
Fakultät für Informatik
Otto-von-Guericke-Universität Magdeburg

Nr.: FIN-014-2009

Flexible Runtime Program Adaptations in Java - A
Comparison

M. Pukall, C. Kästner, S. Götz, W. Cazzola, G. Saake

Arbeitsgruppe Datenbanken

Fakultät für Informatik
Otto-von-Guericke-Universität Magdeburg

Nr.: FIN-014-2009

Flexible Runtime Program Adaptations in Java - A
Comparison

M. Pukall, C. Kästner, S. Götz, W. Cazzola, G. Saake

Arbeitsgruppe Datenbanken

Impressum (§ 5 TMG):
Herausgeber:
Otto-von-Guericke-Universität Magdeburg

 Fakultät für Informatik
 Der Dekan

Verantwortlich für diese Ausgabe:
Otto-von-Guericke-Universität Magdeburg
Fakultät für Informatik

Postfach 4120

 39016 Magdeburg
E-Mail:

http://www.cs.uni-magdeburg.de/Preprints.html

Auflage:

Redaktionsschluss:

Herstellung: Dezernat Allgemeine Angelegenheiten,
 Sachgebiet Reproduktion

Bezug: Universitätsbibliothek/Hochschulschriften- und

Tauschstelle

Mario Pukall

pukall@ovgu.de

52

27.10.2009

Flexible Runtime Program Adaptations in Java - A Comparison

Mario Pukall, Christian Kästner
University of Magdeburg

{pukall, ckaestne}@ovgu.de

Sebastian Götz
TU Dresden

sebastian.goetz@jexam.de

Walter Cazzola
University of Milano
cazzola@dico.unimi.it

Gunter Saake
University of Magdeburg

saake@ovgu.de

Abstract

Software development is an ongoing process which does
not end when the first version of an application is released.
Bugs must be fixed and requirements evolve. Maintaining
an application usually means to stop the application, apply
the required changes, and start the application again. This
downtime is not acceptable for applications that must be
available 24 hours a day, 7 days a week. On the other hand
even for end-user desktop applications, restarts to apply
patches can be an annoying user experience. For that reason
we investigate how to maintain applications at runtime.
However, due to the fact that it is not predictable what
changes become necessary and when they have to be applied
the application must be enabled for unanticipated changes
even of already executed program parts. In previous work we
proposed a solution for Java, since Java is commonly used
for developing 24/7 applications. Unfortunately, this solution
came with some limitations. Therefore, we present a novel
runtime maintenance approach based on class replacements
and mediators which overcomes these limitations and allows
unanticipated changes of applications that run on top of a
standard Java virtual machine.

1. Introduction

Once a program goes live and works in productive mode
its development is not completed. It has to be changed
because of bugs and new requirements. In order to maintain a
program, it usually must be stopped, patched, and restarted.
Erlikh [1] and Moad [2] estimate the costs to maintain a
program at 90 percent of the overall development costs. Time
periods of unavailability additionally increase the mainte-
nance expenses. This is particularly true for applications that
must be available 24 hours a day, 7 days a week. On the
other hand even for end-user desktop applications, restarts
to apply patches can be an annoying user experience [3].
Users do not prefer maintenance approaches that require to
interrupt user tasks. For that reasons we aim at approaches
that allow to maintain applications at runtime.

Even though dynamic languages like Smalltalk, Python
or Ruby natively support runtime program changes, we
choose Java as language for several reasons. First, Java is a
programming language commonly used to implement highly

available applications. Examples are Apache Tomcat1, Java
DB2, or JBoss Application Server3. Second, in most fields
of application Java programs execute faster than programs
based on dynamic languages [4]. Amongst others, this is
due to the fact that Java is a (pre-)compiled language.
Unfortunately, compilation prevents Java and languages like
C and C++ from natively offering powerful instruments for
runtime program adaptation.

Literature suggests a wide range of runtime program
adaptation approaches (see related work in Section 8). The
usability of an approach can be determined by answering
the following two questions: (a) are unanticipated changes
allowed (i.e., the application of requirements for what the
running program was not prepared), and (b) can already
executed program parts be changed? We believe that it
is impossible to prepare an application for all upcoming
requirements. Furthermore, only offering modifications of
not previously executed program parts (e.g., not yet loaded
classes) while disregarding the executed parts (e.g., already
loaded classes) restricts the application of program changes.
For that reason, our approach aims at unanticipated runtime
program changes that also affect executed program parts.

Researchers spent a lot of time to overcome Java’s short-
comings regarding runtime program adaptation. Approaches
like Javassist [5], [6] and BCEL [7] allow to apply some
unanticipated changes, but only to not yet executed program
parts. In contrast PROSE [8], DUSC [9], AspectWerkz [10],
Wool [11], or JAsCo [12] allow unanticipated changes even
of executed program parts. However, PROSE, AspectWerkz,
Wool, and JAsCo do not enable class schema affecting
runtime adaptations. Although DUSC allows class schema
changes the program loses its state. In prior work, we
developed an approach based on Java HotSwap and object
wrapping that overcomes the limitations of the referred ap-
proaches while supporting a wide range of program changes
[13]. Unfortunately, the previous approach comes with some
drawbacks because we applied certain workarounds to en-
able unanticipated changes. This reduces the approachs
benefit and applicability as we will unveil. Amongst others,
it violates encapsulation, introduces the self-problem, and

1. http://tomcat.apache.org/index.html
2. http://developers.sun.com/javadb/
3. http://www.jboss.org/jbossas/

Construct to be changed Related Elements

C
la

ss
es

(1) Class Declaration Modifiers, Generic, Inner Classes,
Superclass, Subclasses, Superinter-
faces, Class Body, Member Decla-
rations

(2) Class Members Fields, Methods
(3) Field Declarations Modifiers, Field Initialization, Field

Type
(4) Method Declarations Modifiers, Signature (Name, Pa-

rameters), Return Type, Throws,
Method Body

(5) Constructor Declara-
tions

Modifiers, Signature (Name, Param-
eter), Throws, Constructor Body

(6) Blocks Statements
(7) Enums Enum Declaration, Enum Body

In
te

rf
ac

es

(8) Interface Declaration Modifiers, Generic, Superinterface,
Subinterface, Interface Body, Mem-
ber Declarations

(9) Interface Members Fields, Method Declarations
(10) Field (Constant) Dec-
larations

Field Initialization, Field Type

(11) Abstract Method
Declarations

Signature (Name, Parameters), Re-
turn Type, Throws

(12) Blocks Statements
(13) Annotations Annotation Type, Annotation Ele-

ment

Table 1. Language Constructs of Java 1.6 [15].

decreases the programs reliability due to frequent type casts.
This paper presents a completely reworked and enhanced

version of our previous runtime adaptation approach. It en-
ables Java applications for unanticipated changes at runtime
even of already executed program parts – as only known
from dynamic languages. We review the shortcomings of
our previous approach and explain how we overcome them
by combining class replacement techniques and mediators
with functions provided by the Java Virtual Machine Tool
Interface (as part of Java’s Platform Debugger Architecture
[14]) which allow to inspect and to control an application
running on top of Sun’s HotSpot VM.

2. Motivating Example

Program maintenance is not a trivial task that usually
affects many parts of a program. Depending on the re-
quirements it ranges from single statement modifications
to complex structural modifications, i.e., it might affect all
language constructs of Java as listed in Table 1.

Figure 1 examplifies that even simple program changes
can affect many parts of a program. The program depicted
in Figure 1 consists of 2 classes. One class (SortedList)
stores and sorts lists while the other class (DisplayList)
is responsible for displaying them. Considering a mainte-
nance task, the actual sorting algorithm (Bubblesort) must be
replaced by a faster one (e.g., Quicksort). For some reason
(e.g. long start up times because cashes have to be filled,
no backup available, better user experience, etc.) stopping
the program in order to apply the necessary changes is no

option. We want to change it at runtime. The application
of the new functionality requires to change different parts
of the program. First, method bubbleSort() of class
SortedList must be replaced by method quickSort()
which implements the Quicksort algorithm. Second, in order
to execute the Quicksort algorithm method display() of
class DisplayList must be reimplemented. Short time
after applying the QuickSort algorithm it was also decided
to let SortedList inherit from class LinkedList in
order to add new functions to SortedList while avoiding
to implement them again. Therefore, statement extends
LinkedList has to be applied to class SortedList.
Additionally, member l of original class SortedList
has to be removed because superclass LinkedList let it
become useless.

c l a s s DisplayList {
SortedList sl;
...
void display() {
sl.bubbleSort();
...

}
}

c l a s s SortedList {
List l;
...
void bubbleSort() {

/∗ b u b b l e s o r t ∗ /
}

}

⇓ 1st Program Change ⇓
c l a s s DisplayList {
SortedList sl;
...
void display() {
sl.quickSort();
...

}
}

c l a s s SortedList {
List l;
...
void quickSort() {

/*quicksort*/
}

}

⇓ 2nd Program Change ⇓
c l a s s DisplayList {
SortedList sl;
...
void display() {
sl.quickSort();
...

}
}

c l a s s SortedList extends
LinkedList {

...
void quickSort() {

/∗ q u i c k s o r t ∗ /
}

}

Figure 1. Unanticipated Runtime Adaptation.

Even if the required program changes seem to be simple
they affect wide parts of the program (i.e., points 1 - 6 of
Table 1). Therefore, we search for a new mechanism in
Java that allows to change every part of a program in an
unanticipated way.

3. The Java Virtual Machine

In order to understand what is provided or possible in Java
and what challenges remain regarding runtime adaptation it
is necessary to understand the internals of Java’s runtime
environment – the Java virtual machine (JVM). A Java

program is stored in the heap and in the method area of the
JVM (as well as on the stack). Within the heap the runtime
data of all class instances are stored [16]. In case a new
class instance has to be created the JVM explicitly allocates
heap memory for the instance, whereas the garbage collector
cleans the heap from data bound to class instances no longer
used by the program. Unlike the heap, the method area stores
all class (type) specific data such as runtime constant pool,
static field information and method data, and the code of
methods (including constructors).

Figure 2. Program Representation in Java HotSpot [17].

Changing a program during its execution in the JVM
requires to modify the data within the heap and the method
area. For instance, program changes such as depicted in
Figure 1 which also include method replacements require
to change the data of a class. In general, they require to
modify the class schema. Unfortunately, the JVM does not
permit class schema changes, because class schema changes
may let the data on the heap and the class data stored in the
method area become inconsistent while the JVM does not
provide functions to synchronize them.

Java HotSwap. Despite the insufficient native runtime
adaptation support of the JVM there is a feature provided
by the Java HotSpot VM – called Java HotSwap [18], [19]. It
allows to replace the body of a method (which partly covers
points 4 - 6 of Table 1) while the program is running. The
virtual machine permits this operation because it does not
cause inconsistencies.

The class data restructuring via Java HotSwap consists of
the following steps: First, an updated version of the class
to be changed is loaded into the JVM. It contains the new
method bodies. Second, it is checked if old and new class
version share the same class schema. Third, the references
to the constant pool, method array, and method objects of
the old class are successively (in the given order) redirected
to their (up-to-date) counterparts within the updated class.
After this is done all corresponding method calls refer to the
redefined methods. Unfortunately, Java HotSwap as well as
every other function of JVMTI neither allows to swap the

complete class data, nor removing or adding methods, i.e.,
it does not allow class schema changes.

4. Object Wrapping Approach

Having described why solely using Java HotSwap for
runtime adaptation concerns is not sufficient we present
two approaches we developed to overcome the mentioned
limitations. The first solution based on object wrappings and
interfaces was presented in [13]. It allows many runtime
program changes but has some drawbacks which restrict its
application in real world programs. Before we present our
reworked and improved runtime adaptation approach, we
revisit the previous solution and discuss the shortcomings
which forces us to develop the new approach.

Figure 3. Class Schema Keeping Updates.

Schema Preserving Runtime Adaptations. One reason
for changing a running program is to replace method bodies
which partly covers points 4 - 6 of Table 1. Such an
example is depicted in Figure 3, where the actual sorting
algorithm (Bubblesort) of class SortedList is replaced
by the faster Quicksort algorithm. Such replacements only
require to reimplement the body of a method (here of
method sort()) which does not affect the class schema.
We achieve such method body reimplementations using the
standard functionality of Java HotSwap as described above.

Figure 4. Class Schema Affecting Updates.

Schema Altering Runtime Adaptations. In many cases
new requirements imply more complex program changes
then provided by Java HotSwap (i.e., all points of Table
1). This is exemplary shown in Figure 4, where new re-
quirements make it necessary to add new methods (here
shuffle()) to the program. We use object wrapping to
apply new elements to the program. As depicted in Figure 4
wrapper SortedListWrap applies the new functionality

(method shuffle()) to the program whereas all other
methods are delegated to the original class to preserve the
original behavior.

Figure 5. Caller Update.

To apply and invoke the new or modified functionality
provided by the wrapper all instances of the changed class
have to be updated. To use additional functions caller method
display() has to be reimplemented using Java HotSwap
(see Figure 5). The reimplementation consists of two parts.
First, an instance of wrapper SortedListWrap is created
(line 15-16). Second, the new functionality is called (line
17).

We note that the mechanism described above only allows
local wrappings. In order to also allow global wrappings we
combine our approach with interfaces (see Figure 6). The
static type of callee sl of class DisplayList is changed
(before program start) to interface type ISortedList
which enables sl for late binding. Thus, it is possible
to assign objects different from type SortedList to
sl during runtime. The application of program changes
itself also bases on method reimplementations using Java
HotSwap and works as depicted down to the left of Figure
6. First, an instance of class SortedListWrap is created (line
24). It takes the original value of callee sl (an instance of
SortedList) as input. Second, the wrapper instance is
assigned to callee sl, i.e., the runtime type of sl switches
from SortedList to SortedListWrap (line 24). To
call methods not declared in interface ISortedList sl
must be casted to the actual runtime type (line 26).

4.1. Shortcomings

In [13], we demonstrated the practicability of our pre-
vious runtime adaptation approach through a case study.
Thereby, we observed different problems which result from
object wrappings and interfaces. Some of the problems
we solved through workarounds (which required boilerplate
code) while others remained open issues. Unfortunately, the
workarounds and open problems reduce the applicability of
our runtime adaptation approach.

Problems – Object Wrapping. Wrapping an object
means to combine new and old program parts. This requires
to allow read and write access to all fields of the old

Figure 6. Global Wrappings.

program part namely the object to be wrapped. To meet the
requirements all fields have to be public. In other words,
the object wrapping approach on the one hand requires to
violate encapsulation which bypasses the scoping concept
and security guarantees of Java and on the other hand
necessitates to expensively change the field modifiers (which
must be done manually in our previous runtime adaptation
approach).

Next problem resulting from object wrappings is the self-
problem. It describes situations which require to call the
wrapper from within the wrappee, i.e., situations which re-
quire delegation [20]. Since Java does not support delegation
object wrappings fail in such situations.

Another challenge of object wrappings is function re-
movement. In terms of highly available applications it is
probable that the application has to be changed more than
once. In this regard it might be the case that already
wrapped objects have to be further enhanced by introducing
additional wrappings. As denoted in Figure 7 this results in
a wrapping construct with strong dependencies inside, i.e.,
each wrapper expects its wrappee to be of specific type. Due
to the dependencies our previous approach is unable to fit
program changes which necessitate to remove functionality
introduced by a wrapper from within the middle of the
wrapping chain.

Additionally, complex wrappings such as depicted in
Figure 7 cause performance penalties [21]. This is because

Figure 7. Wrapping Chain.

of the indirections they introduce.
Problems – Interface Mechanism. As previously de-

scribed we achieve updates of callee instances (also of
global ones) via late binding respectively interfaces. Even if
this approach lets the underlying application become widely
modifiable it comes along with major shortcomings.

In order to prepare an application for the interface mech-
anism it has to be changed extensively. First, all classes
have to be forced to implement unique interfaces. Second,
all class fields have to be of type of the interface its classes
implement. Third, all final class fields must be changed to be
modifiable. Since, all changes have to be done manually in
our previous runtime adaptation approach preparation takes
much effort and is error-prone.

Next problem is program reliability. Due to the fact that
interfaces have a fixed set of public methods they declare,
they cannot be used to invoke protected methods as well
as methods introduced by the wrapper. Invocation of such
methods requires to cast the relevant object into the wrappers
type which is unsafe and reduces performance. Additionally,
the cast must be done for each such call within the program
which (especially in terms of program wide used methods)
dramatically decreases the programs reliability.

Just like object wrappings interfaces also complicate func-
tion removements. Whenever a new wrapper must be created
it has to implement the complete set of interface methods,
i.e., it is impossible to remove a method from the program
that is part of interface definition.

Challenges Object Wrapping Interface
Encapsulation Violation yes no
Self-Problem yes no
Reliability Problem no yes
Function Removement yes yes
Performance Penalties yes yes
Preparation Effort yes yes

Table 2. Summary – Shortcomings.

5. Runtime Adaptation via Class Replacements
and Mediators

The lesson we have learned from our case study presented
in [13] is that our runtime adaptation approach based on

object wrappings and interfaces can be applied to real world
applications. Nevertheless, due to the constraints described
in Section 4, the application of program changes is not
straightforward. It has open issues and requires lots of
workarounds (see Table 2). For that reason, we developed
a completely reworked runtime adaptation approach which
comes without the described limitations. It still uses Java
HotSwap, but class replacements instead of wrappers and
mediator on caller side instead of interfaces.

5.1. Runtime Adaptation Architecture

As we described in Section 3 the JVM does not support
class updates that change the class schema. Therefore, we
developed our own runtime adaptation tool which combines
class replacements and mediators to achieve flexible program
updates also including class schema changes. It comes as a
plug-in which smoothly integrates into the Eclipse IDE4.

Figure 8. Update Process.

Figure 8 describes the usage of our tool from the de-
velopers point of view. The implementation of the required
program updates is conform to the usual static software
development process, i.e., the developer implements the
required functions using the eclipse IDE and compiles
the sources. This results in sound bytecode because of
the static type checking done by the compiler. When the
developer decides to update the running application, our
tool establishes a connection to the JVM executing the
application (see Figure 9). In more detail it connects to the

4. http://www.eclipse.org/

JVM’s Java Virtual Machine Tool Interface (JVMTI) which
is used to control the JVM [22] (accessible from outside
the JVM through the Java Debug Interface (JDI)). Once the
connection is successfully established our runtime adaptation
tool prepares the bytecode so that it can be applied to the
running application. After the update our tool disconnects
from the application. The described process can be repeated
as often as required.

Figure 9. Runtime Adaptation Architecture.

In the following we describe the basic mechanisms how
our adaptation tool changes applications running in the target
JVM, namely class replacements and mediators.

5.2. Class Replacement

The only way to change the schema of a loaded class is
to replace the old class version by a new one and update all
callers of the outdated class.

Unfortunately, replacing a class is a challenging task
which requires deep knowledge about the class loading con-
cept Java enforces. The concept is based on hierarchically
ordered class loaders. To load a class the JVM requests the
following basic class loaders (in this order): (a) the bootstrap
class loader (root class loader – loads system classes), (b)
the extension class loader (loads classes of the extension
library), and (c) the application class loader (loads classes
from classpath). The first class loader in this hierarchy that
is able to load the requested class will be finally bounded to
this class, i.e., none of the other class loaders is allowed to
load or reload this class. The key problem that makes class
replacements difficult is that it is not possible to unload a
class until its class loader is dereferenced. To dereference a
class loader all its classes (even the unchanged ones) have to
be dereferenced which in case of Java’s basic class loaders
is equivalent to an application stop.

Beside all restrictions, we found two ways to enable
runtime adaptations based on class replacements. Here, we

focus on loading a new class version into the running pro-
gram. How the new class version becomes part of program
execution is discussed later.

Customized Class Loader. In addition to the basic class
loaders required to load and run a program, the class loading
capabilities of a program can be extended by using cus-
tomized class loaders [23]. This is exemplified in Figure 10
where method loadClass() instantiates the customized
class loader MyClassLoader (line 4) and then loads a
class using Java’s Reflection API (line 5).

1 ...
2 s t a t i c Class<?> loadClass(String path)
3 throws Exception {
4 ClassLoader cl = new MyClassLoader(path);
5 re turn cl.loadClass("ExampleClass");
6
7 }

Figure 10. Target JVM – Customized Class
Loader.

Loading a new class version can be done by again
calling method loadClass(). To reload a class in an
unanticipated way the code shown in Figure 10 must be
added to the program before start. Additionally, the program
must run inside our runtime adaptation architecture. Before
class reloading the adaptation tool creates the new class
version and triggers the target JVM to execute method
loadClass().

Class Renaming. As we described above, each time a
class has to be reloaded using customized class loaders a
new class loader instance must be created. As a result of
frequent class updates the application would be polluted by
class loader instances that slow down the application and
consume memory space. For that reason we consider another
class replacement strategy – class renaming. As exemplified
in Figure 11, the key idea is that while we cannot load
a new class version with the same name, we rename the
new version and load it under a fresh name. Since the
resulting class name is not registered in any class loader the
updated class can be loaded by the same class loader that
also loaded the original class. Additionally, in case of the
application class loader, instances of the new class version
can be created by the new operator instead of using Java’s
reflection API which causes performance penalties. Because
of the advantages mentioned above, we use class renaming
to load new class versions.

Figure 12 sketches how class loading based on class
renaming is implemented in our runtime adaptation archi-
tecture. The renamed and updated class is created by our
adaptation tool (based on user input). In the next step the
adaptation tool retrieves the class loader bounded to the
original class from the target JVM (line 7 - 8) and then
invokes method loadClass() of this class loader to load
the updated class (line 10).

c l a s s ExampleClass { ... }

⇓ Replacement ⇓

c l a s s ExampleClass_v2 { ... }

Figure 11. AT – Class Renaming.

1 c l a s s ClassUpdateLoader {
2 VirtualMachine targetJVM;
3 ...
4 void reloadClass(String path) {
5 ReferenceType oldClass =
6 targetJVM.classesByName("ExampleClass");
7 ClassLoaderReference cl =
8 oldClass.classloader();
9 ...

10 cl.invokeMethod(t, loadClass, args, options);
11 }
12 }

Figure 12. AT – Class Loading.

5.3. Caller Update through Mediators

As demonstrated above our class reloading mechanism
allows to load a new version of an already loaded class even
if the class schema has changed. However, the mechanism
only permits the updated class to be present within the
running program but not its execution. To let the class
become part of program execution all callers of the original
class have to be changed so that they call instances of
the new class version. This requires four steps: (1) caller
detection, (2) instantiation of the new class version, (3)
state mapping, and (4) callee substitution. Different from our
previous runtime adaptation approach our adaptation tool
automates these steps as far as possible. Additionally, we
now use the mediator pattern [21] to substitute the callees
which overcomes the shortcomings of the previously used
interface mechanism as we will show.

1 c l a s s ObjectReferenceDetector {
2 VirtualMachine targetJVM;
3 ...
4 List<ClassObjectReference> detectCallers() {
5 ReferenceType refL =
6 targetJVM.classesByName("ExampleClass");
7 List<ObjectReference> oRefL = refL.instances();
8 ...
9 oRefL.get(i).referringObjects(l);

10 ...
11 }
12 }

Figure 13. AT – Caller Detection.

Caller Detection. In order to replace all instances of
the original class by instances of the new class version
we have to detect all caller of the original class. The
JVMTI implementation of Sun’s HotSpot VM supports this

operation. A snipped of the corresponding code executed by
our adaptation tool is depicted in Figure 13. First, the class
object of the old class is retrieved from the target JVM (lines
5 - 6). This object is used to get all instances of the old class
(line 7) via reflection. Again, using the instances all callers
are retrieved (line 9).

Class Update Instantiation. In the next program adapta-
tion step, for each instance of the original class an instance
of the updated class has to be created. The created instances
will be used later on to replace the instances of the old class
and thus to update the callers.

1 c l a s s UpdateInstantiation {
2 ...
3 void createInstance(ClassObjectReference cRef) {
4 cRef.invokeMethod(t, constructor, args, options);
5 }
6 }

Figure 14. AT – Class Instantiation.

The instantiation is triggered by our adaptation tool.
The corresponding code is depicted in Figure 14. Method
createInstance() takes as argument a class object of
the new class version which is used to invoke the default
constructor of the new class version within the target JVM
(line 4).

1 c l a s s StateMapper {
2 ...
3 void mapState(ObjectReference oldObj,
4 ObjectReference newObj) {
5 ...
6 newObj.setValue(newField,
7 oldObj.getValue(oldField));
8 ...
9 }

10 }

Figure 15. AT – State Mapping.

State Mapping. Having finished the instantiation step the
state has to be mapped pairwise from old to new instance.
The mapping is processed by our adaptation tool. Due to the
simplicity of one to one mappings (mappings of values from
fields that exist in both class versions) our adaptation tool
executes them automatically. We also support more complex
(indefinite) mappings, e.g., mappings where the type of a
field differs between old and new class but the field name
remains the same. However, the mapping function must be
manually defined by the user. The function is then used by
our adaptation tool to automatically map the state pairwise
from old to new instances. Figure 15 sketches how our
adaptation tool implements one to one mappings.

Callee Substitution. Once for each instance of the orig-
inal class an instance of the new class version has been
created and initialized with the state of its outdated coun-
terpart all caller have to be updated. That is, all instances

Figure 16. Caller Update through Mediator Pattern [21].

of the original class have to be replaced by the instances of
the new class. In contrast to our previous approach we now
use mediators to update the callers. Figure 16 exemplifies the
usage of mediators. Before program start our adaptation tool
prepares the program for the mediator approach, i.e., it adds
field mediator to each program class. The mediator field
does not affect program execution as long as no callee of
the caller class has to be replaced. To replace a callee of the
caller class the program has to be changed as depicted in
the lower part of Figure 16. First, our runtime adaptation
tool creates a mediator class and copies all method and
field specific code (except of the constructors and the field
that must be updated) from the caller class to this class.
Second, the tool adds a new field from type of the updated
class to the mediator class. Third, our runtime adaptation
tool updates all method calls within the mediator according
the functionality introduced by the updated class (in Figure
16 the mediator calls method baz() instead of method
bar()). After creating the mediator class the tool assigns
(scheduled by the user) an instance of the mediator to
field mediator within the caller class (which is possible
because the mediator class extends the caller class). Last
but not least, our tool triggers the target JVM to redefine

all public methods of the caller class so that they delegate
to their counterparts within the mediator class. This is done
using Java HotSwap.

Replacing Return Types and Parameter Types with
Proxies. Even if the basic mediator approach described in
Figure 16 is sufficient in many cases, it fails when the caller
class to be updated contains methods which parameters and
returned objects are of type of the old callee class (such
as shown in Figure 17, line 6 and 9). One workaround
would be to replace the caller class as well. However, this
strategy may result in additional class replacements which
at the worst require to essentially replace all classes of the
system and thus let our runtime adaptation approach become
inefficient.

Figure 17. Extended Mediator.

In order to avoid cascading class replacements, we extend
the basic mediator approach with proxies (see Figure 17).
Caller updates work in the same manner as described above.
Only difference is that in addition to the mediator class
a proxy class is generated. The proxy manages accesses
to updated callees from outside the caller and ensures
return as well as input type compatibility when calling
methods of the caller class which require and/or return

objects of type of the old callee class. The usage of
proxies is exemplified on the basis of method foo() of
class Caller which returns an instance of callee class
OldClass (line 6). After replacing callee class OldClass
by class UpdatedClass, method foo() has to return an
instance of class UpdatedClass which is not possible
because OldClass and UpdatedClass are not type
compatible. To achieve type compatibility we assign the
instance of UpdatedClass to an instance of class Proxy
(line 37). Since the proxy extends class OldClass and also
implements the methods of class UpdatedClass it can be
returned by method foo() and also used by the receiver to
operate on the UpdatedClass instance. How to propagate
instances of the updated class back to the caller (more
precisely to the mediator) is exemplarily shown in Figure 17
(line 41-42). In order to access and use the received instance
of class UpdatedClass, the proxy must be cast to type
Proxy.

6. Comparison

As described in Section 4.1, our previous runtime adap-
tation approach, more precisely the mechanisms we used in
it (object wrapping and interfaces), has several drawbacks.
In this section, we want to answer the question whether
class replacements and mediators struggle with the same
drawbacks and/or cause new ones.

Encapsulation Violation. In our original runtime adapta-
tion approach we used object wrappings in order to achieve
class schema changes. Unfortunately, object wrappings vio-
lated encapsulation. Unlike object wrappings, class replace-
ments not only simulate class schema changes, but really
change the schema of a class, i.e., modified code and class
fields as well as instance fields reside in the same piece of
code (i.e, a class). For that reason class replacements allow
field modifiers to remain untouched.

Self-Problem. As we described in Section 4.1 object
wrappings cause the self-problem. The reason why class
replacements do not cause this problem is the same as for
avoiding encapsulation violation. It comes from the fact that
class replacements provide real class schema changes which
make delegation unnecessary.

Reliability Problem. Reliability is one of the most im-
portant concerns of software maintenance. The usage of
interfaces requires type casts in order to invoke methods
not declared within the corresponding interface. Frequent
type casts decrease program reliability. Through mediators
(that substitute interfaces in our new runtime adaptation
approach) an updated object is explicitly applied to the
program, i.e., the objects runtime type is the same as its
static type. That allows not only direct invocations of newly
added methods but also static type checking which improves
program reliability.

Function Removement. Removing functions with the
previous runtime adaptation approach is difficult for two
reasons. On the one hand it is difficult because of the
strong dependencies inside wrappings. On the other hand
this is because of the interface mechanism which restricts
to remove methods that are part of interface definitions.
Naturally, class replacements cannot cause dependencies
such as object wrappings do (because of the absence of
the corresponding inter object relations) and thus do not
complicate function removements. Additionally, mediators
do not require to determine the set of methods that have
to be implemented by a class, i.e., every method can be
removed.

Performance Penalties. There were two critical points
regarding performance in our previous runtime adaptation
approach: additional indirections due to object wrappings
and frequent usage of interfaces. Unlike object wrappings
class replacements do not cause additional indirections.
No matter how many times a class has to be replaced.
Mediators do not base on interfaces and thus come without
the performance overhead of them. They only introduce one
additional indirection and no chains of indirections which
would significantly decrease performance.

Preparation Effort. In order to prepare an application
for our previous runtime adaptation approach it must be
completely refactored. The new runtime adaptation approach
only requires to add an additional instance field (placeholder
for a mediator) to each class before program start. In other
words, we significantly reduced boilerplate code and thus
preparation effort.

State Mapping Effort. Beside the advantages of class
replacements there is one point of criticism: state mapping
effort. Whereas object wrappings do not require one to
one mappings (since the state of the wrappee is kept)
class replacements do. This is because all instances of
the old class are fully replaced by instances of the new
class version. Fortunately, our adaptation tool automates one
to one mappings which moderates the mapping overhead.
However, more complex (indefinite) state mappings must be
handled by both approaches.

Automation. Our previous runtime adaptation approach
required to process all adaptation steps manually. The adap-
tation tool we implemented for our new runtime adaptation
approach reduces the effort of runtime program changes
because it automates the following adaptation steps: creation
of new class versions (based on user input), instantiation of
new classes, state mappings (one to one), and caller detec-
tion. Callee substitutions are also automatically processed
but must be triggered by the user.

7. Open Issues

Even if the presented runtime adaptation approach solves
almost all problems the old approach came with (see Table

Challenges Wrapping Class Replacement
Interface Mediator

Encapsulation Violation yes no
Self-Problem yes no
Reliability Problem high decreased
Function Removement yes no
Performance Penalties high low
Preparation Effort high low
State Mapping Effort low increased
Automation no semi-automatic

Table 3. Comparision.

3), there is still space for improvements. Most important
point is to ensure program consistency beyond the program
change. Actually, we schedule program changes manually,
i.e., we manually identify the points within the program
on which it is safe to change the program. Unfortunately,
this requires deep knowledge about the program and its
control flow. Currently, we accumulate this knowledge
through source code reviews and (manual) stack analysis.
Unfortunately, the manual processing of program changes
is a complex and error-prone task. Therefore, we consider
to adopt approaches for consistent program changes from
Makris and Bazzi [24], and Subramanian et al. [25].

8. Related Work

In recent work, various approaches for runtime adapta-
tions in Java have been suggested.

First to say is that Java HotSwap as we use it in our
runtime adaptation approach was also developed with re-
spect to unanticipated runtime program adaptation (note that
runtime debugging is just a special kind of runtime program
adaptation). However, various approaches exist which solely
use Java HotSwap for unanticipated runtime adaptation
concerns. For example, AspectWerkz [10], [26], Wool [11],
PROSE [8], [27], and JAsCo [12] utilize Java HotSwap in
order to apply aspects [28] to the running application. What
these approaches have in common with all other runtime
adaptation approaches solely using Java Hotswap is the
absence of functions which aim on class schema changes.

Like Java HotSwap object wrapping is also subject of
numerous runtime adaptation approaches. Hunt and Sitara-
man describe in [29] an object wrapping approach which
also allows to stepwise extend the interface of the wrapping
using dynamic proxies. Kniesel presents in [30] an object
wrapping approach which adds type-safe delegation to Java.
Büchi and Weck [31] introduce Generic Wrappers which
solve the problem of wrapper transparency. Bettini et al.
[32], [33] present Featherweight wrap Java, an extension for
Java like languages which allows type-safe object wrapping.
What all mentioned approaches are missing is the ability to
apply the wrapping itself to the running application in an

unanticipated way.
Gregersen and Jørgensen presented in [34] a component

based runtime adaptation approach which enables unantic-
ipated changes also including class schema changes. How-
ever, the current implementation requires Java NetBeans and
cannot be applied to standalone applications. Additionally,
it aims at hidding the update process (update transparency)
and thus denies state mappings which require user input.

Short after we presented our previous runtime adaptation
approach in [35], Kim and Tilevich presented a similar
approach based on Java HotSwap and Proxies [36]. It allows
to add new methods and fields to a running program.
However, this approach does not allow to remove methods
defined in the proxy and to change inheritance relationships.
Additionally, it uses Helper classes to change the program
which causes the self-problem.

In our new runtime adaptation approach we use class
replacements to modify a program. Liang and Bracha de-
scribe in [23] how customized class loader can be used
to reload a class. However, reloading classes with changed
class schema was out of their scope. Malabarba et al. [37]
suggest type-safe dynamic class replacements also including
class schema changes. Unfortunately, they have to use a
modified Java virtual machine. JavaRebel5 is a commercial
tool used to quickly develop Java programs. It allows to
change a class (including the schema) and to reload it
into the running program. But, it does not allow to change
inheritance relationships.

9. Conclusion

Runtime program adaptation is a reasonable approach to
maintain applications while improving the user experience
and avoiding time periods of unavailability. In order to
change at runtime all program parts that appear in a program
(see Table 1 points 1 - 13) it must be enabled for unantici-
pated changes even of already executed program parts. This
is due to the fact that the kind of change becoming necessary
and the time of its application cannot be foreseen when the
program starts.

Our previous runtime adaptation approach was the first
solution that served the requirements described above. It
also allowed program execution on top of a standard Java
virtual machine, i.e., Sun’s Hotspot VM. Unfortunately, the
previous approach has several limitations which reduce its
applicability. They were caused by the mechanisms used,
e.g., object wrappings and interfaces.

The new runtime adaptation approach overcomes these
limitation while barely introducing new ones (see Table 3).
It substitutes object wrappings for class replacements and
interfaces for mediators. Additionally, it automates runtime
program adaptation.

5. http://www.zeroturnaround.com/javarebel/

Like in the previous runtime adaptation approach program
changes must be still scheduled manually in order to keep
the program consistent. This is a complex and error-prone
task that requires deep knowledge about the program and
its control flow. In further work we plan to extend our run-
time adaptation approach so that it automatically schedules
program changes while keeping the program consistent.

10. Acknowledgements

Mario Pukall’s work is part of the RAMSES project6

which is funded by DFG (Project SA 465/31-2).

References

[1] L. Erlikh, “Leveraging Legacy System Dollars for E-
Business,” IT Professional, 2000.

[2] J. Moad, “Maintaining the Competitive Edge,” DATAMA-
TION, 1990.

[3] G. Bracha, “Objects as Software Services,” 2005, Invited talk
at the International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications.

[4] B. Fulgham and I. Gouy, “The Computer Language Bench-
marks Game,” http://shootout.alioth.debian.org/.

[5] S. Chiba and M. Nishizawa, “An Easy-to-Use Toolkit for
Efficient Java Bytecode Translators,” in Proceedings of the
second International Conference on Generative Programming
and Component Engineering, 2003.

[6] S. Chiba, “Load-Time Structural Reflection in Java,” Lecture
Notes in Computer Science, 2000.

[7] M. Dahm, “Byte Code Engineering,” in Java-Informations-
Tage. Springer-Verlag, 1999.

[8] A. Nicoara, G. Alonso, and T. Roscoe, “Controlled, sys-
tematic, and efficient code replacement for running java
programs,” in Proceedings of the EuroSys Conference, 2008.

[9] A. Orso, A. Rao, and M. Harrold, “A Technique for Dynamic
Updating of Java Software,” in Proceedings of the Interna-
tional Conference on Software Maintenance, 2002.

[10] J. Bonér, “What are the key issues for commercial AOP
use: how does AspectWerkz address them?” in Proceedings
of the International Conference on Aspect-Oriented Software
Development, 2004.

[11] Y. Sato, S. Chiba, and M. Tatsubori, “A Selective, Just-in-
Time Aspect Weaver,” in Proceedings of the International
Conference on Generative Programming and Component En-
gineering, 2003.

[12] W. Vanderperren and D. Suvee, “Optimizing JAsCo dynamic
AOP through HotSwap and Jutta,” in Proceedings of the 1st
AOSD Workshop on Dynamic Aspects, 2004.

[13] M. Pukall, C. Kästner, and G. Saake, “Towards Unanticipated
Runtime Adaptation of Java Applications,” in Proceedings
of the 15th Asia-Pacific Software Engineering Conference.
IEEE Computer Society, 2008.

[14] “Java Platform Debugger Architecture,” Sun Microsys-
tems, Tech. Rep., http://java.sun.com/javase/6/docs/technotes/
guides/jpda/index.html.

[15] J. Gosling, B. Joy, G. Steele, and G. Bracha, Java(TM)
Language Specification, The (3rd Edition). Addison-Wesley
Professional, 2005.

6. http://wwwiti.cs.uni-magdeburg.de/iti db/forschung/ramses/

[16] T. Lindholm and F. Yellin, The Java Virtual Machine Speci-
fication Second Edition. Prentice Hall, 1999.

[17] B. Venners, Inside the Java 2 Virtual Machine. Computing
McGraw-Hill., 2000.

[18] M. Dmitriev, “Towards flexible and safe Technology for
Runtime Evolution of Java Language Applications,” in Pro-
ceedings of the Workshop on Engineering Complex Object-
Oriented Systems for Evolution, 2001.

[19] ——, “Safe Class and Data Evolution in Large and Long-
Lived Java Applications,” Ph.D. dissertation, University
of Glasgow, 2001. [Online]. Available: citeseer.ist.psu.edu/
dmitriev01safe.html

[20] H. Lieberman, “Using Prototypical Objects to Implement
Shared Behavior in Object-Oriented Systems,” in Proceedings
of the Conference on Object-Oriented Programming Systems,
Languages, and Applications, 1986.

[21] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1997.

[22] “Java Virtual Machine Tool Interface Version 1.1,” Sun Mi-
crosystems, Tech. Rep., 2006, http://java.sun.com/javase/6/
docs/platform/jvmti/jvmti.html.

[23] S. Liang and G. Bracha, “Dynamic Class Loading in the Java
Virtual Machine,” in Proceedings of the 13th ACM Confer-
ence on Object-Oriented Programming, Systems, Languages,
and Applications, 1998.

[24] K. Makris and R. Bazzi, “Immediate Multi-Threaded Dy-
namic Software Updates Using Stack Reconstruction,” De-
partment Of Computer Science And Engineering, Arizona
State University, Tech. Rep., 2008, TR-08-007.

[25] S. Subramanian, M. Hicks, and K. S. McKinley, “Dynamic
Software Updates: A VM-Centric Approach,” in Proceedings
of the Conference on Programming Language Design and
Implementation, Jun. 2009.

[26] J. Bonér, “AspectWerkz – dynamic AOP for Java,” Invited talk
at 3rd International Conference on Aspect-Oriented Software
Development, 2004.

[27] A. Nicoara and G. Alonso, “Dynamic AOP with PROSE,” in
Proceedings of the CAiSE’2005 Workshop on Adaptive and
Self-Managing Enterprise Applications, 2005.

[28] G. Kiczales, J. Lamping, A. Mendhekar, C. L. C. Maeda,
J.-M. Loingtier, and J. Irwin, “Aspect-Oriented Program-
ming,” in Proceedings of the European Conference on Object-
Oriented Programming, 1997.

[29] J. Hunt and M. Sitaraman, “Enhancements: Enabling Flexible
Feature and Implementation Selection,” in Proceedings of the
International Conference on Software Reuse, 2004.

[30] G. Kniesel, “Type-Safe Delegation for Run-Time Component
Adaptation,” in Proceedings of the European Conference on
Object-Oriented Programming, 1999.

[31] M. Büchi and W. Weck, “Generic Wrappers,” in Proceedings
of the European Conference on Object-Oriented Program-
ming, 2000.

[32] L. Bettini, S. Capecchi, and E. Giachino, “Featherweight wrap
Java,” in Proceedings of the ACM symposium on Applied
computing, 2007.

[33] L. Bettini, S. Capecchi, and B. Venneri, “Extending Java to
dynamic Object Behaviors,” in Proceedings of the ETAPS
Workshop on Object-Oriented Developments, 2003.

[34] A. R. Gregersen and B. N. Jørgensen, “Dynamic update of
java applications - balancing change flexibility vs program-
ming transparency,” Journal of Software Maintenance and
Evolution: Research and Practice, vol. 21, no. 2, 2009.

[35] M. Pukall, “Object Roles and Runtime Adaptation in Java,” in
Proceedings of the Workshop on Reflection, AOP and Meta-
Data for Software Evolution, 2008.

[36] D. Kim and E. Tilevich, “Overcoming JVM HotSwap Con-
straints via Binary Rewriting,” in Proceedings of the Work-
shop on Hot Topics in Software Upgrades, 2008.

[37] S. Malabarba, R. Pandey, J. Gragg, E. Barr, and J. F. Barnes,
“Runtime Support for Type-Safe Dynamic Java Classes,” in
Proceedings of the 14th European Conference on Object-
Oriented Programming, 2000.

