, 10 (Oct. 2009), 1379–1393.

[9] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A Database
of Existing Faults to Enable Controlled Testing Studies for Java Programs. In
Proceedings of the International Symposium on Software Testing and Analysis
(ISSTA). ACM, 437–440.

[10] James C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM
19, 7 (July 1976), 385–394.

[11] Claire Le Goues, Stephanie Forrest, and Westley Weimer. 2013. Current Chal-
lenges in Automatic Software Repair. Software Quality Journal 21, 3 (Sept. 2013),
421–443.

[12] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable
Multiline Program Patch Synthesis via Symbolic Analysis. In Proceedings of the
International Conference on Software Engineering (ICSE). ACM, 691–701.

[13] Jens Meinicke, Chu-Pan Wong, Christian Kästner, Thomas Thüm, and Gunter
Saake. 2016. On Essential Configuration Complexity: Measuring Interactions
in Highly-Configurable Systems. In Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering (ASE). ACM, 483–494.

[14] Martin Monperrus. 2018. Automatic Software Repair: A Bibliography. Comput.
Surveys 51, 1 (Jan. 2018), 1–24.

[15] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-
dra. 2013. SemFix: Program Repair via Semantic Analysis. In Proceedings of the
International Conference on Software Engineering (ICSE). IEEE, 772–781.

[16] Hung Viet Nguyen, Christian Kästner, and Tien N. Nguyen. 2014. Exploring
Variability-Aware Execution for Testing Plugin-Based Web Applications. In Pro-
ceedings of the International Conference on Software Engineering (ICSE). ACM,
907–918.

[17] Hung Viet Nguyen, My Huu Nguyen, Son Cuu Dang, Christian Kästner, and
Tien N. Nguyen. 2015. Detecting Semantic Merge Conflicts with Variability-
Aware Execution. In Proceedings of the Joint Meeting on Foundations of Software
Engineering (ESEC/FSE). ACM, 926–929.

[18] Armstrong Nhlabatsi, Robin Laney, and Bashar Nuseibeh. 2008. Feature Interac-
tion: The Security Threat from within Software Systems. Progress in Informatics
5 (March 2008), 75.

[19] Yu Pei, Carlo A. Furia, Martin Nordio, Yi Wei, Bertrand Meyer, and Andreas
Zeller. 2014. Automated Fixing of Programs with Contracts. IEEE Transactions
on Software Engineering 40, 5 (2014), 427–449.

[20] Elnatan Reisner, Charles Song, Kin-Keung Ma, Jeffrey S. Foster, and Adam Porter.
2010. Using Symbolic Evaluation to Understand Behavior in Configurable Soft-
ware Systems. In Proceedings of the ACM/IEEE International Conference on Software
Engineering (ICSE). ACM, 445–454.

[21] Thomas Schmitz, Maximilian Algehed, Cormac Flanagan, and Alejandro Russo.
2018. Faceted Secure Multi Execution. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS). ACM.

[22] Thomas Schmitz, Dustin Rhodes, Thomas H. Austin, Kenneth Knowles, and
Cormac Flanagan. 2016. Faceted Dynamic Information Flow via Control and Data
Monads. In Proceedings of the International Conference on Principles of Security
and Trust. Springer, 3–23.

[23] Bo Wang, Yingfei Xiong, Yangqingwei Shi, Lu Zhang, and Dan Hao. 2017. Faster
Mutation Analysis via Equivalence Modulo States. In Proceedings of the ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA). ACM,
295–306.

[24] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009.
Automatically Finding Patches Using Genetic Programming. In Proceedings of
the International Conference on Software Engineering (ICSE). IEEE, 364–374.

[25] Chu-PanWong, Jens Meinicke, Lukas Lazarek, and Christian Kästner. 2018. Faster
Variational Execution with Transparent Bytecode Transformation. Proceedings of
the ACM on Programming Languages (PACMPL) 2, OOPSLA (Nov. 2018). Article
117.

[26] Jean Yang, Travis Hance, Thomas H. Austin, Armando Solar-Lezama, Cormac
Flanagan, and Stephen Chong. 2016. Precise, Dynamic Information Flow for
Database-Backed Applications. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI). ACM, 631–647.

[27] Hao Zhong and Zhendong Su. 2015. An Empirical Study on Real Bug Fixes. In
Proceedings of the International Conference on Software Engineering (ICSE). IEEE,
913–923.

	Abstract
	1 Introduction
	2 Variational Execution and Existing Applications
	2.1 Configuration Testing
	2.2 Information Flow Tracking
	2.3 Key to Successful Applications

	3 Promising Applications
	3.1 Automatic Program Repair
	3.2 Higher Order Mutation Testing

	4 Conclusion
	Acknowledgments
	References

