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ABSTRACT
Higher-order mutation has the potential for improving major draw-
backs of traditional first-order mutation, such as by simulatingmore
realistic faults or improving test-optimization techniques. Despite
interest in studying promising higher-order mutants, such mutants
are difficult to find due to the exponential search space of mutation
combinations. State-of-the-art approaches rely on genetic search,
which is often incomplete and expensive due to its stochastic nature.
First, we propose a novel way of finding a complete set of higher-
order mutants by using variational execution, a technique that can,
in many cases, explore large search spaces completely and often ef-
ficiently. Second, we use the identified complete set of higher-order
mutants to study their characteristics. Finally, we use the identified
characteristics to design and evaluate a new search strategy, inde-
pendent of variational execution, that is highly effective at finding
higher-order mutants even in large codebases.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; Search-based software engineering.

KEYWORDS
mutation analysis, higher-order mutant, variational execution
ACM Reference Format:
Chu-Pan Wong, Jens Meinicke, Leo Chen, João P. Diniz, Christian Kästner,
and Eduardo Figueiredo. 2020. Efficiently Finding Higher-Order Mutants. In
Proceedings of the 28th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’20),
November 8–13, 2020, Virtual Event, USA.ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3368089.3409713

1 INTRODUCTION
Mutation analysis has been studied for decades in research [60] and
is increasingly adopted in industry [63, 64]. Mutation analysis has
many applications, including assessing and improving test suite
quality, generating or minimizing a test suite, or as a proxy for eval-
uating other research techniques such as fault localization [28, 60].
∗First three authors contributed equally to the paper
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Original
bool f(int a, int b):
  if (a == 1):
    return a < b
  return a > b

Mutation 1 (FOM)
bool f(int a, int b):
  if (a != 1):
    return a < b
  return a > b

Mutation 2 (FOM)
bool f(int a, int b):
  if (a == 1):
    return a >= b
  return a > b

Both (HOM)
bool f(int a, int b):
  if (a != 1):
    return a >= b
  return a > b

Test Orig. Mut. 1 Mut. 2 Both Failure Cond.

T1 : assert f(1, 2) ✓ ✗ ✗ ✗ m1 ∨m2
T2 : assert !f(0, 3) ✓ ✗ ✓ ✓ m1 ∧ ¬m2
T3 : assert !f(1, 1) ✓ ✓ ✗ ✓ ¬m1 ∧m2

Figure 1: Example of mutations with their test outcomes.

Traditionally, mutation analysis injects syntactic mutations into an
existing program and runs the existing tests to assess whether the
tests are sensitive enough to detect the mutations.

Higher-order mutation is the idea of combining multiple muta-
tions to represent more subtle changes, more complex changes, or
changes that better mirror humanmistakes [23]. To that end, Jia and
Harman [23] distinguish first-order mutants, consisting of a single
change, from higher-order mutants that combine multiple changes
(cf. Fig. 1). While most research on mutation analysis has focused
on first-order mutants, recent studies claim that higher-order mu-
tants are less likely to be equivalent mutants [36, 49, 52, 61] and that
higher-order mutants can reduce test effort [21, 23, 65]. In Section 2,
we will discuss a specific use case with a motivating example.

A key challenge in adopting higher-order mutation is identifying
beneficial higher-order mutants. Most higher-order mutants are as
easy to kill as their constituent first-order mutants, due to coupling.
Jia and Harman [23] argue that only a subset of all possible combi-
nations better simulate real faults and increase the subtlety of the
seeded faults. Specifically, Jia and Harman [21, 23] look for what
they name a strongly subsuming higher-order mutant (SSHOM), a
particular kind of higher-order mutant that is harder to detect than
its constituent first-order mutants, as we will explain in Section 2.
However, SSHOMs are tricky to find among the vast quantity of
possible combinations of first-order mutants. Current approaches
use genetic-search techniques, guided by a simple fitness func-
tion [17, 21, 23, 43]. Since SSHOMs are difficult to find, little is
known about them and their characteristics.

In this work, we develop a technique that can find a complete
set of SSHOMs for given first-order mutations and tests on small to
medium-sized programs, which enables us to study characteristics
of SSHOMs. Based on the identified characteristics, we then develop
a new heuristic search technique that is lightweight, scalable, and
practical. Overall, we proceed in three steps:
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(1) Variational Search: For the purpose of studying SSHOM in
a controlled setting, we develop a new search strategy searchvar
that allows us to find a complete set of higher-order mutants for
a given test suite and given set of first-order mutants in small
to medium-sized programs. Specifically, we use variational exe-
cution [3, 53, 54, 75], a dynamic-analysis technique that jointly
explores many similar executions of a program. Conceptually, our
approach searches for all possible higher-order mutants at the same
time, identifying, with a propositional formula for each test case,
which mutants and combinations of mutants cause a test to fail.
From these formulas, we then encode search as a Boolean satisfiabil-
ity problem to enumerate all SSHOMs. An exploration of all possible
mutant combinations with variational execution is often feasible
for small to medium-sized programs because variational execution
shares commonalities among repetitive executions. Though it does
not scale to all programs, analyzing a complete set of SSHOMs for
smaller programs and their test suites allows us to study SSHOMs
more systematically.

(2) Characteristics Analysis: We study the characteristics of the
identified higher-order mutants from Step 1. Where previous ap-
proaches found only a few samples of higher-order mutants, we
have a unique opportunity to study the characteristics of higher-
order mutants on a much more complete set. We analyze character-
istics, such as the typical number of mutants combined and their
distance in the code. This helps us better understand higher-order
mutants without the potential sampling bias from a search heuristic.
For example, we found that most SSHOMs are composed of fewer
than 4 first-order mutants and that constituent first-order mutants
tend to locate within the same method or the same class.

(3) Prioritized Heuristic Search: Finally, we develop a second new
search strategy searchpri that prioritizes likely promising combi-
nations of first-order mutants based on the characteristics identified
in Step 2. The searchpri is easy to implement and does not require
the heavyweight variational analysis of searchvar. Although it
does not provide any completeness guarantees, it is highly effi-
cient at finding higher-order mutants fast and scales to much larger
systems with thousands of first-order mutants. We evaluate the
new search strategy using a different set of larger systems to avoid
overfitting. Our results indicate that the identified characteristics
indeed effectively guide the search. For example, we found 390,533
SSHOMs among combinations of 103,663 first-order mutations,
where existing search approaches can barely find any.

We make the following contributions in this work:
• We propose a novel way of using variational execution to find
a complete set of SSHOMs for a given set of first-order muta-
tions and tests, by formalizing the search as a Boolean satisfiabil-
ity problem. An evaluation of small to medium-sized programs
shows that we can achieve completeness and simultaneously
increase efficiency (Section 3).
• Using the identified set of SSHOMs, we make the first step in
studying the basic characteristics of SSHOMs to inform future
research (Section 4).
• To show how useful the characteristics are, we use them to design
a new lightweight prioritized search strategy, independent of
variational execution. We evaluate the prioritized search strategy
on a fresh set of larger benchmarks, showing that the new search
is scalable and generalizable (Section 5).

2 HIGHER-ORDER MUTANTS
Mutation analysis introduces a set of syntactic changes to a software
artifact and observes whether the previously passing test suite is
sensitive enough to detect the changes (termed “to kill the mutant”).
Traditionally, many simple small changes are explored in isolation,
one at a time; several catalogs of mutation operators that perform
small syntactic changes exist [35, 60].

In its simplest form, higher-order mutants are combinations of
two or more first-order mutants [21, 23]. The set of possible second-
order mutants grows quadratically with the size of the set of first-
order mutants from which they are combined; if considering com-
bining more than two first-order mutants, the set of possible higher-
order mutants grows much faster.

Many higher-order mutants are of little value in practice, because
a test that would kill any constituent first-order mutant will likely
also kill the higher-order mutant, discussed as the coupling effect
hypothesis [55]. However, Jia and Harman [23] argue that there
exist several classes of higher-order mutants that exhibit interesting
behavior. They specifically highlight strongly subsuming higher-
order mutant (SSHOM), in which the constituent mutants interact
in ways making the higher-order mutant hard to kill, as we will
explain in detail in Section 2.2.

2.1 Usefulness of Higher-Order Mutants
A recent survey of over 39 papers on higher-order mutation test-
ing [13] summarized a large number of different application scenar-
ios for higher-order mutants claimed in prior research, including
mutant reduction [12, 17, 19], coupling effect analysis [14, 23], equiv-
alent mutant reduction [37, 49], test data evaluation [16], and test
suite reduction [17, 52]. In the following, we illustrate a concrete
example of how higher-order mutations can be useful to software-
engineering researchers for creating synthetic, but challenging
faults to evaluate various software engineering tools.

The effectiveness of many approaches in software-engineering
research needs to be evaluated on faults in software systems. For
example, fault localization tools need to evaluate how accurately
they can localize the faults, test suite generation tools need to
evaluate how effective the generated tests are at finding bugs, and
program repair tools need to evaluate how many faults they can
repair. When evaluating their tools, researchers often have the
choice of running evaluations on a curated, often small, set of real
bugs or running on large numbers of synthetically seeded bugs.
Both approaches have known benefits and drawbacks:
• Seeded faults are convenient: Easy to create and providing a

perfect ground truth, they allow researchers to run experiments
with very large numbers of faults on almost any system. For
example, fault localization techniques were often evaluated on
artificially seeded single-edit faults, such as those in the Siemens
test suite [18] (e.g., [1, 25, 47, 62, 67]). Researchers have been
critical of this style of evaluation, arguing that seeded single-edit
faults are not representative of most real faults (which often
require fixes in multiple locations) [28, 76] and that fault localiza-
tion techniques may not generalize as they are over-optimized
in finding such simple single-edit faults [62].
• In contrast, if curated well, datasets of real faults can be much
more representative of realistic usage scenarios. Research on
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bool f(int a, int b):
if (a != 1):

return a < b
return a > b

(a) Mutation 1

bool f(int a, int b):
if (a == 1):

return a >= b
return a > b

(b) Mutation 2

bool f(int a, int b):
if (a != 1):

return a >= b
return a > b

(c) HOM

Figure 2: Suspicious lines based on spectrum-based fault lo-
calization [25]. The ranking is shown as the intensity of
danger , suspicious , caution and safe .

automated program repair is almost exclusively evaluated on a
few hundred real faults [46]. For example, the widely used De-
fects4J dataset [27] curated 438 faults from 5 libraries. Creating
high-quality datasets of realistic and representative faults is chal-
lenging and typically requires significant human and engineering
effort [27, 48, 71]. Therefore, while it is easy to seed millions of
faults in almost any program, only a few datasets of curated real
faults are available, often only with moderate numbers of faults
in a small number of libraries or programs. Some researchers
warn that overly focusing on a few shared datasets of faults leads
to approaches that overfit the available faults [11, 71].

In this tension between simple seeded faults and expensive to cu-
rate real faults, higher-order mutation may provide a compromise.
Certain kinds of higher-order mutants, in particular SSHOMs that
we study in this work, are more subtle and harder to kill (shown
both theoretically [14] and empirically [15, 21, 23, 43, 59]). They are
more promising to simulate real faults than traditional first-order
mutants: For example, Zhong and Su [76] and Just et al. [28] found
that more than 50–70% of real faults are caused by faults in more
than two locations. Just et al. [28] also found that 73% of real faults
are coupled to mutants, while on average 2 mutants are coupled to
a single real fault. That is, certain kinds of higher-order mutants
may be more representative of real faults. Thus, assuming we can
find them efficiently, which is the goal of this paper, we can still au-
tomate their creation and seed thousands of these more challenging
faults in almost any software system.

Let us illustrate the potential of higher-order mutation for fault
localization in Figure 2. Our example program from Figure 1 is
mutated with two first-order mutants, which are later combined
to form a higher-order mutant; note how this higher-order mutant
fails for fewer test cases than the constituent first-order mutants.
In this simple setting, the classic fault localization technique Taran-
tula [25] works quite well for the first-order mutants, highlighting
the mutated lines as shown in Figure 2; but Tarantula fails to re-
port the two mutated lines of the higher-order mutant, instead
highlighting the unchanged line. This example shows how fault
localization fails to locate the faulty lines of interacting mutations,
which, as discussed, may be expected for realistic faults [28, 76].
As a further consequence, a program repair technique based on
spectrum-based fault localization may not even attempt to fix the
first return statement [45].

To realize the full potential of higher-order mutants for these
and other use cases, it is critical to have an efficient way of finding
interesting higher-order mutants. In this work, we do not reevaluate
the usefulness of HOMs for various use cases [13] or how well they
represent real faults [23, 28, 76], which has been studied repeatedly

and comprehensively in prior work [10]. Instead, we focus on a
technical problem that made SSHOMs too costly and impractical:
How to efficiently find SSHOMs.

2.2 Strongly Subsuming Higher-Order Mutants
(SSHOMs)

Jia and Harman [23] classify higher-order mutants into several
kinds, highlighting SSHOMs as useful. For this reason, our work
targets SSHOMs, though we expect that it can be generalized to
other classes of higher-order mutants. Specifically, Jia and Harman
[23] define an SSHOM as a higher-order mutant that can only be
killed by a subset of test cases that kill all its constituent first-order
mutants. More formally, let h be a higher-order mutant composed
of first-order mutants f1, f2, . . . , fn ,Th the set of test cases that kill
the higher-order mutant h, and Ti the set of test cases that kill the
first-order mutant fi , then h is an SSHOM if and only if:

Th , ∅ ∧ Th ⊆
⋂

i ∈1...n
Ti (1)

If we further restrict Th to be a strict subset, we get an even
stronger type of SSHOM, which we call strict strongly subsuming
higher-order mutant, denoted as strict-SSHOM.1 In other words,
there must be at least one test case that kills one of the first-order
mutants, but not the higher-order mutant. Thus, in a strict-SSHOM,
multiple first-order mutants interact such that they mask each other
at least for some test cases, making the strict-SSHOM harder to kill
than all the constituent first-order mutants together.

Our (manually constructed) SSHOM in Figure 1 illustrates this
relation: Intuitively, the first first-order mutant (replacing ‘==’ by
‘!=’) forces the execution to go into an unexpected branch, and the
second (replacing ‘<’ by ‘>=’) inverts the return values. The two
changes in control and data flow are easy to detect separately (i.e.,
killed by two test cases each), but the combination of them is more
subtle and only detected by one test case.

2.3 Finding SSHOMs
SSHOM is defined in terms of test results of first-order mutants. All
existing search strategies aim to find SSHOMs in terms of a given
test suite and a given set of first-ordermutants. The search space can
be large due to the exponential combinatorial explosion of possible
mutant combinations. Since only very few of the combinations are
interesting and those are hard to find in a vast search space, higher-
order mutation testing has long been considered too expensive.

Jia and Harman [23] explored several search techniques to find
SSHOMs, finding that genetic search performs best. We will use
their genetic-search strategy, together with a brute-force strategy,
as baselines for our evaluations. Although the genetic search has
been shown to successfully find SSHOMs, it requires considerable
resources to evaluate many candidates, involves significant ran-
domness, and cannot enumerate all SSHOMs in the search space.

It is conceptually possible to define SSHOMs in terms of an
idealized test suite that represents all (possibly infinite) possible

1SSHOMs have been defined inconsistently in the literature as subset [17] and strict
subset [21, 23]. We inherit the definition of SSHOMs from Harman et al. [17], as it
is the most recent work. As we will see in the evaluation, the difference between
subset and strict subset is significant, so we make the distinction explicit, introducing
strict-SSHOM as a distinct subclass and reporting results for both.
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def findSSHOMs(program P, mutants M, testsuite T):
failing_conditions = Map[Test, FailingCondition]()
# Merge all first-order mutants into one meta-program
mutated_P = encode_all_mutants(P, M)
for (test ← T):
# Variational execution returns under what combinations of mutants the
# given test fails, compactly represented as a propositional formula.
ft = variational_execution(mutated_P, # mutated program

test, # entry point of execution
M) # symbols representing mutants

failing_conditions.add(test → ft )
# search of SSHOMs as a satisfiability problem, using Equation 2-4
constraint = encodeSAT(failing_conditions, T, M)
# allSAT returns all solutions to the constraint, each represented
# as a set of activated variables (first-order mutants)
found_SSHOMs = allSAT(constraint)
return foundSSHOMs

Figure 3: Using variational execution to find SSHOMs.

behaviors in the program. In practice though, all search strategies
have to work with existing test suites and whether a combination of
first-order mutants is considered an SSHOM is evaluated in terms
of a given test suite. Different test suites and different first-order
mutants may result in different SSHOMs; SSHOMs found with a
specific test suite could be interpreted as approximations of SSHOMs
potentially found with an idealized test suite. A specific test suite
and set of first-order mutants form a large but finite search space
and it is possible to define and find a complete set of SSHOMswith re-
gard to those given mutants and tests, as we will discuss in Section 3.

In this paper, in line with prior work on finding SSHOMs, we
focus on finding SSHOMs with regard to a fixed test suite and fixed
set first-order mutants, as would be useful in the fault localization
and program repair scenarios discussed above. Although orthog-
onal to the goal of this work, which is improving existing search
strategies, in Appendix A, we discuss the notion of SSHOMs in
terms of a theoretical idealized test suite and the influence of test
suite size on identifiable SSHOMs.

3 STEP 1: COMPLETE SEARCHWITH
VARIATIONAL EXECUTION (searchvar)

In this step, we develop searchvar to compute a complete set of
SSHOMs with respect to given tests and first-order mutants, so that
we can study their properties later. Figure 3 shows the pseudo-code
of applying variational execution to find SSHOMs.

First, given a program under analysis P , we mutate it into P ′ by
applying our mutation operators exhaustively at every applicable
location to generate all first-order mutants upfront. We represent
each first-order mutant as a Boolean option and use a ternary con-
ditional operator to encode the change. Mutations to the same
expression are expressed as nested ternary conditional expressions.
For example, we show below how we encode the two first-order
mutants from Figure 1.
bool f(int a, int b):

if ( m1 ? a != 1 : a == 1 ):

return m2 ? a >= b : a < b

return a > b

After encoding first-order mutants, we use variational execution
as a black-box technique to explore, for each test case, under what
combinations of first-order mutants the test would fail. In a nutshell,
variational execution runs the program by dynamically tracking the

differences in program state that are caused by mutations (similar to
executing the program symbolically with symbolic values for all mu-
tations) [3, 53, 54, 75]. Conceptually, a single run of variational exe-
cution is equivalent to running all combinations of first-order muta-
tions in a brute-force fashion, but it is usually much faster due to the
sharing of similar executions at runtime [53, 54, 75]. For each test ex-
ecution, variational execution will return a failing condition, which
is a propositional formula that represents exactly the combinations
of mutations for which the test fails. We show examples of failing
conditions in our running example in Figure 1 (last table column).

Finally, we collect all propositional failing conditions for all test
cases and use them to search for SSHOMs by encoding the search
as a Boolean satisfiability problem. Using BDDs or SAT solvers, we
can then enumerate all solutions, which correspond directly to all
SSHOMs. Although the formulas can be large if we have many first-
order mutants and test cases and finding satisfiable assignments is
NP-hard, modern SAT solving techniques are scalable enough. Our
implementation and data are available on GitHub: https://github.
com/poosomooso/SSHOM-Search.

3.1 Mutant Generation
We generate first-order mutants exhaustively and encode them all at
once into a metaprogram, which is later used for finding SSHOMs.
This compact encoding of mutations defines a finite search space,
which is critical for variational execution to be efficient [74]. Similar
encodings have been explored in different contexts, such as speed-
ing up mutation testing [29, 50, 72]. Using this encoding, we also
ensure a fair comparison with baseline approaches by excluding
compilation time and using the same metaprograms.

For our experiments, we implemented 3 mutation operators:
(1) Arithmetic Operator Replacement (AOR, mutating +, -, *, /, %)
(2) Relational Operator Replacement (ROR, mutating ==, !=, <, >,
<=, >=) and (3) Logical Connector Replacement (LCR, mutating ||
and &&). These comprise 3 of 5 most well-studied mutation op-
erators [56, 57], excluding two further based on recent insights:
(4) Absolute Value Insertion (ABS) has been shown to be less useful
in practice [63], so we excluded it to avoid a meaninglessly large
search space. (5) Unary Operator Insertion (UOI) would add many
more mutants, most of which are likely equivalent to the ones gen-
erated from other mutation operators (e.g., mutating a+b to a+-b
using UOI is equivalent to a-b using AOR) [35, 50, 63].

3.2 Variational Execution
We use variational execution to determine which combinations of
mutants fail a test case. The novelty of using variational execu-
tion lies in the efficient and complete exploration of all mutants,
as opposed to one mutant at a time in traditional search-based ap-
proaches. For this work, we use variational execution as a black-box
technique and so the technical details of how it works are not rele-
vant. We only provide intuition and refer the interested readers to
the existing literature for a more in-depth discussion [3, 53, 54, 75].

Conceptually, variational execution is similar to symbolic execu-
tion, in that it executes a program with symbolic Boolean values
representing mutants and concrete values for test inputs. Specifi-
cally, variational execution performs computations with conditional
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values [75], which may represent multiple alternative concrete val-
ues. For example, a conditional value ⟨α, 1,−1⟩ indicates that it has
the value 1 under α , and -1 otherwise. Conditional values can repre-
sent a finite number of alternative concrete values distinguished by
propositional conditions over symbolic values (representing muta-
tions). Variational execution computes with conditional values and
propagates them along data and control flow. At control-flow deci-
sions, both branches are explored under corresponding symbolic
path conditions; afterward, state is merged again into conditional
values to exploit sharing in subsequent statements. In a nutshell,
variational execution can be considered as an extreme design choice
among various forms of symbolic program evaluation [5, 6, 8, 34, 69]
for finite domains, in which computations are maximally performed
on concrete values, but Boolean symbolic values may distinguish
between multiple concrete values in program state [3, 53, 75].

For our purposes, we consider all Boolean options representing
first-order mutants as symbolic options. This way, all state changes
caused by mutants can be compactly tracked, which enables us to
explore all combinations of mutants at the same time. As output,
we determine under which combinations of mutants a test case
fails (propositional formula over first-order mutants as illustrated
in Fig. 1), by simply observing under which condition any asserted
expression evaluates to false.

In theory, mutant interactions can cause a combinatorial explo-
sion in conditional values where exponentially many alternative
values for different combinations of mutants need to be tracked
for a single variable. However, in practice, not all mutants affect
each test and not all mutants interact, enabling an often reason-
ably efficient exploration of all feasible combinations. We defer the
discussion of this scalability issue to Section 3.4.

Multiple implementations of variational execution exist for a
number of programming languages [3, 4, 31, 53, 54, 68, 75]. For
details on variational execution and how it differs from symbolic
execution (e.g., finite symbolic domain, efficient state sharing), pre-
vious work describes implementations [31, 54] and provided formal
semantics for a core calculus [3]. We use VarexC, a state-of-the-art
implementation of variational execution for Java [75].

3.3 SSHOM Search as a SAT Problem
We use the output of variational execution—propositional formulas
indicating under which combinations of mutations each test fails—
to construct a single formula that is satisfiable exactly for those
assignments that represent SSHOMs, based on our definition of
SSHOM in Section 2.2. This way, the search for SSHOMs is trans-
formed into a Boolean satisfiability problem, which we can solve
with BDDs or SAT solvers. To derive the formula, we outline the
criteria for identifying SSHOMs as defined by Jia and Harman [23]
(see Sec. 2.2) and construct a logical expression for each criterion.

LetT be the set of all tests,M be the set of all first-order mutants,
and ft be the propositional formula over literals fromM describing
the mutant configurations in which test t ∈ T fails (f is generated
with variational execution, see above). As a shorthand, let Γ(m, t)
be the result of evaluating ft with first-order mutantm assigned to
true and all other mutants assigned to false; in other words, whether
test t fails for first-order mutantm. To identify SSHOMs, we encode
three criteria:

First, we ensure that a mutant combination is killed by at least
one test, encoding Th , ∅ in Formula 1 (Sec. 2.2):

(1) The SSHOM must fail at least one test (i.e., must not be an
equivalent mutant): ∨

t ∈T
ft (2)

Second, if a given mutant combination (i.e., higher-order mutant)
is killed by a test t , the same test must kill each constituent first-
order mutant. That is, for all tests and first-order mutants, the
first-order mutant must either be killed by the test (Γ(m, t)) or not
be part of the higher-order mutant (¬m). This is the encoding of
Th ⊆

⋂
i ∈1...n Ti in Equation 1 (Sec. 2.2):

(2) Every test that fails the SSHOM must fail each constituent
first order mutant:∧

t ∈T
(ft ⇒

∧
m∈M
(¬m ∨ Γ(m, t)) (3)

In addition, we can optimize for SSHOMs that are harder to kill
than the constituent first order mutants, excluding those that are
equally difficult to kill [23]. As discussed in Section 2.2, we call these
strict-SSHOM and require a strict subset relation in Equation 1 (i.e.,
Th ⊂

⋂
i ∈1...n Ti rather thanTh ⊆

⋂
i ∈1...n Ti ), which requires the

additional encoded condition:
(3) There exists a test that can kill all constituent first-order

mutants but cannot kill the strict-SSHOM.∨
t ∈T

(
¬ft ∧

∧
m∈M
(¬m ∨ Γ(m, t))

)
(4)

To find SSHOMs and strict-SSHOMs, we take the conjunction of
Equations 2–3 and 2–4, respectively, and use BDD or SAT solver
to iterate over all possible solutions. For example, if our approach
returns a satisfiable assignment in whichm1 andm3 are selected
and all other mutants are deselected, then the combination ofm1
andm3 is a valid (strict-)SSHOM.

We use BDDs to enumerate all satisfiable solutions by default.
While constructing BDDs can be expensive, getting a solution from
a BDD is fast (O(n), where n represents the number of Boolean vari-
ables [7]). In some rare cases where we cannot construct a BDD due
to insufficient memory, we fall back to using a SAT solver. With a
SAT solver, we ask for one possible solution, then add the negation
of that solution as an additional constraint before asking for the
next solution, repeating the process until all solutions are enumer-
ated. We can usually efficiently enumerate all possible SSHOMs for
the given set of first-order mutants and the variational-execution
result of a given test suite.

3.4 Limitations
While variational execution and the SAT encoding provide a new
strategy to find SSHOMs, this approach comes also with severe re-
strictions, mostly regarding scalability and engineering limitations
inherited from the tools we use, which limits broad applicability in
practice (which we address with an alternative strategy in Sec. 5).
Combinatorial Explosion. Recent studies show that combinato-
rial explosion is uncommon for the types of highly-configurable
programs analyzed with variational execution in the past [53, 66],
mainly because programs are usually written by human developers
to have manageable interactions among options. When applied to
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higher-order mutation testing, we did observe some combinatorial
explosion caused by random combinations of first-order mutants.
For example, we observed cases where interactions of first-order
mutants create more than 15,000 alternative concrete values in one
single local variable. We argue that this is the essential complexity
of the mutated program, and it would be equally difficult for other
approaches to exhaustively explore a complex search space like
this. However, it is possible to find efficient search strategies when
giving up the completeness goal, as we will show in Sec. 5.

In the evaluation of searchvar, we manually removed some
problematic first-order mutants and test cases that caused an exces-
sive number of interactions (See Table 1). For fairness, we remove
these mutants and test cases across all compared approaches.
Environment Barrier . Similar to symbolic execution, variational
execution needs to handle the environment barrier carefully when
interacting with an external runtime environment that is not aware
of conditional values or path conditions. This barrier often man-
ifests as I/O or native method calls. There are several common
strategies to mitigate this issue, such as creating models for these
operations [8, 69, 75]. In our study, only a few tests andmutants trig-
gered problematic environment interactions. While solvable with
engineering effort, we consider them noncritical for our goal and
removed the problematic tests or mutants after manual inspection.

3.5 Evaluation
In addition to using searchvar to get a complete set of SSHOMs
with regard to given tests and first-order mutants, we compare the
efficiency and effectiveness of searchvar against the existing state-
of-the-art genetic search (searchgen) and a baseline brute-force
strategy (searchbf), based on subject systems previously used in
evaluating the genetic search strategy [17].
Subject Systems. We replicate the setup of the largest previous
study on higher-order mutation testing [17]. While we cannot per-
form an exact replication since we could not obtain the original
tools from the authors, not all relevant details and parameters have
been published, and some engineering limitations discussed earlier,
we still select the same subject systems and reimplement search
strategies in our own infrastructure. That is, our results cannot be
compared directly against the numbers reported in prior work [17],
but we report comparable numbers within a consistent setup.

We use the same four small to medium-sized Java programs,
Monopoly, Cli, Chess, and Validator, all of which come with good
quality test suites that are deemed complete by developers [17]. In
addition, we use the triangle program commonly used in mutation
testing [23].We report the statistics of our subject systems in Table 1
(top), which are comparable to those reported in prior work [17],
with slight differences likely caused by different mutation operators
used and excluded tests (as discussed in Section 3.4).
Baseline Search Strategies. We compare our approach against
the state-of-the-art genetic algorithm [17, 21, 23] and a naive brute-
force search. The brute-force search iterates over all valid higher-
order mutants, starting from all pairs, then all triples, and so on
until a time limit is reached. The brute-force search serves as a
reliable baseline as there is no randomness involved.

We reimplemented the genetic algorithm approach based on the
description in Jia et al.’s work [20, 21, 23]. As the exact setup was
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enumerate all nonstrict-SSHOMs for Chess due to the difficulty of the SAT problem

and report only those found within the time limit

Figure 4: (Strict-)SSHOMs found over time in each subject
system, averaged over 3 executions. Note that time is plotted
in log scale as most SSHOMs are found within the first hour.

not available or documented, we leave undocumented parameters
at default values. The core of the genetic algorithm is a fitness
function for candidate higher-order mutants. Following existing
work [20, 21, 23] and using the notations in Equation 1, we calculate
the fitness as |Th | / |

⋂
i ∈1...n Ti |.2 The intuition is that an SSHOM

should fail only for a subset of test cases that kill all its constituent
first-order mutants. Thus, we use it as a piece-wise function: a
fitness of (0, 1] indicates an SSHOM and (0, 1) a strict-SSHOM, with
lower fitnessmore preferable; a fitness of 0 and larger than 1 indicate
potential equivalent mutants and non-SSHOMs, respectively, which
are discarded between generations of the genetic algorithm.
Measurements. All experiments were performed on AWS EC2
instances, each of which has an Intel 4-core Xeon CPU with 16GB
of RAM. We ran benchmarks to confirm that the performance is
stable enough for our measurements across different instances;
given that we often demonstrate order-of-magnitude differences in
outcomes, differences are unlikely explained by measurement noise.
For each search strategy (i.e., searchgen, searchbf, searchvar),
we measure each subject system three times and report the average,
like the three restarts in the work of Harman et al. [17]. We ran
each trial of genetic algorithm and brute force for 12 hours.

2The fitness function has been defined either using intersect ofTi [20] or union [21, 23].
We use the former in our reimplementation as it more precisely captures our intuition
of SSHOMs.
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Table 1: Subjects and Found (strict-)SSHOMs; the last three subjects and the Pri column are discussed in Section 5.

Found SSHOM (and strict-SSHOM)

Subject LOC Tests (%used) LCov FOMs (%used) MutScore Var Gen BF Pri

Validator 7,563 302 (83%) 54% 1,941 (97%) 36% (68%) 1.34*1010 (281) 4,041 (0) 273 (4) 36,995 (10)
Chess 4,754 847 (84%) 74% 956 (26%) 81% (86%) 3,268† (216) 484 (0) 19 (6) 16,403 (24)
Monopoly 4,173 99 (89%) 74% 366 (90%) 80% (83%) 818 (43) 81 (4) 349 (15) 817 (43)
Cli 1,585 149 (95%) 92% 249 (51%) 71% (81%) 376 (21) 309 (18) 326 (21) 369 (21)
Triangle 19 26 (100%) 100% 128 (100%) 92% (92%) 965 (6) 949 (6) 493 (6) 965 (6)

Ant 108,622 1354 (77%) 53% 18,280 (92%) 57% (94%) - (-) 1 (0) 0 (0) 44,496 (61)
Math 104,506 5177 (79%) 90% 103,663 (100%) 66% (71%) - (-) 0 (0) 0 (0) 390,533 (2,830)
JFreeChart 90,481 2169 (99%) 59% 36,307 (99%) 21% (45%) - (-) 0 (0) 6 (0) 576,725 (513)

LOC represents lines of code, excluding test code, measured with sloccount. Tests and FOMs report the numbers of test cases and first-order mutants we used in experiments, with
the percentages relative to the total numbers in parentheses. LCov reports line coverage of the tests used in our experiments. MutScore reports the mutation score of all used
first-order mutants and the score in parenthesis considers only FOMs that are covered by the tests. Var, Gen, BF, Pri denote our approach (Step 1, searchvar), the genetic

algorithm (searchgen), brute force (searchbf), and our prioritized search (Step 3, searchpri) respectively.
† incomplete results, solutions found with SAT solving within the 12 hours budget.

Results. In Table 1, we report the number of (strict-)SSHOMs found
with all three search strategies within the 12-hour time budget and,
in Figure 4, we plot the numbers of (strict-)SSHOMs found over time.
Note that by construction, if searchvar terminates (all cases except
Chess, where solving the satisfiability problem takes considerable
time), it enumerates all SSHOMs, thus provides an upper bound
for other search strategies—without searchvar this upper bound
would not be known.

These results show clear trends: searchvar requires a relatively
long time to find the first SSHOM because variational execution
must finish executing all tests for all combinations of first-order mu-
tants. However, once variational execution finishes, it can enumer-
ate all SSHOMs very quickly by solving the Boolean satisfiability
problem. Variational execution takes longer with more and longer
test cases and with more first-order mutants but still outperforms
a brute-force execution by far, indicating significant sharing, as
found in prior analyses of highly-configurable systems [53, 54, 75].

In contrast, searchgen and searchbf can test many candidate
SSHOMs before variational execution terminates and finds some
actual SSHOMs early, but both approaches take a long time to find
a substantial number of SSHOMs and miss at least some SSHOMs
in all subject system within the 12h time budget given. In some
systems with moderate numbers of first-order mutants, searchbf is
fairly effective as it systematically prioritizes pairwise combinations
which are more common among SSHOMs than combinations of
more than two mutants, as we will discuss.

In summary, for systems where variational execution scales,
searchvar can find all SSHOMs whereas other approaches find
only an often much smaller subset within a 12h time window.
Whereas prior approaches often find their first SSHOMs faster,
searchvar needs more time upfront for variational execution but
can then enumerate SSHOMs very quickly. To scale searchvar to
more realistic programs, more engineering is needed to overcome
the limitations discussed in Sec. 3.4. Nevertheless, searchvar is
valuable to the research community as it provides a precise and
efficient way of identifying all SSHOMs.

4 STEP 2: SSHOM CHARACTERISTICS
In this second step, we study the characteristics of (strict-)SSHOMs,
with the goal to inform subsequent heuristic search strategies
(Step 3) and future research in general. Using the complete set
derived for the subject systems in the previous step, rather than a
(potentially biased) sample of SSHOMs, we can study characteristics
with higher confidence.

We explored the dataset in an iterative exploratory fashion, fo-
cusing primarily on characteristics that may guide future search
strategies, such as specific composition patterns and proximity of
constituent first-order mutants for the set of all higher-order mu-
tants. Kurtz et al. [40] argue that mutation operators should be
specialized for individual programs, so we focus on high-level char-
acteristics that are largely independent of specific mutation opera-
tors to avoid overfitting. We started by randomly sampling a large
number of identified SSHOMs (among the pool of all SSHOMs). We
manually inspected the sampled SSHOMs to pose hypotheses about
common characteristics. We then operationalized the hypothesized
characteristics (i.e., develop measures to apply across all SSHOMs)
to quantitatively validate them. We repeated the process until we
could not identify additional hypotheses. Due to space constraints,
we only report characteristics for which we could quantitatively
identify strong support.
Mutation Order . SSHOMs and strict-SSHOMs are typically com-
posed of only very few first-order mutants. Overall, over 90 % of all
SSHOMs and strict-SSHOMs are composed of at most 4 first-order
mutants, indicating that subtle interactions are mostly caused by
very few first-order mutants. Although we found a few SSHOMs
that are up to sixth-order in Chess and Triangle, such cases are rare,
especially for strict-SSHOMs. We plot the distribution of orders for
both SSHOMs and strict-SSHOMs in Table 2.
Equivalent Test Failures. In multiple subject systems, many
SSHOMs and strict-SSHOMs are composed of first-order mutants
that are killed by the same set of test cases (nonstrict-SSHOMs are
often killed by the same test cases, whereas strict-SSHOMs neces-
sarily are killed by fewer). In Table 2, we report how many of the
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Table 2: Characteristics of SSHOMs and strict-SSHOMs found in our subject systems.

Order Equal-Fail Rule N+1 Rule Distribution

Subject SSHOM strict-SSHOM SSHOM strict-SSHOM SSHOM strict-SSHOM SSHOM strict-SSHOM

Validator† - - 96% - 99% -
Chess† - - 76% - 38% -
Monopoly 11% 100% 99% 100%
Cli 53% 5% 98% 100%
Triangle 8% 17% 98% 50%

Order counts the number of constituent first-order mutants; equal-fail and N+1 rule explained in text; distribution: all constituent first-order mutants in the same method (M),
multiple methods in the same class (C), two classes (2C), or spread across more than two classes (*).

† for Validator and Chess we omit statistics because we cannot enumerate all possible SSHOMs (too many in Validator and incomplete set in Chess)

SSHOMs and strict-SSHOMs in each project could be found when
only combining first-order mutants that are killed by the same test
cases, which we name Equal-Fail SSHOMs.
Containment Relationships. In addition, we found a common
containment pattern: when a (strict-)SSHOM is composed of more
than two first-order mutants, it is very likely that a subset of these
first-order mutants also forms a (strict-)SSHOM. In other words, an
N+1 Rule, combining a previously identified (strict-)SSHOM with
one further first-order mutant is a promising strategy to identify
more (strict-)SSHOMs. In Table 2, we report how many of the
(strict-)SSHOMs in each project with more than two constituent
first-order mutants could be generated with such a rule.
Proximity. Finally, for most SSHOMs, all constituent first-order
mutants are in the same class and often even in the same method,
likely because first-order mutants with close proximity have higher
chances of data-flow or control-flow interactions. The effect is
even more pronounced for strict-SSHOMs. This stronger effect
was previously conjectured though not validated [23]. We plot the
distributions for all subject systems in Table 2.
Other . We also explored other patterns that may inform search
heuristics, such as common combinations of mutation operators
(using frequent-itemset mining [2]), but found no additional strong
patterns. While we believe a qualitative analysis of the mutants and
their characteristics may reveal interesting insights about SSHOMs
and whether they more closely mirror realistic human-made faults,
such analysis goes beyond our scope of finding SSHOMs efficiently.

5 STEP 3: CHARACTERISTICS-BASED
PRIORITIZED SEARCH (searchpri)

In a final third step, we develop a new search strategy using heuris-
tics based on characteristics found in Step 2, which will be an
incomplete, but practical alternative to our searchvar strategy.

5.1 Search Strategy
Our new search strategy searchpri avoids the overhead of varia-
tional execution, but instead again evaluates each candidate higher-
order mutant by executing the corresponding test suite, one can-
didate mutant at a time just like searchbf and searchgen. Our
key contribution is ordering how we explore candidate mutants
to steer the search toward more likely candidates. That is, instead

of a naive enumeration of all combinations (searchbf) or an ex-
ploration based on random seeds (searchgen), we prioritize based
on the previously identified typical characteristics of higher-order
mutants. Since characteristics for SSHOM and strict-SSHOM do
not differ strongly, we develop only a single search strategy.

Conceptually, we calculate a penalty for every candidate higher-
ordermutant and prioritize those candidateswith the lowest penalty.
We compute the weighted sum of three factors:

penalty = ω1 · order + ω2 · testDiff − ω3 · isN1 (5)

First, we assign penalties based on the number of constituent first-
order mutants (order): a candidate with a higher order receives
a larger penalty than a lower-order candidate, thus, prioritizing
candidates with lower order that, as our data shows, are more
likely to be SSHOMs. Second, we penalize candidates constructed
from first-order mutants that do not get killed by the same test
cases (testDiff, counting the number of test cases that can kill only
a subset of all constituent first order mutants), generalizing our
Equivalent Test Failures insight: if all first-order mutants are killed
by the same test cases, the candidate is likely to be an SSHOM, and
thus gets a 0 penalty, whereas mutants that are killed by different
test cases are less likely to form an SSHOM, and thus is deferred
with a higher penalty. Finally, we reduce the penalty of a candidate
if the N+1 Rule applies (isN1, returning 1 or 0); that is, if a candidate
can be constructed by adding one more first-order mutant to a
known SSHOM, the candidate receives a boost and gets prioritized.
By default and for our evaluation, we assign the weights ω1 = 5,
ω2 = 1, and ω3 = 15, based on our experience with the subject
systems in Section 4.

Unlike previously used genetic search strategies, where the ex-
ploration order nondeterministically depends on random mutation
and crossover in every generation, searchpri explores candidates
in a deterministic order (lexical order if two candidates have the
same priority).

5.2 Implementation
Since we cannot enumerate and sort all possible candidate higher-
order mutants for large programs, and even the execution of all
first-order mutants may take a long time, we devise an algorithm
for searchpri that identifies likely candidates in batches, shown in
Figure 5. In each batch (configurable, by default one Java package
at a time), we enumerate all candidate higher-order mutants up to

1172



Efficiently Finding Higher-Order Mutants ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

def findSSHOMs(program P, mutants M, testsuite T,
maxOrder, maxDist, budget):

foundSSHOMs = ∅
# explore the program one fragment at a time
for (batch ← fragments(P)):
# identify reachable first-order mutants in fragment
mutants = reachable(M, batch)
# run tests on reachable first-order mutants
fomTestResults = for (m ← mutants) evaluate(T, {m})

# enumerate candidate SSHOMs up to order and distance bounds
candidates = enumerateCandidates(mutants, maxOrder, maxDist)
# compute priorities for each candidate
priorities = computePriorities(candidates, fomTestResults, {})

# explore candidates in decreasing priority
while (candidates , ∅ ∧ within budget):
candidate = getNext(candidates, priorities)
candidates -= candidate
homTestResult = evaluate(T, candidate)
if (isSSHOM(fomTestResults, homTestResult)):
foundSSHOMs += candidate
# update priorities based on N+1 rule
priorities = computePriorities(candidates, fomTestResults,

foundSSHOMs)
return foundSSHOMs

Figure 5: Characteristics-based prioritized search algorithm.

a distance and order bound, then sort these candidates by priority,
and finally explore these candidates in order until a (time) budget
is reached for that batch. Batching and bounding the search is
feasible since the order and distribution characteristics dominate the
prioritization anyway and candidates beyond those bounds would
be explored only very late. If needed batches could be revisited later
with larger bounds to explore more (less likely) candidates.

After batching, our algorithm identifies all first-order mutants
defined within the given batch (function reachable) and runs the test
suite for each of these first-order mutants to identify which tests fail
(function evaluate). Subsequently, the algorithm enumerates all can-
didates (function enumerateCandidates) up to a given order bound (by
default, mutants composed of up to 6 first-order mutants) and up to
a given distance bound (by default, up to 4 methods spread across at
most 3 classes). We also discard candidates where constituent first-
order mutants have no common failing tests because they cannot
form SSHOMs according to the definition. Having a manageable set
of candidates in the given batch, the algorithm computes priorities
(function computePriorities) for all candidates using Equation 5 and
then explores these candidates in order of decreasing priorities
(function getNext) until either all candidates are explored or a (time)
budget has been reached in that batch (by default, 1 hour per batch).
For each candidate, it runs the test suite and compares test results
to determine whether a (strict-)SSHOM has been found (function
isSSHOM); identified SSHOMs are collected and used to recompute
priorities based on additional information for the N+1 rule.

5.3 Evaluation
We evaluate how effective searchpri is at finding (strict-)SSHOMs,
and additionally evaluate how it generalizes and scales to much
larger systems than in prior studies on SSHOMs (and used in Sec. 4).
Subject Systems. We evaluate searchpri both on the subjects
previously used in Section 4 and on a fresh set of much larger subject
systems. The comparison against the 5 previously used subject
systems allows us to compare effectiveness against the ground

SSHOM Strict-SSHOM

A
nt

M
at
h

JF
re
eC

ha
rt

searchgen searchbf searchpri

Figure 6: (Strict-)SSHOMs found over time, averaged over
3 executions. Note that time is plotted in a linear scale as
SSHOMs are found consistently over time due to batching.

truth derived from variational execution, but the results may suffer
from overfitting, as we evaluate the search strategy on systems
from which the insights that drive its design have been derived.

Hence, we use 3 additional subjects, listed in Table 1 (bottom), af-
ter finishing the design of our new search strategy. The new systems
are significantly larger, allowing us to explore the different search
strategies at a much larger (and possibly more realistic) scale. To
select the new subject systems, we collected all research papers pub-
lished in the last 5 years at ASE, FSE, and ICSE that have the word
“mutation” or “mutant” in the title. We then selected the five largest
Java systems used, discarding two for which we failed to reliably
execute the tests. We did not run searchvar on these systems, but
we still had to exclude some tests or mutants (reported in Table 1),
due to technical issues like hard-to-terminate infinite loops.
Measurements. We mirror our previous setup in Section 3.5 and
count the number of (strict-)SSHOMs found over time. We collect
measurements for searchbf, searchgen, and searchpri. Experi-
ments on the small subject systems were performed on the same
AWS EC2 instances (Section 3.5). For the new systems, we collected
measurements on Linux machines with 1.30GHz Intel i5 CPU and
16GB memory. When using searchpri, we used batching for the
new larger subject systems, one package at a time, with a 1 hour
budget for each package; all other parameters were left at their
defaults (described above). For the new subject systems, we ran
each measurement for 24 hours, repeated searchgen 3 times.

All considered search strategies require executing the test suite
repeatedly for each candidate SSHOM. For the larger systems, long
test-execution times severely limit the number of mutants we can
explore. To minimize the slowdown from test execution that affects
all approaches equally, we implement a standard regression test
selection technique [60] that only executes test cases that can reach
the candidate mutant (technically, we instrument the program to
record which test reaches the location of each first-order mutant
and only execute tests that reach at least one first-order mutant of
a candidate higher-order mutant). We apply this test optimization
for all search strategies.
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Results. On the small subject systems, as shown in Table 1 and
Figure 4, our new search strategy searchpri is often very effective,
performing at least as well as and usually significantly outperform-
ing both searchbf and searchgen in all subjects. In a few cases,
it even outperforms searchvar: In Monopoly it finds almost all
higher-order mutants before variational execution finishes running
the tests and in Chess it finds SSHOMs quickly, not limited by the
effort to solve large satisfiability problems.

For the new and larger systems, our results in Table 1 and Figure 6
show that the baseline approaches perform very poorly at this scale.
Without being informed by SSHOM characteristics the search in
this vast space (e.g., 5 billion candidate combinations of mutation
pairs in Math) these approaches find rarely any SSHOMs even
when run for a long time. In contrast, searchpri finds a significant
number of (strict-)SSHOMs in each of these systems: Within 24
hours it explores most batches (91 % of all packages) and has a
reasonable precision3 for finding actual SSHOMs among the tested
candidates (60.9 % in Math, 29.4 % in Ant, and 77.8 % in JFreeChart).

We conclude that searchpri is an effective search strategy that
scales to large systems and generalizes beyond systems from which
the characteristics have been collected. While we cannot assess
how many SSHOMs we are missing, our strategy is effective at
finding a very large number of them in a short amount of time.

6 THREATS TO VALIDITY
External validity might be limited by the specific programs, muta-
tion operators, and test cases. We used common mutation operators
and selected subject systems from previous papers to avoid any
own sampling bias. From most subject systems, we had to remove
some tests or mutations due to technical problems, either engi-
neering limitations of variational execution or issues with memory
leaks and infinite loops, which might affect the results to some
degree—though we do not expect a systematic bias.

Regarding internal validity, like other studies, our results might
be affected by possible mistakes in our implementations or measure-
ments and especially by we reimplemented the existing searchgen
approach. To mitigate this issue, we verified that the SSHOMs found
by searchgen and searchbf are a strict subset of the ones found
by searchvar. For SSHOMs found only by our approach, we addi-
tionally verified a sample manually to ensure they are SSHOMs.

To reduce the impact of nondeterminism in performance mea-
surements and genetic search, we report averages across 3 runs, as
in previous work [17]. Most differences are large, far exceeding the
margins of error from nondeterminism or measurement noise.

7 RELATEDWORK
In this section, we focus our discussions on higher-order mutation
testing and refer interested readers to a detailed survey for recent
advances in mutation testing in general [60].
Approaches for Finding SSHOMs. Early work has investigated
different strategies to combine first-order mutants into second-
order mutants [36, 49, 52]. Jia and Harman extended this effort
to even higher orders using heuristic search looking for certain
kinds of valuable higher-order mutants, specifically SSHOMs. They
compare a greedy, a hill-climbing, and a genetic algorithm and
3We discuss precision with more data in the supplementary material.

found that genetic search produces the best results for finding
SSHOMs [21, 23]. Since then, higher-order mutation testing has
been implemented in different mutation testing tools and frame-
works, for different languages [22, 42, 44, 51, 58, 70], usually using
some form of heuristic search [21, 23, 43, 59]. Although this work
specifically targets SSHOMs, our approach can be generalized to
other types of interesting mutants, by updating the way we encode
the search as a Boolean satisfiability problem.

Orthogonal to SSHOMs, researchers have recently investigated
an interesting type of hard-to-kill mutants called dominator mu-
tants [38, 39]. This line of work searches for the hardest-to-kill
first-order mutants among a given set by comparing executions
with regard to a test suite. Dominator mutants have been shown to
be an effective research tool to study existing mutation testing tech-
niques, for example for gauging mutation test completeness [41]
and evaluating selective mutation [40]. Just et al. [30] show that pro-
gram context can be used to approximate dominator mutants, which
might also be promising for future search strategies for SSHOMs.
Characteristics of SSHOMs. Existing work on SSHOMs mostly
discusses the quantity of SSHOMs and the difficulty of finding
them [17, 21–23, 43]. For example, Harman et al. [17] discussed
how SSHOMs relate to their constituent first-order mutants, but
their discussion focuses mainly on test effectiveness and efficiency.
Jia and Harman [23] discussed characteristics of a single SSHOM in
the Triangle program (also used in our study) but did not explore
SSHOM characteristics further. In our work, we can find a complete
set of SSHOMs with regard to used tests and first-order mutants,
which provides us more data to study what they look like.
Variational Execution. Variational execution was originally de-
veloped for information-flow analysis [3] and configuration test-
ing [31, 32, 54]. We previously suggested that variational execution
may have additional application scenarios, suggesting mutation
testing as explored here as one promising direction [74].

With regard to using variational execution for mutation testing,
Devroey et al. [9] are conceptually closest to our work in that they
pursue a complete exploration strategy with similarities to lazy con-
figuration exploration in SPLat [33, 53]. However, they explore only
traces in state machines without any joining and thus forgo much
possible sharing. Their analysis does not distinguish first-order from
higher-order mutants and does not identify or analyze SSHOM. Or-
thogonal to our work, researchers have also used various techniques
to speed up traditional mutation testing, such as sampling tests for
mutant executions, condensing mutations into a metaprogram, and
using advanced execution sharing techniques [24, 26, 60, 73]. At
a technical level, Wang et al. [73] are closest to our work in that
they look for possible redundant mutant executions by inspecting
program state, but forgo potential joining after splitting mutant
executions. Since our main goal of using variational execution is to
explore the interactions of first-order mutants rather than speed up
mutation analysis, we did not perform a performance comparison.

8 CONCLUSIONS
To efficiently find SSHOMs, we proceed in three steps. First, we
use variational execution to find all SSHOMs in small to medium-
sized programs. Second, we analyze the basic characteristics of
the identified SSHOMs. Finally, we derive a new prioritized search
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strategy based on the characteristics. The prioritized search scales
to large systems and is effective (albeit not complete) at finding
SSHOMs and outperforms the existing state-of-the-art strategy by
far. We hope that the insights and search strategies from this work
can support future work in mutation testing.
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A APPENDIX: TEST SUITE RELEVANCE
As discussed in Sec. 2.3, for all practical search strategies, SSHOMs
are identified in terms of used first-order mutants and tests. Differ-
ent test suites may result in different SSHOMs, though it is concep-
tually possible to define SSHOMs in terms of an idealized test suite
that covers all (possibly infinitely many) executions of a program.

To explore the influence of the test suite, in this appendix, we
explore how different (real and ideal) test suites affect the number
of (strict-)SSHOMs in a simple program. Given the large number of
executions involved and the use of symbolic execution to represent
the ideal test suite, we limit our exploration to our smallest subject
system, the triangle program.
Real test suites of different sizes. Keeping the first-ordermutants
fixed, we use searchvar to compute the set of SSHOMs with regard
to different test suites. Instead of the 26 tests used previously, we
generate and use a much larger set of 1334 tests for this experiment,
by systematically exploring combinations of different inputs for the
program: For each of the triangle’s three inputs, we consider values
from −5 to 5, thus yielding 113 tests (easily reaching 100% line and
branch coverage). To achieve maximum first-order mutation score,
we manually add 3more tests and verify that the remaining 3 out of
128 first-order mutants are equivalent mutants. From this large test
suite, we downsample test suites of different sizes, each time ran-
domly picking a subset of tests; we then identify (strict-)SSHOMs
for this test suite with searchvar. We report the median of five
executions to account for randomness in selecting tests.

From Figure 7, we can see that the number of SSHOMs heavily
depends on the test suite used, as expected (see Section 2). Also,
there is a clear trend that the number of SSHOMs decreases as
we use more comprehensive tests: the more tests used, the more
constrained the search becomes and the fewer SSHOMs remain. In
contrast, the number of strict-SSHOMs is low across different test
suites, likely due to the fact that they are rare.
Idealized test suite using symbolic execution. Since the num-
ber of SSHOMs decreases as more comprehensive tests are used,
one could expect that the number of SSHOMs will converge if we
consider all possible tests (usually infinitely many). Given a set of
first-order mutants, one can consider the SSHOMs with regard to a
given test suite as an approximation of a true set of SSHOMs with
regard to an idealized test suite that includes all possible tests, similar
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Figure 7: Number of found SSHOMs (left) and strict-SSHOMs
(right) using different percentages of tests.

to how comprehensive tests can be used to approximate dominator
mutants [30]. One would expect that larger test suites are better
approximations of such an idealized test suite. While such a test
suite usually does not and cannot exist, for the triangle program
we can actually simulate the idealized test suite through symbolic
execution. The program is simple enough that formal verification
of whether two (mutated) variants are semantically equivalent is
decidable and automatable.

To identify SSHOMs with an idealized test suite, we symbolically
execute the triangle program with three symbolic variables for
the three inputs to compute a symbolic representation of the pro-
gram output—for which we developed a custom symbolic execution
engine. The (possibly infinite) set of tests that distinguishes two pro-
gramsp1 andp2 is the set of values for whichϕ(p1) , ϕ(p2)whereϕ
computes the symbolic output of the triangle program; if there are
no such assignments to the three symbolic inputs, the two programs
must be equivalent (as determined by an SMT solver). To check
the behavior of a mutationm, we use ∆(m) =

(
ϕ(p) , ϕ(p +m)

)
to

denote the symbolic expression that represents all tests that kill the
mutant.

Using symbolic execution and an SMT solver, we can now de-
termine whether a higher-order mutant is an SSHOM with regard
to an idealized test suite, by using an SMT solver to solve con-
straints that encode Equation 1 to determine whether there are any
assignments to the symbolic input variables, such that (1) the higher-
order mutant fails at least for some tests (i.e., SAT (∆(h)), (2) that the
higher-order mutant fails for those tests where all first-order mu-
tants fail (i.e., TAUT

(
∆(h) ⇒

∧
i ∆(mi )

)
), and (for strict-SSHOMs)

that at least one test input passes for the higher-order mutant but
fails for all first-order mutants (i.e., SAT

(
¬∆(h) ∧

∧
i ∆(mi )

)
).

In theory, we can use our symbolic analysis to enumerate and
verify all valid higher-order mutants in triangle to establish the
set of SSHOMs wrt. the idealized test suite. However, we limit this
experiment to only combinations of two and three mutants due to
the vast search space. Using the idealized test suite of all possible
tests, we found 159 second-order and 157 third-order SSHOMs, and
5 and 3 of them are strict-SSHOMs. Interestingly, all 159 and 157
SSHOMs and 2 (of 5) and all 3 strict-SSHOMs were also identified
by searchvar using the original 26 test cases (Sec. 3). Furthermore,
467 of the 965 SSHOMs and 5 of the 6 strict-SSHOMs identified
using the 26 tests in Sec. 3 are valid (strict-)SSHOMs with regard
to the idealized test suite. That is, SSHOMs with regard to a given
test suite can indeed be seen as an approximation of a true set of
SSHOMs with regard to an idealized test suite.
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