
Building Call Graphs for Embedded Client-Side Code
in Dynamic Web Applications

Hung Viet Nguyen
ECpE Department

Iowa State University, USA

Christian Kästner
School of Computer Science

Carnegie Mellon University, USA

Tien N. Nguyen
ECpE Department

Iowa State University, USA

ABSTRACT
When developing and maintaining a software system, programmers
often rely on IDEs to provide editor services such as syntax high-
lighting, auto-completion, and “jump to declaration”. In dynamic
web applications, such tool support is currently limited to either the
server-side code or to hand-written or generated client-side code.
Our goal is to build a call graph for providing editor services on
client-side code while it is still embedded as string literals within
server-side code. First, we symbolically execute the server-side code
to identify all possible client-side code variations. Subsequently, we
parse the generated client-side code with all its variations into a
VarDOM that compactly represents all DOM variations for further
analysis. Based on the VarDOM, we build conditional call graphs
for embedded HTML, CSS, and JS. Our empirical evaluation on
real-world web applications show that our analysis achieves 100%
precision in identifying call-graph edges. 62% of the edges cross
PHP strings, and 17% of them cross files—in both situations, navi-
gation without tool support is tedious and error prone.

Categories and Subject Descriptors
F.3.2 [Semantics of Programming Languages]: Program Analysis

Keywords
Web Code Analysis; Embedded Code; Call Graphs

1. INTRODUCTION
With the pervasiveness of dynamic web applications, support-

ing developers in implementing and maintaining them becomes in-
creasingly important. Modern integrated development environments
(IDEs) should provide editor services such as code navigation, code
completion, refactorings, and other code-analysis tools. While ex-
isting sophisticated IDEs exist to provide support for programming
languages such as Java and C#, support for dynamically-typed lan-
guages such as PHP and JavaScript (JS) is challenging. Supporting
dynamic web application raises even additional challenges.

One important characteristic of dynamic web applications is that
they work in two stages: The first server-side stage (typically written
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in PHP, ASP, JSP, etc.) dynamically generates a program that is
subsequently executed in the second client-side stage (typically
consisting of HTML, JS, and CSS). In a sense, web applications can
be seen as program generators or multi-stage programs [31, 16]. The
server-side code generates the client-side code, often assembling
string literals (e.g., HTML templates, JS includes) with custom
computations—that is, code elements occurring in the second stage
are often represented as string values in the first stage.

Contemporary IDEs support developers in writing and maintain-
ing code either in server-side code or in hand-written or generated
client-side code (e.g., providing an editor service “jump to dec-
laration” for PHP or JavaScript). In fact, research on analyses of
dynamic programming languages has advanced the ability of IDE
support for languages such as PHP and JavaScript significantly
(e.g., [21, 29]). However, contemporary IDEs do not provide editor
support across stages. That is, within the server-side code, fragments
of client-side code are merely string constants, and an IDE would
not support navigating in them (e.g., finding a closing HTML tag,
navigating to a JS declaration). The staged nature of dynamic web
applications prevents a general solution, since client-side code can
be generated from arbitrary sources. However, in practice, templates
for most client-side code are available in server-side code as string
literals within which meaningful tool support is possible.

Our goal is to provide a call graph for client-side code while
it is still embedded in server-side PHP code (in the first stage).
Such a call graph can be used in IDEs to provide various editor
services. Specifically, we want to support “jump to declaration” for
JavaScript code embedded in PHP code, “jump to closing tag” for
HTML tags embedded in PHP code, and “find CSS attributes” for
CSS and HTML embedded in PHP code, even before the client-side
code is generated, as illustrated in Figure 1. In practice, navigating
within embedded client-side code is often nontrivial. For example,
an HTML element opened in one string literal may be closed in
another, possibly generated from a different file and processed in a
sequence of transformation and concatenation steps. The target of a
jump may even differ among different executions of the PHP code.

To build the call graph, we build a tool chain combining symbolic
execution, variability-aware parsing, and call-graph analyses. First,
we symbolically execute the server-side code to identify how the
client-side code will be generated. Symbolic execution approximates
all possible executions of the server-side generator, such that the
generated client-side programs may contain symbolic values and
conditional parts (i.e., they are generated depending on certain path
conditions). Next, we parse the generated output into a conditional
DOM (called VarDOM) that compactly represents all variations
of the generated server-side code. A VarDOM is similar to the
Document Object Model (DOM) for HTML but has condition nodes
to indicate that certain subtrees of the HTML document are not



generated in all executions. Based on the VarDOM, we provide
three analyses to build conditional call graphs for HTML, CSS,
and JS, describing call-graph edges for navigation among code
elements traced back to string literals in the original server-side
code. We build our infrastructure on top of our symbolic-execution
engine PHPSync [42] and our variability-aware parser framework
TypeChef [33]. For building call graphs for JS, we reencode the
problem to reuse the WALA framework [21].

We demonstrate that building call graphs for embedded client-
side code is efficient and accurate. In an empirical evaluation on
several real-word PHP web applications, our analysis achieves 100%
precision in identifying possible jumps within seconds. Although
the general problem is undecidable, our results show that in practical
cases, we can resolve most client-side relationship within server-side
code. In addition, 62% of the jumps cross PHP string fragments, and
17% of them cross files, which suggests that tool support in those
cases is valuable.

Our key contributions in this paper include: (1) the VarDOM rep-
resentation which compactly represents DOM variations generated
from the server-side code; (2) a tool infrastructure combining sym-
bolic execution and variability-aware parsing to build the VarDOM;
(3) call-graph analyses on the VarDOM for HTML, CSS, and JS
tracing nodes to the original string literals in PHP code; and (4) an
empirical evaluation to show the analyses’ accuracy and efficiency.

2. CHALLENGES
To illustrate the desired call graphs and involved challenges, we

use the running example in Figure 1, adapted from the AddressBook-
6.2.12 PHP application (see Section 6). The example shows a typical
scenario in which client-side HTML, CSS, and JS code is generated
from string literals in server-side PHP code. Note that the directive
<?php...?> separates PHP code snippets from inline HTML code—
string literals that are printed verbatim when the PHP program is
executed. Depending on the server-side execution (i.e., depending
on the values of PHP variables $ GET, $ajax, and $rtl), different
client-side programs are generated.

Editor services in IDEs, such as syntax highlighting, syntax vali-
dation, auto-completion, “jump to declarations”, and many others
are standard for most languages, including PHP, but missing for
embedded client-side code. In particular, we want to build a call
graph for nodes embedded in PHP string constants that would allow
us to navigate from opening to closing HTML tags, from CSS rules
to affected HTML elements, and from JS function calls to their
declarations. We illustrate the corresponding call-graph edges for
our running example in Figure 1.

In building call graphs for embedded client-side code, we face
three key challenges:
1. Embedded client code. The client-side code is dynamically gen-
erated from the server-side code and is often embedded in PHP
strings and inline HTML. For instance, the HTML <form> tag
in our running example is concatenated from a string literal, the
value of a PHP variable, and another string literal. HTML fragments
from string literals can be printed directly with echo statements, but
can just as well be assigned to PHP variables first, processed, and
printed later as done with $input in our example. Call-graph edges
of embedded code often cross string literals and even PHP files.
2. Conditional client code. Due to the staged nature of generating
client-side code from server-side code, a call graph of client-side
code within server-side code can only be approximated and the target
of a call may differ among different executions of the server-side
code. That is, a client-side call may have alternative possible targets,
depending on how the server-side code is executed—we say that

(a) index.php

1 <?php
2 include ("header.php");
3
4 echo ’<form method="’.$_GET[’method’].
5 ’" name="searchform">’;
6 if ($ajax)
7 $input = ’<input ... onkeyup="update()"/>’;
8 else
9 $input = ’<input ... onkeyup="update()"/>’ .

’<input type="submit" />’;
10 echo $input;
11 echo ’</form>’;
12 ?>
13
14 <script type="text/javascript">
15 <?php if ($ajax) { ?>
16 function update() { ...
17 }
18 </script>
19 <?php } else { ?>
20 function update() { ...
21 }
22 </script>
23 <?php } ?>
24
25 <?php include("footer.php"); ?>

(b) header.php

1 <html ... <?php if ($rtl) echo ’dir="rtl"’; ?>> ...
2 <style type="text/css">
3 <?php if ($rtl) { ?>
4 #footer {float:left;}
5 <?php } ?> ...
6 </style> ...
7 <body> ...

(c) footer.php

1 <div id="footer"> ... </div>
2 </body>
3 </html>

Embedded string literal: ‘...’; Call-graph edge:

Figure 1: Example PHP program, including call-graph edges
within embedded client-side code in string literals

generated client-side code and edges in a call graph are conditional.
In Figure 1, the JS call update refers to two different declarations
depending on whether the AJAX option was selected in the server-
side code. Similarly, the HTML <script> element is closed in two
alternative locations and the footer <div> has different CSS styles
depending on the server-side execution. Our goal is to identify all
possible call-graph edges and document their server-side conditions.
3. Unresolved values. When we consider multiple execution paths
in PHP code, certain values are not resolved until the PHP code is
executed and may be non-deterministic in general. Values may be
computed or retrieved from databases, files, or the user input (e.g.,
the PHP variable $ GET[‘method’] obtains its value from the user’s
query string). The analysis cannot statically derive their values, but
must be able to work with uncertainty caused by unresolved values.

3. APPROACH OVERVIEW
Our approach builds on the observation that most of the generated

client-side code that does not come from databases (75%–96%
according to our prior study [3]) is contained in server-side code
in the form of PHP string literals (including the inline <?php...?>
notation) and can be largely traced through the generation process.
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Figure 2: (a) Approach overview and (b) produced call graphs

1 <html
2 #if α //’$rtl’
3 dir="rtl"
4 #endif
5 >
6 <style type="text/css">
7 #if α //’$rtl’
8 #footer {float:left;}
9 #endif

10 </style>
11 <body>
12 <form method="Φ" name="searchform">
13 #if β //’$ajax’
14 <input ... onkeyup="update()"/>
15 #else
16 <input ... onkeyup="update()"/><input type="submit" />
17 #endif
18 </form>
19 <script type="text/javascript"> ...

Figure 3: An excerpt of the conditional output of the PHP
program represented with conditional-compilation directives.
Greek letters represent symbolic values in symbolic execution.

To build call graphs, we process the server-side code in three
steps—symbolic execution, variability-aware parsing, and analysis—
as outlined in Figure 2a.
1. Symbolic Execution. To identify how the client-side code will
be generated in all possible executions of the server-side generator,
we symbolically execute the server-side code. During symbolic exe-
cution, we follow all function calls, follow the handling (assigning,
reassigning, concatenation, printing) of string literals and variables,
explore all conditional branches (if statements), and explore one iter-
ation of each loop in PHP code. We use symbolic values to represent
non-determinism and interactions with the environment (e.g., read-
ing from a database or web service, getting the current time, etc.).
The result of symbolic execution is the generated client-side code
(called D-Model [42]), which may contain symbolic values and in
which parts of the output are printed only depending on a (symbolic)
path condition. During symbolic execution, we track the origin
locations of all string values. For illustration, we represent the out-
put of symbolically executing our running example as a client-side
program with #if conditional-compilation directives in Figure 3.
2. Parsing into a VarDOM. Next, we parse this output, which con-
tains the (approximated) client-side code of all possible executions,
with symbolic values. We ignore symbolic values (typically originat-
ing from user input or a database), since it cannot be the source of a

“jump to” editor command (there is nothing in the server-side code
that a user could jump from), and it is unlikely to contain a target
(see evaluation). However, we preserve the alternatives originating
from exploring alternative execution paths in the PHP program. That
is, if the output of a client-side code sequence depends on a (sym-
bolic) decision in the PHP code, we preserve the notion that this
sequence is conditional (depending on the path constraint).

For parsing, we transform the symbolic output into a stream
of conditional characters in which each character has a formula
representing the path condition under which it was produced. The
token stream contains special SYM tokens to represent symbolic val-
ues. To build parse trees from conditional token sequences, we use
variability-aware tooling originally developed for software product
lines (e.g., parsing and analyzing all configurations of C code with
#ifdef directives [33]). We parse the generated client-side code into
a conditional DOM—called VarDOM—that compactly represents
all its variations. A VarDOM, the core of our analysis framework,
is similar to the Document Object Model (DOM) for HTML, with
the addition of condition nodes to indicate that certain subtrees of
the HTML document may vary depending on some condition. In
Figure 4, we illustrate the VarDOM for our running example, with
condition nodes highlighted. Note how the two JS function calls
update and their respective declarations are represented in the same
VarDOM with different conditions. Through all parsing steps, we
track origin locations to VarDOM nodes. Though beyond our focus,
the parser can report identified syntax errors in generated client-side
code and the VarDOM can be used for syntax validation, syntax
highlighting, and auto completion within PHP string literals in IDEs.
3. Analysis to build call graphs. Finally, we analyze the VarDOM
to build call graphs. While traditional analyses for static client code
work on a single DOM, our variability-aware analyses work on a
VarDOM with conditional parts. Our analyses consider these condi-
tions and build a conditional call graph. Call-graph nodes refer to
code elements with corresponding origin locations in string literals
of the server-side code. Call-graph edges represent possible jumps
between nodes and may have conditions. Specifically, we create call-
graph edges between opening and corresponding closing HTML
tags, between CSS rules and affected HTML nodes1, and between JS
function calls and corresponding function declarations. For HTML
and CSS, we implement our own analyses; for JS, we reencode
the problem to reuse the existing call-graph analysis in WALA [5]
(Section 5). In Figure 2b, we illustrate the analysis results for the
embedded code of our example. Notice how the opening HTML tag
<script> is related to two alternative closing tags with correspond-

1These are not traditional calls, however, similar in IDE purposes.



<html>

<style> <body>

<form>

<input> <input> <input>

<script>

β !β !β

β

function 
update() {   }

!β

function 
update() {   }

α

#footer { float:left; }

dir: "rtl"α

id: "footer"<div>

onkeyup: "update()"

onkeyup: "update()"

type: "submit"

L7, Fig. 1a

L9, Fig. 1a

L16-17, Fig. 1a L20-21, Fig. 1a

L4, Fig. 1b

L1, Fig. 1c
<Element> HTML element

HTML text

Cond

HTML attributeName: Value

Condition node

Attribute of an 
element

DOM structure

Text

Document

Document HTML document

<script>

L14-L18, Fig. 1a L14-L22, Fig. 1a

α: $rtl β: $ajax

Figure 4: The VarDOM for the PHP program in Figure 1

ing conditions and how the footer element may or may not have
CSS annotations in different executions. The conditional call graph
is subsequently used for various forms of IDE tool support [1] (e.g.,
jump to declaration, jump to closing HTML tag, or find CSS rules).

4. THE VARDOM REPRESENTATION
Our core representation is the VarDOM, a compact structural repre-

sentation the possible client-side programs. In the following, we first
describe VarDOM and subsequently explain how we derive it from
PHP code with symbolic execution and variability-aware parsing.

4.1 VarDOM Representation
Just as the DOM represents the hierarchical syntactic structure

of a web page with nested nodes of four types (HTML elements,
attributes, text, and comments), a VarDOM represents the tree struc-
ture of a web page with variations. The key difference is that in
a VarDOM all elements can be conditional, that is, they are part
of the web page only given a specific condition called presence
condition. We model conditional elements with condition nodes
in the tree, where the condition node holds the presence condition
for its subtree, as illustrated in Figure 4. Note how this representa-
tion can compactly represent variations within similar pages; in our
running example, possible client-side pages differ with regard to
input fields depending on whether AJAX is enabled, but all pages
share the same <html> and <body> elements. Conceptually, it
is possible to move condition nodes up the VarDOM hierarchy by
replicating code fragments yielding a less compact representation
(see the choice calculus for a formal treatment [19]).

Presence conditions in condition nodes refer to decisions dur-
ing the execution of the server-side code. They originate from path
conditions during symbolic execution (see below). During analysis,
we will attempt to exclude infeasible call-graph edges by checking
whether a presence condition is satisfiable. Different formalisms
are possible with different accuracy and expense tradeoffs. Con-
ceptually, any formalism supporting conjunction, negation, and a
mechanism to detect (some) unsatisfiable formulas is possible; we
use propositional logic and SAT solvers, as we will explain.

4.2 Symbolic Execution
To build the VarDOM for embedded client-side code, we need to

extract the client-side code from the server-side PHP code. There
are several possible strategies from collecting all string literals as
they occur in the server-side code [40] to tracing the execution
of test cases [46, 53]. We approximate the output of all possible

executions of the server-side code by executing it symbolically,
reusing our symbolic-execution engine PhpSync, developed in prior
work [42]. Symbolic execution assumes all unknown values (user
input, I/O, nondeterminism, and so forth) as symbolic. When reach-
ing control-flow decisions, symbolic condition explores all possible
paths, keeping track of a path condition and ignoring executions with
infeasible path constraint. During symbolic execution, we track all
output of the executed PHP code. Output fragments can be concrete,
produced from string literals inside the PHP code (possibly after
several reassignments, concatenation, and other string processing
steps), or symbolic. For each output fragment, we record the path
constraint under which it was produced. Additionally, we track the
origin location of each string literals such that we can map all output
back to the original PHP literals. The output of symbolic execution
represents the (usually infinite) number of possible client-side imple-
mentations generated from the PHP code as a stream of characters
and symbolic values, in which each entry has a path constraint and
each character has origin information. To support developers’ under-
standing, we store not only the (symbolic) path condition, but also a
textual representation of the corresponding conditions’ PHP code as
comment, as shown in Figure 3.

Our symbolic-execution engine PhpSync is unsound but efficient
and effective at approximating all possible outputs of the PHP pro-
gram. It performs only coarse tracking of symbolic values (e.g.,
α + 1 is tracked as a new symbolic value β instead of tracking
expressions exactly; we only track string operations such as con-
catenation exactly); it explores exactly one iteration of each loop
and aborts on recursion; it does not support class and object features
in PHP 5 yet; and it uses only conservative approximations to de-
tect some infeasible paths (which is undecidable in general). Since
our goal is not detecting bugs in the PHP execution, but to extract
call-graph edges within embedded string literals for tool support,
these simplifications are acceptable: When analyzing embedded
client-side code from string literals, we do not care how often these
are printed within a loop; exploring infeasible paths will at most
identify additional call-graph edges with infeasible conditions (see
next section) which a user can often identify quickly.

4.3 Parsing
For further analysis, we need to transform the character stream

into a VarDOM that represents the structures of the client-side im-
plementation. Since the output of symbolic execution contains con-
ditional characters (only printed under given path constraints) and
symbolic characters, parsing is challenging. Fortunately, the prob-
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lem resembles closely the challenge of parsing unpreprocessed C
code that still contains #if directives, which we solved recently [33].
To illustrate the similarities, we already listed the output of symbolic
execution as code with #if directives in Figure 3. Next, we describe
our variability-aware parser framework TypeChef originally devel-
oped for C code and subsequently explain how we use it to parse
the VarDOM with a lexer, a SAX parser, and a DOM parser.
1. The variability-aware parser framework. The parser frame-
work TypeChef provides a library of variability-aware parser combi-
nators that can be used to develop parsers for different languages.
All parsers expect a sequence of conditional elements (with a pres-
ence condition each) as input and produce a single parse tree with
condition nodes (again with presence conditions) as a result. The
parser combinators handle variability during the parsing process by
forking subparsers when encountering conditional tokens and join
subparsers subsequently. Since it exploits sharing among configu-
rations, variability-aware parsing is much faster than a brute-force
approach of parsing all variants separately. Details of the TypeChef
parser framework are described elsewhere [33], and equivalent strate-
gies based on LR parsers have been developed subsequently [23];
here we use TypeChef as is to develop new variability-aware parsers.

Parsers written with the TypeChef combinators do not make any
assumptions about how presence conditions are used in the input,
i.e., #if directives do not need to align with the underlying code
structure. Variability-aware parsing is sound and complete with
regard to a brute-force approach that would parse every possible
configuration separately with a traditional parser; it reports condi-
tional parser errors if some configurations cannot be parsed and
returns an parse tree for the remaining configuration. In case pres-
ence conditions do not align with the underlying structure of the
host language, the parser parses local sequences multiple times and
locally replicates code until alternative conditional parsing struc-
tures can be recognized, as visible from the S-expression example
with two alternative closing parentheses for the inner S-expression.

As an illustration, Figure 5 shows variability-aware parsing of
S-expressions [39] using TypeChef. A list of conditional tokens (cre-
ated from a code fragment with #if) is parsed into an S-expression
structure with three conditional children, precisely and compactly
representing the possible S-expressions in all configurations without
replicating shared structures such as the literal ‘1’.
2. From symbolic-execution output to conditional character stre-
ams (Lexing). From symbolic execution’s output, the lexer pro-
duces a sequence of conditional characters. The condition of each
character is derived from the path constraint under which the output
was produced during symbolic execution (represented with #if di-
rectives in Figure 3). We preserve the same formalism for formulas
and satisfiability checking used during symbolic execution (proposi-
tional formulas and SAT solvers in our implementation). The lexer

produces a special SYM token for symbolic values in the output and
propagates origin locations from the PHP code for every individual
character. We exemplify the step for our example in Figure 6.
3. SAX parser. To deal with the complexity of HTML, we proceed
in two steps common in HTML parsers. The first step recognizes
nodes and their attributes in a flat structure (SAX-style parsing)
whereas the second step builds a tree from those nodes (DOM
parser). The SAX parser takes the stream of conditional characters
and produces a list of conditional nodes. Nodes can be opening tags
with a name and possibly conditional attributes (e.g., <div id=”i”>),
closing tags with a name (e.g., </div>), or text fragments contain-
ing possibly conditional characters. The parser accepts symbolic
tokens in text, as tag names, as attribute names, as attribute values, or
as whitespace. As seen in Figure 6, this parsing step produces a very
shallow parse tree of a document with a list of conditional tags, texts,
and comments, of which start tags can contain conditional attributes,
and texts/comments can contain conditional characters. The parser
framework propagates origin locations and presence conditions.
4. DOM parser. In the second parsing step, we use the document’s
list of conditional nodes from the previous step as conditional token
sequence for the subsequent DOM parser. The DOM parser itself is
simple, since it recognizes only a tree structure based on matching
starting and closing tags. However, the context-sensitive nature of
checking well-formedness in HTML requires matching names in
opening and closing tags, for which we wrote a simple combina-
tor. Again, the parser framework propagates origin locations and
presence conditions. In the VarDOM of our running example, ex-
emplified in Figure 6, the first input field is guarded by condition
node β (‘$ajax’), and the other input fields are guarded by condition
nodes ¬β (‘!$ajax’). (Note: we simply propagate attributes inside
nodes and variations inside text nodes from the SAX parser.)
5. Reporting parsing errors. During parsing, the two parsers reject
ill-formed HTML code (the first parser rejects invalid syntax of tags
and attributes and the second parser rejects invalid nesting and
missing closing tags). In each case, the parsers report a conditional
error message for invalid configurations (with location information
tracked from the initial PHP code) and a parse tree for the remaining
configurations. For example, the HTML DOM parser would report a
missing closing tag for <div> in line 2 in the example below in the
configurations with $C evaluating to true. Although relaxed or error-
recovering parsing is conceptually possible, rejecting ill-formed
code has the additional benefit of being able to report client-side
errors during development while embedded in server-side code. In
addition, we could easily check validity and other invariants on top
of the VarDOM representation, reporting conditional error messages
when structural assumptions are violated.

PHP code: Output of symb. exec.:
1 if ($C)
2 $div = ’<div>’;
3 else
4 $div = ’’;
5 echo ’<form>’.$div.’</form>’

1 <form>
2 #if α //’$C’
3 <div>
4 #endif
5 </form>

6. Assumptions and Limitations. The output of symbolic execu-
tion may contain symbolic values representing a potentially infinite
number of possible client-side programs. The symbolic execution
engine however explores only a finite number of paths in the server-
side code (due to our simplifications with regard to loops and recur-
sion, Section 4.2), which allows us to parse the output into a structure
with a finite number of variations expressed through condition nodes,
assuming that symbolic values do not affect the output’s structure.

Specifically, we assume that symbolic values produce tag names,
attribute names, or attribute values when used in that location and
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produce well-formed HTML fragments otherwise (in which case we
can parse it as text or white space). For example, we fundamentally
could not parse the output ‘<div>Ψ’ if we had to assume that
Ψ might provide the closing tag. Although it is easy to construct
artificial examples that we cannot parse, we have not seen a code
fragment in practice in which a symbolic value (e.g., from user
input or another source of nondeterminism) affected the structural
well-formedness of produced client-side code.

5. BUILDING CALL GRAPHS
The VarDOM is the basis for all subsequent analyses to build

conditional call graphs that can be used for tool support. Even
though not executable, we interpret relationships among HTML
and CSS elements as call-graph edges as well, since they equally
provide a foundation for corresponding editor services. In general, a
conditional call graph consists of nodes reflecting positions in the
server-side code2 and edges representing relationships among those
nodes (calls, corresponding tags, affected CSS rules, and so forth).
Edges in a conditional call graph can have a presence condition,
meaning that the node is related to another node only in certain
executions of the server-side program. For example, an opening
HTML tag can be closed by two different closing tags resulting
in two conditional call-graph edges, as illustrated with the script
tag in our running example (see Figures 1 and 2b). As usual, call
graph edges can be navigated in both directions for different editor
services, e.g., “jump to declaration” versus “find usage”. If the
server-side code has multiple entry points (e.g., multiple .php files a
user can call), we build VarDOMs and analyze them separately for
each entry point and subsequently merge all call graphs, in which
the nodes point to the same PHP code locations.

We illustrate three analyses to extract conditional call graphs for
IDE support in HTML (“jump to opening/closing tag”), CSS (“jump
to affected nodes” and “find applicable CSS rules”), and JavaScript
(“jump to declaration”), each while embedded in server-side code.

2Technically, a node can refer to multiple positions in the source
code if it was concatenated from multiple string literals.

5.1 Supporting HTML Jumps
For an HTML jump, we define a source as an HTML opening

tag and a target as its corresponding closing tag (either the entire
tag or the name of the tag). This type of jumps is useful in helping
developers understand the structures of HTML tags that would be
produced by their PHP program and find closing elements especially
if they are generated from different PHP files, such as the body tag
in our running example.

Building call-graph edges for HTML jumps is straightforward.
We simply traverse the VarDOM and look up the origin locations of
the opening and closing tags of each element (as explained in Sec-
tion 4.3, tokens representing opening and closing tags produced by
the SAX parser are used in the DOM parser). We create a call-graph
edge between those locations with a presence condition reflecting
the element’s presence condition in the VarDOM (i.e., a conjunction
of all condition nodes between the element and the VarDOM’s root).
When an element has alternative opening or closing tags, it occurs
repeatedly in the VarDOM under alternative presence conditions
(e.g., the two <script> elements in Figures 2b and 4).

5.2 Supporting CSS Jumps
CSS code consists of CSS rules to define styles for HTML ele-

ments. We create call-graph edges between CSS rules and all HTML
elements selected by them, to support navigation among those el-
ements within server-side code, similar to the debugging facilities
that many browsers provide for generated client-side code.

Unlike our HTML-jump analysis in which opening and closing
tags are directly available in the VarDOM, we need to extract CSS
rules from text fragments in the VarDOM—typically from <style>
tags and from included (potentially generated) files. Notice that each
CSS fragment is a sequence of conditional characters, in which we
preserved the presence condition of the originating HTML element,
and which may contain symbolic values. To analyze the CSS code
with its variations, we wrote another variability-aware parser with
TypeChef to recognize CSS as a list of conditional rules (ignoring
symbolic values as white space), illustrated in Figure 7. The parser
framework propagates origin locations and presence conditions.
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Figure 7: Parsing CSS code with variability

After parsing, we only need to match the selector of each CSS rule
against the VarDOM nodes. We create a call-graph edge for every
match in the VarDOM, each with a presence condition that conjuncts
the presence condition of the CSS rule with the presence condition
of the matched HTML element. Edges with infeasible presence
conditions can be filtered as far as the used formalism supports
it. We reimplemented the matching algorithm for the most com-
mon selectors (class selectors, id selectors, element selectors, and
nested selectors), implementing remaining selectors is technically
straightforward following the specifications of CSS [2]. We list the
CSS-related call-graph edge for our running example in Figure 2b.

5.3 Conditional JS Call Graph
To build a conditional call graph for JS, in general, we can develop

a variability-aware analysis from scratch in line with our solution
for CSS. However, due to the complexity of building call graphs
already for non-embedded JS code without conditional parts [21],
we want to reuse existing infrastructures for building JS call graph.
Our key idea is to reencode JS code with generation-time variability
as JS code with runtime variability, in which the presence conditions
of JS code are encoded as the conditions of regular JS if statements
enclosing those code elements. After transforming the code into
regular JS code (still tracking origin locations), we reuse WALA, an
existing state-of-the-art tool for building a JS call graph [5]. Through
consistent origin tracking, we can translate the identified call-graph
nodes and edges back to their location in the VarDOM and hence also
back to the original string literals in PHP code. We derive presence
conditions for call-graph edges from the presence conditions of the
involved VarDOM nodes, again filtering infeasible edges. Our goal
is to provide editor support, such as “jump to declaration”, for JS
code embedded in server-side code for every call-graph edge that
WALA can identify on the generated JS code.
1. Parsing JS code. As for CSS, we first extract all JS code frag-
ments from text elements the VarDOM. Specifically, we collect
the content of HTML <script> tags, linked JS files, and all event
handlers, such as onload and onclick. Again, we build a variability-
aware JS parser on top of the TypeChef framework that accepts
a sequence of conditional characters and produces a JS parse tree
with conditional nodes (ignoring symbolic values). We follow the JS
grammar specification [4], but ignore the context-sensitive semicolon-
inserting feature in our prototype. To simplify subsequent steps, we
push up conditional nodes to the level of statements, that is, varia-
tions inside statements are expanded to two alternative statements.
2. Reencoding variability. After parsing, we reencode generation-
time variations (condition nodes with presence conditions in the

AST) as runtime variations with if statements. This strategy, named
configuration lifting or variability encoding, has been used in model
checking and deductive verification of product lines to reuse analysis
techniques that are oblivious to generation-time variations but can
handle runtime variations [45, 51, 7, 6]. We reencode variability
with the following two key transformation rules:

R1: Condition(cond, Statement(stmt)) →
IfStatement(String(cond), Statement(stmt))

R2: Condition(cond, FunctionDeclaration(name, params,body))
→ IfStatement(String(cond), ExpressionStatement(

AssignmentExpression(Identifier(name), "=",
FunctionExpression(params,body))))

Rule R1 reencodes a statement stmt under presence condition
cond (if cond 6= true) as a JS if statement with a condition represent-
ing cond and stmt in the then branch (e.g., lines 12–14 of Figure 8).
Rule R2 for a function declaration similarly reencodes function
declaration as an equivalent assignment of a function expression
inside an if statement (e.g., lines 13 and 18 of Figure 8).

Conceptually, it is possible to prove that a reencoding maintains
the execution semantics of all configurations, e.g., by showing that
the execution semantics of executing the program is not affected by
the reencoding in any configuration (where a configuration would
either remove unnecessary code at generation time or initialize the
configuration parameters equivalently to be interpreted at runtime).
For our purpose, a strict notion of correctness is not necessary,
since we perform an unsound call-graph analysis subsequently. It is
sufficient to encode the program in a way that the analysis tool can
identify the correct call-graph edges; hence we checked correctness
of our encoding through testing only.
3. Reencoding HTML code. JS code can interact with the HTML
DOM during execution (check existence of an element, access its
properties, and so forth), which the used analysis framework WALA
takes into account to some degree. WALA takes as input an HTML
document and turns it into pure JS code which generates the docu-
ment using JS instruction document.createElement. WALA’s call
graph building algorithm for JS is then applied on this transformed
JS code. Therefore, we reencode the entire HTML code by remov-
ing all condition nodes from the VarDOM. The resulting HTML
document contains all possible alternative nodes in which all JS
code is properly reencoded. This reencoding of HTML is a crude
approximation, but sufficient for WALA’s analysis in our experience.
For instance, we reencode our running example as in Figure 8 and
analyze it with WALA.
4. Call-graph generation with WALA. To create the actual call
graph, we run WALA for JS [5] on the reencoded HTML/JS code.
We take WALA’s result as is and track nodes back to their origin in
the VarDOM and in the PHP code. We create presence conditions
for call-graph edges from the conjunction of the presence condi-
tion of the two involved VarDOM nodes. In our running example,
WALA in fact ignores the conditions of the created if statements
and creates a total of four call-graph edges from each update call
to each function declaration. However, since both update calls and
declarations depend on the same symbolic path condition in our
example (i.e., we know that expression $ajax has the same value
β in both server-side if statements), two call-graph edges receive
infeasible presence condition β ∧¬β and can be discarded. We show
the JS call graph for our running example in Figure 2b.

6. EMPIRICAL EVALUATION
Our approach to build call graphs has a number of sources of

potential inaccuracies. While variability-aware parsing and call-
graph building for HTML and CSS are conceptually sound, symbolic



1 <html dir=‘‘rtl">
2 <style type=‘‘text/css">
3 #footer {float: left}
4 </style>
5 <body>
6 <form method="Φ" name="searchform">
7 <input ... onkeyup="if (’β’) update()"/>
8 <input ... onkeyup="if (’!β’) update()"/>
9 <input type=‘‘submit" />

10 </form>
11 <script type=‘‘text/javascript">
12 if (’β’) {
13 update = function () {...}
14 }
15 </script>
16 <script>
17 if (’!β’) {
18 update = function () {...}
19 }
20 </script>
21 <div id=‘‘footer"> ... </div>
22 </body>
23 </html>

Figure 8: Reencoding variability

execution may not produce output for all string literals, parsing
has limitations regarding symbolic values, and JS analysis uses
potentially inaccurate reencodings, as we explained. In an evaluation
with real-world PHP applications, we investigate the practicality
and accuracy of our approach.

In addition, IDE support for navigation is especially useful if call-
graph edges are nontrivial (e.g., developers need to search across
files). Thus, we investigate the complexity of the created call graphs
to characterize the usefulness of IDE support based on our tooling.
Experiment Setup. We collected five PHP web applications (Ta-
ble 1) from sourceforge.net with various sizes and without heavy
use of object-oriented constructs (also used in related work [42, 46]).
For each system, we selected a main file, which might also recur-
sively include other files, and ran our analysis on that file. When
encountering HTML syntax errors during parsing (most often due
to missing closing tags), we manually fixed them in the PHP code
and report results after applying all fixes. All subject systems have
multiple entry points (PHP files that can be called by a user), the
call graphs of which can be merged, but due to the manual effort
of fixing syntax errors, we considered only a single main file per
system. The main entry file, the number of symbolically executed
PHP statements, the size of the generated symbolic output, the size
of JS code, and the number of fixed errors are listed in Table 1.

6.1 Practicality and Accuracy
All call-graph computations completed within a few seconds (< 8

seconds on average, < 12 seconds in the worst case). Since this
performance is acceptable for executing analyses in the background
of an IDE, we did not perform additional rigorous performance mea-
surements. Currently, we need to fix all HTML syntax errors before
we can build call graphs, which is a positive side effect, but also a
laborious endeavor. An error-recovering parser [17] or automated
repair tools [46] could help with this step. Overall, our tool is easy
to set up for a new project by pointing it to the main file(s).
Precision. In Table 2, we list the number of call-graph edges de-
tected in all subject systems. We manually checked the created
call graphs for correctness. In small call graphs (< 100 edges), we
inspected all call-graph edges; in large call graphs, we randomly
sampled 50 edges each. We consider a call-graph edge as correct

when it connects two nodes tracked to PHP string literals, and the
nodes are actually in a call relationship. All 604 checked edges were
correct, yielding a precision of 100%.
Recall. In the absence of ground truth, recall is more challeng-
ing to measure. We approach recall with three proxy metrics—
(1) coverage, (2) symbolic discipline, and (3) reencoding losses—
addressing the three sources of inaccuracies in our approach.

1. First, we can cover only literals that are output as part of an
execution of the PHP code (string literals in dead code are never
printed and we cannot build call graphs for them). In addition, due
to limitations of our symbolic-execution engine (see Section 4.2),
we may not cover every possible execution path or may not be
able to track some string literals to their output. To characterize
the potential loss of call-graph nodes, we measure coverage as the
ratio between the number of output characters that are covered by
symbolic execution and the total number of all output characters
in the project. As a heuristic to ignore string literals that are not
output, such as array index ‘method’ in $ GET[‘method’], we only
consider literals that contain the representative HTML tag-opening
character ‘<’. When executing the single main file, we cover 6% to
32% of all characters. When symbolically executing all entry points
of the PHP code, we cover on average 84% of all characters, (see
the last column in Table 1). This shows that symbolic execution can
achieve high coverage in our subject systems.

2. Second, we manually inspected all occurrences of symbolic
values in the output of symbolic execution. We did not find a single
case where a symbolic value was relevant for the structure of the
VarDOM. That is, a symbolic value may add substructure but in no
case was it required to provide the closing tag for a concrete opening
tag or similar structural parts. This confirms our assumptions in
Section 4.3 and makes inaccuracies due to symbolic values unlikely
in our subject systems.

3. Third, while HTML and CSS analyses are sound with regard to
a brute-force approach, our reencoding for JS analysis may lead to
documents in which the used JS-call-graph tool WALA cannot find
all call-graph edges. Note that we do not want to check the quality of
WALA’s call graphs but only to what degree our reencoding prevents
discovering call-graph edges that WALA could discover without
reencoding. Thus, we generated random configurations from the
symbolic output (i.e., different selections for the #if decisions) and
executed WALA on the generated code (without variability and
without reencoding), comparing the resulting call-graph edges with
the ones identified when analyzing the entire configuration space
with reencoding. We did not find a single case where reencoding lost
call-graph edges compared to analyzing individual configurations.

Overall, the results and performance are practical and promising.
In our subject systems, our tool yields a perfect precision. Investigat-
ing the sources of inaccuracies that lead to reduced recall shows that
symbolic execution can cover 84% of string literals and that sym-
bolic values during parsing and reencoding of JS are unproblematic.
More details are in Table 1.

6.2 Complexity
Besides accuracy, we investigated the potential benefit of such

support. Using the created call graphs, we measure several character-
istics to show the complexity of the underlying problem, suggesting
the effort required when developers do not have IDE support.

First, we investigated the locality of call-graph edges. Call-graph
edges are often nonlocal. 46% of all HTML call-graph edges on
average and up to 100% of JS call-graph edges connect nodes in
different string literals (Table 2). That is, the connected elements
are written in different parts of the server-side code, with some
PHP code between them. While many call-graph edges for HTML



Table 1: Subject systems and coverage
Subject System Version Files LOC Main Entry Exec. Output Size Re-encoded JS HTML Coverage

Stmts Chars Conds Stmts Re-enc Errors Main Entry All Entries

AddressBook (AB) 6.2.12 100 18,874 index.php 1,546 15,480 195 223 28 12 32% 94%
SchoolMate (SM) 1.5.4 63 8,183 index.php 2,386 30,318 52 188 46 155 24% 92%
TimeClock (TC) 1.04 69 23,403 timeclock.php 1,311 15,157 99 128 36 22 11% 63%
UPB 2.2.7 394 104,613 admin_forums.php 5,175 35,587 711 876 0 30 6% 79%
WebChess (WC) 1.0.0 39 8,589 index.php 93 3,409 1 84 0 0 6% 97%

Table 2: Complexity of call graphs
Sys. HTML Jumps CSS Jumps JS Jumps Strings

Total xStr xFiles Total xFiles Total xStr on echo

AB 345 68% 2.3% 157 100% 7 85.7% 90%
SM 610 19% 6.2% 127 100% 33 100% 81%
TC 269 49% 4.5% 74 100% 2 0% 99%
UPB 386 49% 4.4% 136 100% 75 0% 44%
WC 40 63% 0% 20 100% 4 75% 97%

Tot/Avg 1,650 46% 3.5% 514 100% 121 52% 79%
xStr/xFiles: Number of call-graph edges that cross strings/files.

Avg: Geometric mean for non-zero relative numbers (percentages).
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are relatively local, with source and target in the same line or only
few lines apart, about 8.3% are more than 20 lines apart and 3.5%
are even in different PHP files. JS call-graph edges often span a
larger distance, an average of 196 lines, but were mostly within the
same PHP file. For CSS, even all call-graph edges connect nodes in
different files since all CSS rules are written in separate files in our
subject systems. Tool support is especially valuable for long jumps
and jumps across files. Details are listed in Table 2 and Figure 9.

To characterize how difficult it is to track string literals through
PHP code, when they are (re)assigned, concatenated, or part of other
computations, we also tracked how many string literals are printed
immediately or appear as inline HTML code in a PHP file. Again, we
track only string literals containing the character ‘<’. We found that
on average 21% of all such string literals are assigned to variables be-
fore they are eventually printed at a different location (Table 2). Our
analysis can follow these string literals and create correct call graphs,
while navigation without IDE support might not be straightforward.

Second, conditional jumping where one HTML tag is closed by
alternative closing tags depending on the server-side execution is a

challenge for tools and humans. Our solution with variability-aware
parsing can correctly handle those cases and create corresponding
conditional call-graph edges. We found two cases where the source
of an HTML jump has multiple targets in AddressBook and Time-
Clock each, both similar to the <script> tag in our running example.
Here, a developer may accidentally finish manual search before find-
ing all relevant closing tags. In addition, we found 21 cases in
SchoolMate in which call-graph edges among nodes with the same
name are disambiguated by their respective presence conditions,
similar to the JS update call in our running example. Our results
show that the produced client-side structure mostly aligns with the
server-side execution, so that these cases are relatively rare in prac-
tice. They also demonstrate that our more powerful infrastructure
can provide accurate results in common as well as difficult cases.

Finally, a common approach for navigation in embedded client-
side code is to use a global text search, especially for nonlocal jumps.
A naive global text search for closing HTML tags, such as table, a,
and form yields hundreds of results in dozens of files even in the
smaller PHP projects. A global text search is only more promising
for rare tags, such as html and body and uncommon JS variables
and function names. For CSS, global text search is almost useless.
A developer would not perform a global search in most cases and
in many cases the corresponding jump target is only few lines away
(see Figure 9), but nesting of HTML tags, common jumps across
string literals, and occasional jumps over many lines of code and
even across files (see Figure 9 and Table 2) show that a local search
is also not a universal strategy. The relatively rare but possible case
that a jump has alternative targets depending on the server-side
execution (as the <script> tag in our running example), emphasizes
that an incomplete local search may actually miss important targets
potentially leading to inconsistencies. Overall, we conclude that text
search can be an effective alternative in many common local cases
but that a call graph can support navigation in many nontrivial cases
quantified throughout our evaluation.

6.3 Threats to Validity
Regarding external validity, we selected only a small sample of

medium-sized subject systems and investigated only a single main
file per project, due to the main bottle neck of manually fixing
HTML syntax errors. While we cannot generalize over arbitrary
PHP systems, all systems are real-world open-source applications
developed by others and the results are consistent over all systems.

Regarding internal and construct validity, we used various proxy
metrics to carefully characterize possible recall and usefulness mea-
sures. Since we do not have ground truth about what call graphs
to expect, we decided to break down the evaluation into the three
sources of inaccuracies. Implementation defects may also reduce
precision and recall, but our tests and manual investigations did not
reveal any issues. Instead of performing a user study in which the
navigation benefit may be buried in noise or over-exaggerated with
artificial tasks or material, we decided to characterize usefulness by



quantifying nontrivial call-graph edges in which developers could
likely benefit from a tool. We expect a strong correlation with actual
improvements in practice, but a usability study is still required.

7. RELATED WORK
State-of-the-art IDEs do not provide call-graph-based editor sup-

port such as “jumps to declaration” for embedded client code within
server-side web application. However, there exist analysis approaches
for embedded client code to support other software engineering tasks.

Analyzing generated client-side HTML code. The Eclipse plu-
gins PHPQuickFix and PHPRepair [46] detect and fix errors in
server-side PHP applications leading to ill-formed generated HTML.
PHPQuickFix examines constant prints, i.e., the PHP statements
that print directly string literals and repairs HTML ill-formed errors.
Whereas we symbolically execute PHP code to track how string
literals are processed, it analyzes each string literal separately and
can only identify local issues. In contrast, PHPRepair follows a
dynamic approach in which a given test suite is used to generate
client-side code with different server-side executions, while tracing
the origin of output strings. In contrast to their dynamic strategy,
we symbolically execute PHP code to approximate all possible exe-
cutions and subsequently use a variability-aware parser to analyze
them all. We additionally detect well-formedness issues.

In Wang et al. [53], a user generates the client code by executing
the (instrumented) server-side code with a specific input. Changes in
that generated code can then be mapped to their origins in the PHP
code using the recorded run-time mappings and static impact analy-
sis. We similarly track origin locations, but we symbolically execute
the PHP code. We previously used our symbolic execution engine
PhpSync for similar purposes [41, 42]. First, we used our static origin
tracking to propagate changes in the client code (output of symbolic
execution) back to the PHP code [42]. Subsequently, we designed
DRC to analyze both PHP code and generated client-side code to
detect cross-language and cross-stage dangling references [41]. In
contrast to this work, DRC extracts program entities via heuristics:
it just matches path constraints of references/declarations without
building the ASTs and DOM for embedded code in different config-
urations. Apollo [8, 9], a more general fault localization tool for PHP
code, rates the PHP echo/print statements higher in suspiciousness
by running an instrumented interpreter on test cases.

Minamide proposed a string analyzer [40] that takes a PHP pro-
gram and a regular expression describing the input, and validates
approximate HTML output via context-free grammar analysis. Wang
et al. [52] compute the approximated output of PHP code and iden-
tify the constant strings visible from a browser for translation. Both
do not aim to analyze multiple variants of embedded code in JS or
CSS. Several string taint-analysis techniques were built for PHP
web programs and software-security problems [35, 54, 55, 56]. They
can benefit from our VarDOM to analyze the embedded client code.

Outside the web context, there has been significant research
on analyzing generators and guaranteeing invariants for the gen-
erated code [15, 26, 27, 43]. Staged programming languages such as
MetaML integrate generators inside the language and can guarantee
well-typedness of a program across all stages [31, 49]. They can
give precise guarantees, but are only applicable with restricted, well-
designed meta languages, not for arbitrary PHP/JS computations.

String embedding of DSLs is another form of two-stage com-
putations [22], in which a string, such as an SQL command, is
constructed in the host language and subsequently executed by a
DSL interpreter. Here, the DSL code appears as string literals in a
host language without IDE support, just as HTML code appears as
strings in PHP. While other DSL-implementation approaches (e.g.,
pure embedded [28], extensible languages [18], external DSLs [34])

can potentially provide support for navigating DSL code, our infras-
tructure is applicable for simple string embedding as well.

Symbolic execution. Symbolic execution was initially proposed
as a program testing approach [36]. More recently, many forms of
dynamic symbolic execution have been proposed to work around
undecidability problems by combining symbolic execution with
testing to guide the execution to parts of a program [13, 14, 24,
48]. We use a simple form of symbolic execution to explore many
possible executions in a web application to produce possible outputs
for further analysis, not with the goal of finding bugs in PHP code.

JavaScript call graphs. There is a significant amount of work
on constructing call graphs for JS code [20, 21, 25, 29, 30, 38, 47].
Accuracy and performance are challenges due to the dynamic nature
of JS code and its interactions with the DOM and the browser. These
tools are aimed at improving IDE services, but they all target plain
client-side code, not code embedded in server-side programs.

Variability-aware parsing and analysis. The challenge of pars-
ing all configurations of C code without preprocessing it first lead to
significant research on parsing, initially with restrictions or heuris-
tics [11, 44] and later in a sound and complete fashion supporting
arbitrary use of conditional compilation with our parser-combinator
framework TypeChef [33] and later with a modified LR parser [23].
In this work, we used these techniques developed for C and built
four new parsers (HTML SAX, HTML DOM, CSS, and JS).

An abstract syntax tree with variations (either optional or choice
nodes [19]) is a common abstraction for further variability-aware
analysis over large configuration spaces [10, 12, 32, 37, 50], typi-
cally targeted at analyzing all configurations of a software product
line without resorting to a brute-force approach of analyzing each
configuration separately. Variability-aware analysis can be sound
and complete with regard to analyzing all configurations separately.
A common strategy to avoid reimplementing variability-aware ver-
sions of existing analyses is to reencode the build-time variability as
runtime variability and use existing analysis mechanisms that can
handle runtime variations, such as model checking [7, 45, 51]. We
build a new variability-aware analysis to derive call-graph edges for
CSS and build variability encoding for JS to reuse WALA, following
common strategies. For an overview of this field, see a survey [50].

In this work, we interpret the output of symbolic execution (repre-
senting potentially infinitively many executions) as conditional input
by ignoring symbolic values in the output and taking path conditions
as configuration options. Although this is an unsound approximation,
we have shown that this is sufficient for our purposes and allows us
to build on the experience available with variability-aware tooling.

8. CONCLUSION
Due to the staged nature of dynamic web applications, supporting

analysis on the client code while it is still embedded in the server
code is a challenging problem. This paper proposed an analysis
framework for embedded client-side code. We introduced the Var-
DOM, a representation that compactly models all possible DOM
variations of the generated client code. To build a VarDOM, we ap-
plied symbolic execution and variability-aware parsing techniques
on a given PHP program. We then implemented our own analysis
for HTML/ CSS, and reencoded the problem to reuse WALA to
build call graphs for JS. Empirical evaluation on real-world systems
showed that our tool can achieve high accuracy and efficiency.
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