
Exploring Software Measures to Assess Program Comprehension

Janet Feigenspan∗, Sven Apel†, Jörg Liebig†, Christian Kästner‡,

∗University of Magdeburg, Germany †University of Passau, Germany ‡Philipps University Marburg, Germany

Abstract—Software measures are often used to assess pro-
gram comprehension, although their applicability is discussed
controversially. Often, their application is based on plausibility
arguments, which, however, is not sufficient to decide whether
software measures are good predictors for program compre-
hension. Our goal is to evaluate whether and how software
measures and program comprehension correlate. To this end,
we carefully designed an experiment. We used four different
measures that are often used to judge the quality of source
code: complexity, lines of code, concern attributes, and concern
operations. We measured how subjects understood two com-
parable software systems that differ in their implementation,
such that one implementation promised considerable benefits
in terms of better software measures. We did not observe
a difference in program comprehension of our subjects as
the software measures suggested it. To explore how software
measures and program comprehension could correlate, we used
several variants of computing the software measures. This
brought them closer to our observed result, however, not as
close as to confirm a relationship between software measures
and program comprehension. Having failed to establish a
relationship, we present our findings as an open issue to the
community and initiate a discussion on the role of software
measures as comprehensibility predictors.

Keywords-software measures, program comprehension

I. INTRODUCTION

Software quality assessment is an important task in soft-
ware engineering, because it can reduce maintenance effort, a
main cost factor in software development [26]. A typical way
to assess quality facets, such as program comprehension, is
to use software measures. Software measures are computed
based on properties of source code. The kind of property
that influences software quality is based on a number of
plausibility assumptions. For example, the more branching
statements, such as if and for, a method has, the more difficult
it is to understand, because more possible execution paths
exists [28]. Or, the more operations a concern (i.e., code
fragments that semantically belong together) defines, the
more difficult it is to understand (concern operations [13]).
Measures are a convenient and cheap way to assess software
quality, because tools1 can simply collect the numbers.

The simple extraction is one reason why software measures
are widely accepted and used, despite warnings and empirical
evidence about their drawbacks [3]. For example, there is
a lot of work, in which different facets of aspect-oriented
programming with AspectJ are compared to object-oriented
programming with Java [5], [14], [18], [19], [25], [29] (see

1For example, SourceMonitor http://www.campwoodsw.com/source
monitor.html or ConcernMorph [16]

Table I for an overview of software measures and facets eval-
uated in recent publications at high-ranked conferences). This
body of work is carefully designed and useful, because it sys-
tematically evaluates the claimed benefits of aspect-oriented
programming. However, conclusions in favor of or against
aspect-oriented programming are solely based on plausibility.

Our objective is to evaluate whether a relationship between
software measures and program comprehension can be
confirmed empirically. We argue that if software measures
are suitable as comprehensibility predictors, then we should
find a relationship in a controlled experiment, in which
subjects work with source code. If we cannot find such
a relationship, this would indicate that a correlation between
software measures and program comprehension is not as
trivial to describe or may not even exist.

To evaluate whether there is such a relationship, we
conducted a controlled experiment, in which trained subjects
worked with MobileMedia, a software for manipulating multi-
media data on mobile devices [14]. We selected MobileMedia
for two reasons: First, it is used in numerous studies, often
with software measures, for several purposes (e.g., [2], [9],
[14], [17], [29], [31]). This makes it a common system to
compare results and to which we can relate the results of our
experiment. Second, MobileMedia exists in two comparable
versions with considerably different software measures.
The difference between both versions was the target of the
aforementioned prior studies. Hence, the authors ensured that
both versions were carefully designed and code reviewed
and that differences in software measures actually exist.

The experiment in a nutshell: To measure program
comprehension, we designed maintenance tasks, in which
subjects should locate the cause of a bug. If subjects
submitted a solution, we can assume that a comprehension
process took place [8]. From the answers of subjects, we
analyzed the correctness and time of a bug fix. We expected
a correlation between subject performance and software
measures. However, the results of our experiment do not
indicate such a relationship. To further explore our data for
a possible relationship, we took into account the behavior of
subjects during the experiment to compute software measures
(e.g., the response time). However, we still could not detect a
relationship. In the remainder of this paper, we give a short in-
troduction to software measures and program comprehension
and describe the experiment and our analysis in detail.

This paper is the authors version and presented here for personal use only. Any other use may violate the IEEE Copyright



Reference Conference Goal Software Measures

Bryant et al. [5] AOSD ’06 Composability, Modularization of Pattern Interactions CBC, CDC, CDLOC, CDO, DIT, LCOO, LOC,
NOA, WOC, Interaction Analysis

Figueiredo et al. [14] ICSE ’08 Changeability, Modularization, Dependencies CBC, CDC, CDLOC, CDO, DIT, LCOO, VS,
LOC, NOA, WOC, Added and Changed Elements,
Interaction Analysis

Garcia et al. [18] AOSD ’05 Modularization CBC, CDC, CDLOC, CDO, DIT, LCOO, LOC,
NOA, WOC

Greenwood et al. [19] ECOOP ’07 Stability in the Face of Changes CBC, CDC, CDLOC, CDO, DIT, LCOO, VS,
LOC, NOA, WOC, Added and Changed Elements,
Interaction Analysis

Kulesza et al. [25] ICSM ’06 Modularization, Maintainability CBC, CDC, CDLOC, CDO, DIT, LCOO, VS, LOC,
NOA, WOC

Molesini et al. [29] WICSA ’08 Stability in the Face of Changes Added and Changed Elements
CBC: Coupling between Components, CDC: Concern Diffusion over Components, CDLOC: Concern Diffusion over LOC, CDO: Concern Diffusion over Operations,
DIT: Depth of Inheritance Tree, LCOO: Lack of Cohesion in Operations, LOC: Lines of Code, NOA: Number of Attributes, VS: Vocabulary Size, WOC: Weighted
Operations per Component

Table I
OVERVIEW OF SOFTWARE MEASURES USED IN SETTINGS WITH ASPECTJ AND JAVA PROGRAMS.

II. SOFTWARE MEASURES

There are numerous software measures that target program
comprehension. For better overview, we divide them into
measures that describe complexity, program size, and separa-
tion of concerns. The intention of this section is not to give
an exact definition of the measures or a complete overview
of software measures. Our goal is to give an impression of
software measures, their intention, and why their measured
property of source code appears plausible.

Complexity Measures: Various measures exist that
capture complexity facets of a software system. For example,
McConnell defines complexity as the number of branching
statements, such as if, switch, or for, of a method [28]. Source
code with a low complexity value is preferable, because it has
less possible execution paths a developer has to work with.

Size Measures: Size measures assess the size of a
software system. The simplest measure is lines of code (LOC),
which represents the number of lines a program consists
of [20]. This measure was developed to assess the size of
fixed-format assembly languages, in which not much variabil-
ity for implementing source code existed. Even for contempo-
rary, more flexible programming languages, it seems plausible
that the more lines a program has, the more difficult it is to
understand, because a programmer has to consider more code.

Concern Measures: A concern is ”anything a stake-
holder may want to consider as conceptual unit [...]” [35].
Separation of concerns is a key principle in software
engineering [32]. If a concern is not encapsulated in a module,
a programmer has to trace it across the entire system (e.g.,
for modification), which is tedious and error prone.

Concern attributes (CA) and concern operations (CO)
represent, respectively, the number of attributes and opera-
tions assigned to a concern [16]. The more attributes and
operations a concern contains, the more facets a developer
has to consider in order to understand a concern, which
should make it more difficult to understand.

There are a lot of other measures that assess complexity,

size, or separation of concerns of a software system.2. Each
measure sounds like a plausible indicator for program compre-
hension. However, when taking a closer look at program com-
prehension, the plausibility fades: Program comprehension
does not only depend on source-code properties, but also on
the person who is working with source code. Experienced de-
velopers often use top-down comprehension [4], [38], which
means that they are stating and refining hypotheses about
the general purpose of a program, based on their knowledge.
Unexperienced developers cannot use their knowledge, so
they analyze the source code statement by statement and
group statements to semantic chunks, which they compose to
a hypothesis about the general purpose of a program. This is
referred to as bottom-up comprehension [33], [37]. Typically,
a developer uses both; top-down comprehension where pos-
sible and bottom-up comprehension where necessary. This is
described by integrated models [39]. Hence, program compre-
hension is a complex process, and the relationship to software
measures may not be as trivial as it seems at first sight.

III. EXPERIMENT

We give a detailed description of our experiment in this
section. Further information on the experiment such as ques-
tionnaires, tasks, and computation of software measures are
available on our project’s website at http://fosd.de/exp swm
to enable other researchers to replicate the experiment.

A. Objective
The objective of our experiment is to evaluate the relation-

ship between software measures and program comprehension.
We decided to include four software measures that we
introduced in Section II: the complexity value defined by
McConnell as a representative of complexity measure and
lines of code as a representative of size measure. Since
separation of concerns is one important influence factor on
program comprehension, we include both concern measures
concern attributes and concern operations.

2See [13], [20] for a more exhaustive overview

This paper is the authors version and presented here for personal use only. Any other use may violate the IEEE Copyright



As stated previously, there are points in favor of software
measures (plausibility, easy to apply) and points against
them (program comprehension is very complex, prior
empirical results [3]). Since we can argue (and others have)
both in favor of and against a relationship between software
measures and program comprehension, we do not state a
specific research hypothesis in one direction or the other.
Instead, we define a research question:
RQ: Is there a relationship between software measures and

program comprehension?

B. Material
As material, we use MobileMedia, a medium-sized soft-

ware product for the manipulation of multi-media data on
mobile devices, which was implemented by Figueiredo et al.
with the support of post-graduate students [14]. MobileMedia
was developed in eight releases, of which we took the last,
because it was most suitable for our research goal: The
implemented concerns have considerably different software
measures, which should make it easier for us to observe a
difference in program comprehension of our subjects. We
explicitly encourage the reader to compare both versions of
MobileMedia and experience the differences first hand.

There are several benefits in using MobileMedia:
• MobileMedia was implemented in two versions, one

in AspectJ (referred to as AspectJ version), the other
(referred to as Java version) with Java ME and Antenna,
a preprocessor for Java. Both versions were code re-
viewed, such that the same coding conventions have been
applied to both versions. Moreover, exhaustive tests were
conducted to assure that both versions are comparable.
Because of the efforts of the developers (see [14] for
more details), two comparable versions exist.

• Both MobileMedia versions considerably differ with
respect to software measures. In Table II, we present
software measures for the MobileMedia versions we
worked with in our experiment (complexity and lines of
code were computed by hand and with SourceMonitor.
Concern attributes (CA) and concern operations (CO)
by hand and with ConcernMorph [16]). We can see
large differences between the two versions per concern,
which are caused by the fact that in the AspectJ version,
source code is separated into more, but smaller modules.
If measures indeed describe program comprehension,
then this large difference in software measures indicates
a large difference in comprehensibility. For example,
concern Video in the Java version has a 5 times higher
complexity value, 86 % more lines of code, and about 4
times more attributes and operations than in the AspectJ
version. Hence, measures suggest that the AspectJ
version should be significantly better with respect to
program comprehension than the Java version.

• Numerous researchers used MobileMedia in their studies
[2], [5], [9], [10], [14], [17], [18], [19], [25], [29], [31].
Hence, there are a lot of results by other researches,
which allow us to relate our work to them and vice versa.
Consequently, the restriction to MobileMedia is not a

Concern Version Complexity LOC CA CO

CountViews AspectJ 0.97 319 2 21
Java 3.39 1 268 27 41

PhotoAlbum AspectJ 1.29 257 5 23
Java 2.15 1 771 49 73

Favourites AspectJ 1.70 257 3 19
Java 3.39 1 268 27 41

Video AspectJ 0.96 262 11 20
Java 2.31 1 892 45 78

Music AspectJ 1.05 326 12 24
/MMAPI Java 2.32 2 081 63 88

Table II
OVERVIEW OF SOFTWARE MEASURES PER CONCERN.

drawback, but rather a benefit, because we contribute
to the knowledge base regarding MobileMedia. Further-
more, MobileMedia is a good starting point for generaliz-
ing results to other software systems, because numerous
different facets have been evaluated thoroughly.

• MobileMedia was developed as a software product line.
A user can generate different variants of MobileMedia
by selecting the desired concerns (e.g., one variant with
concerns CountViews and Favourites, another variant
without both concerns) [6]. To this end, the implemen-
tation of a product line must ensure that there is a
mapping of concerns to the corresponding code units.

To illustrate the commonalities and differences of both
versions, we show equivalent code excerpts of each version
in Fig. 1. The left part shows the AspectJ version. A
pointcut (Lines 7 to 9) captures the execution of the method
initMenu() in class MediaListScreen. When this
method is executed, the advice (Lines 12 to 14) is executed,
which adds the sortCommand to a menu.3 In the right part
of Fig. 1, we show the Java version that implements the same
behavior as the AspectJ version, but uses #ifdef markers to
map the sortCommand in class MediaListScreen.

To control the level of experience of our subject with a
certain tool (e.g., call hierarchy in Eclipse), we implemented
our own tool infrastructure with source-code viewing and
a project-browsing component to display the source code.
The tool uses Eclipse-like syntax highlighting and shows all
files of the software system ordered by packages (similar to
the package explorer in Eclipse). We implemented a logging
functionality to track each action of our subjects during the
experiment. We also used this tool for displaying the descrip-
tions of the tasks and to capture the answers of subjects.

In addition to the source code, subjects got a feature dia-
gram4 of the product line on a sheet of paper and a mapping
of files to concerns. Subjects were familiarized with feature
diagrams before the experiment. The reason for providing
both is to ensure that subjects direct their attention to those

3See [23] for an introduction to AspectJ.
4A feature diagram is a graphical representation of concerns’ hierarchy

and their relationships [22].

This paper is the authors version and presented here for personal use only. Any other use may violate the IEEE Copyright



1 public privileged aspect CountViewsAspect {
2 // 147 additional lines of code...
3
4
5 public static final Command sortCommand = new
6 Command("Sort by Views", Command.ITEM, 1);
7
8
9 // pointcut declaration

10 pointcut initMenu(MediaListScreen screen):
11 execution(public void MediaListScreen.initMenu())
12 && this (screen);
13
14 // advice code
15 after(MediaListScreen screen) : initMenu(screen) {
16 screen.addCommand(sortCommand);
17 }
18 // 66 additional lines of code...
19 }

1 public class MediaListScreen extends List {
2 // 39 additional lines of code...
3
4 // #ifdef includeCountViews
5 public static final Command sortCommand = new
6 Command("Sort by Views", Command.ITEM, 1);
7 // #endif
8
9 // 19 additional lines of code...

10 public void initMenu() {
11 // 40 additional lines of code...
12
13 // #ifdef includeCountViews
14 this.addCommand(sortCommand);
15 // #endif
16
17 // 6 additional lines of code...
18 }
19 }

Figure 1. Comparison of AspectJ and Java version of MobileMedia. Left: AspectJ version, showing pointcut expression and advice code. Right: Java
version, showing #ifdefs to annotate code fragments.

files that belong to a concern, which allows us to compare
software measures and program comprehension at the concern
level, not only at the level of the complete product line.

Since the opinion of subjects regarding the experiment
they participate in can influence their performance, we
measured their opinion [21]. We administered a paper-based
questionnaire after the experiment, in which we asked how
difficult subjects found the tasks, how motivated they were
to solve the tasks, and whether they think they would have
performed differently with the other version of MobileMedia.
Although subjects worked only with one version, they were
familiar with both, AspectJ and Java, so we assume they can
imagine how working with the other version would have been.

C. Subjects

Subjects were graduate students at the University of Passau.
They were enrolled in the course Contemporary Programming
Paradigms (German: Moderne Programmierparadigmen), in
which advanced programming techniques, such as including
AspectJ and software product-line implementation with
preprocessors, were taught and practiced. All subjects were
aware that they are participating in an experiment and that
their performance does not affect their grade for the course.

We split our sample in two groups: One group worked with
the AspectJ version of MobileMedia (AspectJ group), the
other group with the Java version (Java group). We decided
not to let both groups work with both versions, because the
experiment would have lasted considerably longer, which
would have been too exhausting for our subjects. Additionally,
subjects could have learned from the version they started with
in the experiment, so we could not be sure how confounded
our result would be. Furthermore, as explained above, both
versions of MobileMedia were designed to be comparable.
Hence, our setting allows us to draw sound conclusions
without stressing our subjects too much.

To form two comparable groups, we measured program-
ming experience, which is a major confounding variable for

program comprehension. We carefully designed a question-
naire, which we administered before the experiment. In the
questionnaire, we asked subjects to estimate their experience
with several programming languages and paradigms on a
five-point Likert scale [27], as well as the size of projects
they have worked with. A low value in the questionnaire
(minimum: 5) indicates no programming experience; the
higher the value is, the more programming experience a
subject has (high value: 60, the scale is open ended). The
mean programming experience of the AspectJ group is
41.9 (standard deviation: 10.6), and of the Java group 40.8
(standard deviation 10.5). We had 21 subjects, of which one
was female; she was in the Java group.

To account for the possibly more complex nature of
AspectJ, we did not hide bugs in highly syntax-specific code.
Since AspectJ is an extension to Java, its syntax is based
on Java syntax, with additional elements, such as pointcuts
(roughly similar to pattern matching) and advice (roughly
similar to Java syntax). We introduced the bugs only to
advice code and made sure that the claimed benefits of aspect-
oriented programming for program comprehension, such as
separation of concerns, could still be measured. However,
since subjects did not have to implement any source code or
understand complex pointcut declarations, a thorough under-
standing of AspectJ syntax is not necessary in our experiment.

D. Tasks

Program comprehension is an internal cognitive process
that we cannot observe directly [24]. Instead, we have to
find appropriate measures, such as bug fixing tasks [8], [12].
For our experiment, we created six maintenance tasks. In
each task, we gave subjects a bug description as a user might
provide it. Since we evaluate the relationship of software
measures on the concern level, we supported subjects to work
with source code implementing a concern: First, for each
bug description, we provided the concern, in which the bug
occurred. Second, we opened for each task all files that belong

This paper is the authors version and presented here for personal use only. Any other use may violate the IEEE Copyright



Figure 2. Frequencies of correct solutions.

to the according concern. However, subjects could open all
other files of MobileMedia, if they thought it was necessary
(e.g., to trace a method call). For solving the tasks, subjects
should locate the position at which the bug occurs (file and
line), state why the bug occurs, and suggest a solution. We
used all information to decide whether a bug was identified
correctly. Additionally, we measured the time subjects needed
to solve a task (referred to as response time). For all tasks,
we carefully introduced bugs into the source code.

To better understand of the nature of bugs, we describe the
first bug in detail. The bug description subjects got stated:

When creating/converting media, the counter how
often a medium was shown, is always set to 0.
The bug occurs, when concern CountViews is
selected.

The bug was caused by setting a variable that counts the
number of views to 0, instead of setting it to the correct
value. In the AspectJ version, the bug was located in aspect
CountViewsAspect. In the Java version, the bug was located
at a corresponding position in class MediaUtil. The other
bug descriptions can be found at the project’s website.

In addition to these six tasks, we designed a warming up
task to let subjects familiarize with the experimental setting.
In the AspectJ version, subjects had to count the number of
pointcuts of the concern PhotoAlbum, in the Java version
how often the command includeFavourites of the concern
Favourites occurs. We made sure that the effort for both
tasks is comparable (i.e., that the same number of files were
opened and had to be looked at and about the same number
of occurrences existed). This task is not included in the
analysis. For solving the tasks, subjects were instructed to
type the answers in an according form, displayed as second
window with our tool infrastructure.

E. Experiment Execution
The experiment was conducted in July 2010 instead of a

regular lecture session. It was conducted in a lab room with
Linux computers and 19" screens. We gave an introduction
to all subjects, in which we explained important facets of
the experiment and repeated facts from their programming
course relevant for the experiment as a reminder. After the

●Java
AspectJ

50 60 70 80 90 100 110
min

77.4
76.2

±
±

16.9
14.7

●

6−Java
6−AspectJ

5−Java
5−AspectJ

4−Java
4−AspectJ

3−Java
3−AspectJ

2−Java
2−AspectJ

1−Java
1−AspectJ

0 10 20 30 40
min

15.9
14.7

14.6
17.6

13.5
8.5

11.2
7.9

6.8
11.4

10.5
7.7

±
±

±
±

±
±

±
±

±
±

±
±

4.5
7.2

6.2
7.3

7
5.5

5.5
3.9

4.3
4.4

8.4
3.1

Figure 3. Response time of subjects. Top: for all tasks; bottom: per task.
The numbers indicate the mean and standard deviation.

introduction, subjects were seated at a computer and could
start to work on the tasks on their own. Four experimenters
regularly checked that subjects worked as planned. After a
subject was finished, she was instructed to raise her arm, so
that we can give her the questionnaire to assess her opinion.
After completing a questionnaire, subjects were instructed to
leave quietly without disturbing the others. The conduction
took place without any deviations.

IV. RESULTS

In this section, we present the results of our experiment.
We start with statistical analyses, in which we describe the
data. Furthermore, we present some anecdotal results

A. Observed Program Comprehension
To assess program comprehension, we measured whether

a task was solved correctly and how much time subjects
needed to solve the task.

1) Correctness: We present the results regarding
correctness of solutions in Figure 2. We can see that for
most of the tasks, both groups have about the same number
of correct solutions. Only for the sixth task, there is a large
difference: Only two subjects of the AspectJ group entered
the correct solution.

To evaluate whether there are significant differences in
the number of correct solutions, we conducted a χ2 test [1].
Only for the last task, we found a significant difference in
the number of correct solutions (χ2 = 5.743, p = 0.017). For
all other tasks, the χ2 value is smaller than 1.222, and the p
value larger than 0.269.

2) Response Time: In Figure 3, we show the mean
response times of subjects for all tasks together (top) and
for each task (bottom). We can see that for all tasks, the
difference in response time is negligible with 2 % (1.2

This paper is the authors version and presented here for personal use only. Any other use may violate the IEEE Copyright



Task 1 2 3 4 5 6

Difficulty U value -0.953 1.485 -1.409 -0.217 0.000 -3.029
p value 0.341 0.138 0.159 0.828 1.000 0.002

Motivation U value -0.044 -0.567 -0.914 -0.296 -0.404 -3.079
p value 0.965 0.571 0.361 0.767 0.686 0.002

Other U value 0.039 -0.156 -0.124 0.909 0.769 1.150
version p value 0.969 0.876 0.901 0.364 0.442 0.250

Table III
MANN-WHITNEY-U TEST FOR SUBJECTS’ OPINION.

minutes, compared to almost 1.5 hours for all tasks). Looking
at specific tasks, we see that for the tasks 2 and 5, AspectJ sub-
jects were faster; for the remaining tasks, Java subjects were
faster. The largest differences appear in task 5 in favor of the
AspectJ subjects, and in task 3 in favor of the Java subjects.

Before conducting significance tests for response times,
we have to consider whether a task was solved correctly or
not, because response times differ for correct and incorrect
solutions [40]. For example, a subject might enter deliberately
a wrong answer, just to be finished with a task, which would
bias the response time. Hence, we excluded response times
from the analysis, if a subject did not solve a task correctly.
Unfortunately, for the last task, this leaves us with only 2
values for response times in the AspectJ group, so we cannot
conduct a significance test for this task.

To check whether the observed differences in response time
are significant, we conducted a Student’s t-test for task 1 and
2 [1], and a Mann-Whitney-U test for tasks 3 to 5, of which
the response times are not normally distributed. We found
no significant differences in any tasks (all p values are larger
than 0.117; largest t value: 1.032, largest U value: 1.567).

Taking both, the results for correctness and response time
into account, we found no significant differences for program
comprehension between the AspectJ and Java version, except
for the correctness of one task. In next sections, we look for
an explanation for this difference.

B. Opinion of Subjects

For all tasks, we asked subjects to rate their opinion re-
garding difficulty, motivation, and performance with the other
version on a five-point Likert scale. We present the answers of
subjects in Figure 4. For difficulty and motivation of the last
task, there are large differences, such that AspectJ subjects
found this task more difficult and were less motivated to
solve it. For all other tasks, the median differed at most by 1.

To check whether the observed differences are significant,
we conducted Mann-Whitney-U tests, summarized in Ta-
ble III. The large differences for the last task (cf. Fig. 4) are
significant regarding difficulty and motivation (p values <
0.002). There are no other significant differences.

C. Anecdotal Results

In addition to the planned observations, we made some
unexpected observations during the experiment. One was that

when we told subjects which version they are assigned to,
none of the Java subjects complained, but several AspectJ
subjects did. This is slightly reflected in the opinion of
subjects, in that AspectJ subjects found the last task more
difficult and were less motivated to solve it than Java subjects.
This could also explain the large performance difference for
this task: Only 2 of the AspectJ subjects solved this task
correctly. We believe that the opinion of subjects influenced
their performance, which is a common phenomenon [30].
Interpreting the results in the context of a bigger picture,
we should take into account the opinion of developers
regarding the source code they work with, because unsatisfied
developers may – consciously or subconsciously – reflect
their opinion on their performance.

Furthermore, we analyzed the files AspectJ subjects looked
at to solve the tasks. We found that they spent most of
their time (means for each task vary from 88 % to 95 %)
in those files that implemented a specific concern, and did
only occasionally look into the code that is advised. Hence,
subjects did not have to look at the base code to understand
the implementation of a concern.

V. SOFTWARE MEASURES AND
PROGRAM COMPREHENSION

In Section IV, we found that the differences we observed
in program comprehension are not significant (except for
correctness of the last task). This indicates that both versions
are equally comprehensible, which is in contrast to what
the software measures suggest (i.e., that the AspectJ version
is more comprehensible). To interpret the observed data in
terms of our research question, we relate the observed values
in program comprehension to software measures.

After evaluating our research question, we go one step fur-
ther and explore our data for a possible relationship. During
this process, we refine the computation of software measures
by including the behavior of subjects, such that we can have a
detailed look on how software measures and program compre-
hension could correlate. Data exploration may sound like we
are ‘fishing for results‘ (we discuss this in Section VI). How-
ever, we did not specify a concrete research hypothesis, but
only a research question: Is there a relationship between soft-
ware measures and program comprehension? Thus, exploring
our data is a legitimate step to answer this question. With our
exploration, we provide some insights into possible relation-
ships and concrete research hypothesis for future experiments.

A. Software Measures of Complete System
Although software measures are often calculated in terms

of concerns, for completeness, we start in a general way by
comparing the entire application. In Table IV, we present
an overview of software measures for the complete system.
The AspectJ version has more lines of code, more attributes,
and more operations. In contrast, the complexity value is
smaller in the AspectJ version. Since we did not observe a
significant difference in program comprehension that reflects
this difference in software measures, we cannot confirm
a relationship between software measures and program

This paper is the authors version and presented here for personal use only. Any other use may violate the IEEE Copyright



●

●● ●

6−Java
6−AspectJ

5−Java
5−AspectJ

4−Java
4−AspectJ

3−Java
3−AspectJ

2−Java
2−AspectJ

1−Java
1−AspectJ

Difficulty

very difficult medium very easy

●

●

●

●●

● ●● ●

6−Java
6−AspectJ

5−Java
5−AspectJ

4−Java
4−AspectJ

3−Java
3−AspectJ

2−Java
2−AspectJ

1−Java
1−AspectJ

Motivation

very unmotivated medium very unmotivated

6−Java
6−AspectJ

5−Java
5−AspectJ

4−Java
4−AspectJ

3−Java
3−AspectJ

2−Java
2−AspectJ

1−Java
1−AspectJ

Performance with other version

clearly worse the same clearly better

Figure 4. Opinion of subjects. Left: Difficulty, middle: motivation, right: performance with other version.

Version Complexity LOC CA CO

AspectJ 1.6 6 717 477 182
Java 2.0 5 397 271 165

Table IV
OVERVIEW OF SOFTWARE MEASURES OF MOBILEMEDIA.

comprehension on the level of the complete program. Next,
we look at software measures and program comprehension
at the concern level.

B. Software Measures in Terms of Concerns
Software measures for the entire system do not necessarily

reflect the subsystem analyzed for a specific task. Hence,
we compare the software measures in terms of concerns
with program comprehension as we observed it (cf. Table II
for an overview of the software measures of MobileMedia
in terms of concerns). The software measures for each
concern of the AspectJ version are smaller, i.e., suggest better
comprehensibility. This means that the AspectJ group should
make fewer errors and be faster for every task. However,
we could not find such a difference. Only for correctness of
the last task, we discovered a significant difference, but in
favor of the Java subjects (opposite of what the measures
suggest). Hence, we cannot confirm that software measures
and program comprehension correlate when considering the
concerns subjects worked with.

One might argue that when subjects worked on a task, they
did not only look at files that belong to the according concern,
but opened other files, as well. Hence, we should compute
software measures based on the files subjects actually looked
at. Since we logged what subjects did during working on a
task, including opening files, we are able to compute software
measures based on the files subject looked at.

C. Software Measures Related to Files
To compute the software measures related to files for a

single task, we determined ‘personal‘ software measures for
each subject and computed their mean. We describe this
aggregation process for one task. First, we extracted all files
a subject looked at and determined the software measure for
each file. Second, for each subject, we computed the average

Task Version Complexity LOC CA CO

1 AspectJ 1.12 440.18 8.64 29.64
Java 2.95 1,290.30 28.50 39.70

2 AspectJ 1.38 409.36 7.36 30.55
Java 2.24 1,658.20 44.90 66.70

3 AspectJ 1.66 369.18 5.55 25.27
Java 3.04 1,149,50 27.50 34.80

4 AspectJ 1.02 481.00 15.36 32.91
Java 3.07 1,210.30 31.70 44.40

5 AspectJ 1.33 382.82 12.27 28.27
Java 2.58 1,896.30 55.70 74.50

6 AspectJ 1.45 501.27 8.82 33.09
Java 3.48 1,167.90 24.20 36.30

Table V
OVERVIEW OF SOFTWARE MEASURES PER TASK.

complexity value, and the sum for lines of code, concern
attributes, and concern operations, respectively. Hence, each
subject has her own ‘personal‘ value for complexity, lines
of code, concern attributes, and concern operations. As last
step, we averaged over all ‘personal‘ software measures.5

We summarize the results of the adapted software measures
in Table V. The difference of software measures between both
versions is smaller now for most tasks and measures. This
indicates that, if we take into account what subjects actually
did, software measures better reflect program comprehension.
However, the differences between software measures are
still too large, compared to the fact that we did not observe
significant differences in program comprehension.

Now, one might argue that subjects looked at one file only
for a few seconds, but several minutes at another file. Hence,
the time a subject looked at a file should also be considered,
because the file at which the subject looked longer should
have more influence on the software measure. Since we
logged the time a subject looked at a file, we can compute
weighted software measures.

5The reader may have noticed that if we compute ‘personal‘ software
measures, we cannot automatically compute them based only on source
code property. We discuss this issue in Section V-E.

This paper is the authors version and presented here for personal use only. Any other use may violate the IEEE Copyright



Task Version Complexity LOC CA CO

1 AspectJ 0.50 210.07 2.26 15.88
Java 0.67 254.82 3.47 6.35

2 AspectJ 0.28 134.82 3.14 12.15
Java 0.31 232.33 3.83 7.10

3 AspectJ 0.53 176.31 2.74 14.47
Java 0.87 293.34 6.56 6.73

4 AspectJ 0.27 145.64 5.13 11.89
Java 0.87 162.95 10.06 3.96

5 AspectJ 0.60 207.43 6.26 15.88
Java 0.29 250.16 5.44 6.95

6 AspectJ 0.52 174.77 2.67 13.89
Java 0.85 310.22 4.67 7.61

Table VI
OVERVIEW OF WEIGHTED SOFTWARE MEASURES PER TASK.

D. Software Measures Weighted with Response Time

To compute weighted software measures for a single task,
we again computed ‘personal‘ software measures for each sub-
ject, and additionally took into account the time subjects spent
with a file. We describe this approach for a single task. First,
we divided the time a subject spent with each file by the com-
plete time for a task. Second, we multiplied this value with
the according software measures for a file. For example, if a
subject looked at a complex file only for a few seconds, the
weighted value for complexity is low. Hence, for each file and
each subject, we got ‘personal‘ weighted values for complex-
ity, lines of code, concern attributes, and concern operations,
respectively. Finally, we proceeded as described in the previ-
ous section for the computation of software measures related
to files, based on the ‘personal‘ weighted software measures.

In Table VI, we present the mean of weighted software
measures for each task. The difference between the software
measures of both versions got smaller again, compared to
the unweighted values. Especially the complexity values are
all smaller than 1, which indicates that complexity can be
an appropriate measure if we consider subjects’ behavior.
The smaller difference for the other software measures aligns
better with the results of the experiment we measured, as well.

Another interesting observation for weighted software
measures is that the weighted value for concern operations
is smaller in the Java version. This is most likely caused
by the fact that AspectJ subjects spent most of their time in
aspects with a large concern-operations value, because those
contained most of the implementation of a concern. Hence,
the weighted concern-operations values are more similar
to the unweighted concern-operations values. In contrast to
the AspectJ group, the Java group looked at more files per
task, so the time per file is considerably smaller. Multiplying
this small value with the concern operations value results in
smaller weighted concern operations values, and thus in a
smaller weighted value.

Finally, one might argue that we should also take into
account the methods of each file subjects looked at, because

a very complex method may be somewhere in a file, where
a subject did not even look. Unfortunately, this is difficult
to assess reliably in an experimental setting without eye
tracker software. We could take code displayed on a screen
at any time (start line – end line) as indicator, but this does
not allow us to deduce at which method on the screen the
subject looked, or whether she just scrolled through the code.
Nevertheless, this would be an interesting challenge for future
experiments, for example, by using an eye-tracking system.

E. Discussion

So, do software measures and program comprehension
correlate? Although we refined software measures, such that
they better fit the behavior of subjects, none of the refinements
was entirely satisfactory. The values of complexity, lines
of code, concern attributes, and concern operations still
differed considerably, which is not reflected by program
comprehension as we measured it. Except for complexity,
we found that the weighted value is similar for both versions
(all smaller than one). For all other software measures, we
cannot confirm a relationship between software measures
and program comprehension, despite our effort.

The reader may have noticed that using the observed
data to refine software measures makes it more difficult
to determine them. Instead of basing the computation of
measures solely on source code, we included what subjects
did (by including the visited files and the time how long a
subject looked at a file). However, this eliminates the benefit
of easy computation of software measures: This approach
is not feasible in practice, because we cannot predict which
developers work with the source code or how long they look
at what file. Hence, adapting software measures is not a
practical way to improve the predictive power of software
measures. Thus, our refinements of software measures are
of little use in practice.

Nevertheless, for initial research on a new concept, plau-
sibility discussions with software measures are helpful to es-
tablish research hypotheses regarding benefits and drawbacks.
However, such hypotheses should be evaluated empirically
eventually. This helps us to discover possible hidden relation-
ships, to describe and evaluate claimed benefits of a concept
more easily as well as to gain a more thorough understanding
of the relation of software measures and program compre-
hension. Furthermore, our results and proceedings can act as
inspiration to develop and evaluate new software measures
that describe comprehensibility of source code better.

VI. LIMITATIONS

A. Threats to Internal Validity

One problem of our study is the experience of our
subjects with AspectJ. They were introduced into AspectJ
in the course they were enrolled in, whereas they worked
with Java since they started to study. To diminish the
influence of experience with AspectJ, we made sure that
for understanding the cause of bugs, subjects did not need
a deep understanding of AspectJ syntax. To further reduce

This paper is the authors version and presented here for personal use only. Any other use may violate the IEEE Copyright



the influence of AspectJ experience, we did not let subjects
implement a bug fix, but only explain the problem. This way,
subjects did not have to implement AspectJ code. Hence,
the experience of subjects with AspectJ was sufficient for
our purpose. Furthermore, it is not our intent to assess
the understandability of AspectJ, but to assess software
measures and their relationship to program comprehension.

Another issue is that we explored the data, which can
easily drift off to ‘fishing for results‘. However, we did not
exploit our data until we found interesting results, but made
some reasonable, well-defined refinements to the computation
of software measures. The data exploration is rather a benefit,
because we obtained some insights of a possible relationship
of software measures and program comprehension, which
should be evaluated in further experiments.

B. Threats to External Validity
For our study, we used only one software system, Mobile-

Media [14]. However, using MobileMedia has the benefit
that our results are comparable with numerous results of
other researchers, who also used MobileMedia in their work.
Consequently, the generalizability to other research with
MobileMedia is given, but not the generalizability to other
software systems. Thus, the restriction to MobileMedia is
both a benefit and a drawback for external validity.

A further restriction is that we only used four software
measures. Our results are only applicable to these software
measures. To limit this restriction, we used a representative
measure of every category we described in Section II. This
allows us to carefully draw conclusions for the categories
of software measures. Nevertheless, to be able to state a
relationship of other software measures (e.g., coupling and
cohesion) to program comprehension, they should also be
evaluated in a carefully designed experiment. Here, we
showed how a carefully designed setting looks like.

Furthermore, we only evaluated how program compre-
hension and software measures could correlate. We cannot
generalize from program comprehension to other software
quality facets, such as maintainability and design stability,
and their relationship to software measures, which was the
focus of numerous studies (cf. Table I).

VII. RELATED WORK

There is a lot of work concerning software measures. We
already mentioned one line of research that develops and tests
measures to evaluate quality properties of aspect-oriented
software systems [14], [15], [19], [29]. In this work, several
software projects are evaluated with the developed software
measures. For example, Figueiredo et al. [14] assess the
design stability of MobileMedia based on software measures.
To this end, MobileMedia was developed in two versions
in several scenarios, while with every scenario, the program
was extended. Based on software measures, both versions
were compared. However, the studies did not include the
behavior human subjects to assess quality properties.

On the other hand, there is also empirical research with
real subjects regarding program comprehension, in which

properties of source code, such as depth of inheritance
hierarchies [7], comment style [34], and identifier styles [36]
were evaluated regarding their effect on comprehensibility.
This is similar to our work, in which we assessed the
comprehensibility of two systems. However, we did not
evaluate whether several facets of source code influence
program comprehension. Instead, we were only interested in
whether we could observe a difference in comprehensibility.

Furthermore, we conducted some own research regarding
program comprehension [10], [11]. In both experiments,
we evaluated how background colors can improve program
comprehension. However, we did not work with software
measures in any of the experiments.

VIII. CONCLUSION AND FUTURE WORK

Software measures are often used to assess facets of soft-
ware quality, such as comprehensibility. The use of software
measures to evaluate benefits and drawbacks of new concepts
is popular. We focused on the relationship between software
measures and program comprehension. We designed an
experiment to evaluate how software measures and program
comprehension correlate. Two groups of subjects work with
two comparable versions of MobileMedia, one implemented
in AspectJ, the other in Java with a preprocessor. Both
versions differed considerably with respect to several software
measures. The results of our experiment do not indicate a rela-
tionship between software measures and program comprehen-
sion. Even including subjects’ behavior (e.g., files a subject
worked with) did not improve our results such that we could
show that a relationship between program comprehension and
software measures exists. We only could find a relationship of
complexity with program comprehension, if we took into ac-
count how much time a subject spent with a file. For none of
the other software measures, the adaptations toward weighted
software measures were satisfactory, such that the results we
observed would indicate a relationship to software measures.

Nevertheless, our refinements pointed in the right direction:
The differences in software measures became smaller with
each step. This fits our observation that we did not encounter
significant differences in program comprehension between
both versions. Only for one task we found a difference, such
that AspectJ subjects made more errors.

Our results show that the relationship of software measures
and program comprehension is an open issue. If we take
into account how subjects work with source code, we can
compute weighted software measures, which reflect program
comprehension better. However, this eliminates one benefit of
software measures: They cannot be computed solely based on
facets of source code. Hence, combining software measures
with subjects’ behavior is not a feasible way for practical use
of software measures. Nevertheless, since we are exploring
how software measures and program comprehension correlate,
it is legitimate to adapt software measures as we did.

The results of our experiment can be a good starting point
for future research: Other software measures can be calculated
and compared with our results. Another way is to replicate
our experiment, either as it is or with slight changes, such as

This paper is the authors version and presented here for personal use only. Any other use may violate the IEEE Copyright



recruiting AspectJ experts or using other software systems.
In fact, we explicitly encourage other researches to look into
our experiment and use our results for further research.

ACKNOWLEDGMENTS

We thank Norbert Siegmund and Jens Dörre for helpful discus-
sions and their support in preparing and conducting the experiment.
Feigenspan’s work is supported by BMBF project 01IM10002B.
Apel’s work is supported by the DFG projects #AP 206/2 and #AP
206/4. Kästner’s work is supported in part by ERC (#203099).

REFERENCES

[1] T. Anderson and J. Finn. The New Statistical Analysis of Data.
Springer, 1996.

[2] I. Bertoncello et al. Explicit Exception Handling Variability
in Component-based Product Line Architectures. In Proc.
Int’l Workshop Exception Handling, pages 47–54. ACM Press,
2008.

[3] J. Boysen. Factors Affecting Computer Program Comprehen-
sion. PhD thesis, Iowa State University, 1977.

[4] R. Brooks. Using a Behavioral Theory of Program Compre-
hension in Software Engineering. In Proc. Int’l Conf. Software
Engineering, pages 196–201. IEEE CS, 1978.

[5] A. Bryant et al. Composing Design Patterns: A Scalability
Study of Aspect-Oriented Programming. In Proc. Int’l Conf.
Aspect-Oriented Software Development, pages 109–121. ACM
Press, 2006.

[6] P. Clements and L. Northrop. Software Product Lines: Practice
and Patterns. Addison Wesley, 2001.

[7] J. Daly et al. The Effect of Inheritance on the Maintainability
of Object-Oriented Software: An Empirical Study. In Proc.
Int’l Conf. Software Maintenance, pages 20–29. IEEE CS,
1995.

[8] A. Dunsmore and M. Roper. A Comparative Evaluation of
Program Comprehension Measures. Technical Report EFoCS
35-2000, Department of Computer Science, University of
Strathclyde, 2000.

[9] R. Dyer et al. A Preliminary Study of Quantified, Typed
Events. In AOSD Workshop Empirical Evaluation of Software
Composition Techniques, 2010.

[10] J. Feigenspan et al. How to Compare Program Comprehension
in FOSD Empirically - An Experience Report. In Proc. Int’l
Workshop on Feature-Oriented Software Development, pages
55–62. ACM Press, 2009.

[11] J. Feigenspan et al. Using Background Colors to Support
Program Comprehension in Software Product Lines. In Proc.
Int’l Conf. Evaluation and Assessment in Software Engineering,
pages 66–75. Institution of Engineering and Technology, 2011.

[12] J. Feigenspan, N. Siegmund, and J. Fruth. On the Role of
Program Comprehension in Embedded Systems. In Workshop
Software-Reengineering, pages 34–35, 2011.

[13] E. Figueiredo et al. Assessing Aspect-Oriented Artifacts:
Towards a Tool-Supported Quantitative Method. In ECOOP
Workshop Quantitative Approaches in Object-Oriented Soft-
ware Engineering, pages 58–69, 2005.

[14] E. Figueiredo et al. Evolving Software Product Lines with
Aspects: An Empirical Study on Design Stability. In Proc.
Int’l Conf. Software Engineering, pages 261–270. ACM Press,
2008.

[15] E. Figueiredo et al. On the Maintainability of Aspect-Oriented
Software: A Concern-Oriented Measurement Framework. In
Proc. Europ. Conf. Software Maintenance and Reengineering,
pages 183–192. IEEE CS, 2008.

[16] E. Figueiredo, J. Whittle, and A. Garcia. ConcernMorph:
Metrics-based Detection of Crosscutting Patterns. In Proc.
Europ. Software Engineering Conf./Foundations of Software
Engineering, pages 299–300. ACM Press, 2009.

[17] I. Galvâo, P. van den Broek, and M. Akşit. A Model for
Variability Design Rationale in SPL. In Proc. Europ. Conf.
Software Architecture, pages 332–335. ACM Press, 2010.

[18] A. Garcia et al. Modularizing Design Patterns with Aspects:
A Quantitative Study. In Proc. Int’l Conf. Aspect-Oriented
Software Development , pages 3–14. ACM Press, 2005.

[19] P. Greenwood et al. On the Impact of Aspectual Decompo-
sitions on Design Stability: An Empirical Study. In Proc.
Europ. Conf. Object-Oriented Programming, pages 176–200.
Springer, 2007.

[20] B. Henderson-Sellers. Object-Oriented Metrics: Measures of
Complexity. Prentice Hall, 1995.

[21] S. Henry, M. Humphrey, and J. Lewis. Evaluation of the
Maintainability of Object-Oriented Software. In IEEE Region
10 Conf. Computer and Comm. Systems, pages 404–409. IEEE
CS, 1990.

[22] K. Kang et al. Feature-Oriented Domain Analysis (FODA)
Feasibility Study. Technical Report CMU/SEI-90-TR-021,
Software Engineering Institute, 1990.

[23] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. Griswold. An Overview of AspectJ. pages 327–353.
Springer, 2001.

[24] J. Koenemann and S. Robertson. Expert Problem Solving
Strategies for Program Comprehension. In Proc. Conf. Human
Factors in Computing Systems, pages 125–130. ACM Press,
1991.

[25] U. Kulesza et al. Quantifying the Effects of Aspect-Oriented
Programming: A Maintenance Study. In Proc. Int’l Conf.
Software Maintenance, pages 223–233. IEEE CS, 2006.

[26] B. Lientz and B. Swanson. Software Maintenance Management.
Addison-Wesley, 1980.

[27] R. Likert. A Technique for the Measurement of Attitudes.
Archives of Psychology, 22(140):1–55, 1932.

[28] S. McConnell. Code Complete. Microsoft Press, second
edition, 2004.

[29] A. Molesini et al. On the Quantitative Analysis of Architecture
Stability in Aspectual Decompositions. In Proc. Working
IEEE/IFIP Conf. on Software Architecture, pages 29–38. IEEE
CS, 2008.

[30] D. Mook. Motivation: The Organization of Action. W.W.
Norton & Co., second edition, 1996.

[31] B. Morin et al. Taming Dynamically Adaptive Systems using
Models and Aspects. In Proc. Int’l Conf. Software Engineering,
pages 122–132. IEEE CS, 2009.

[32] D. Parnas. On the Criteria To Be Used in Decomposing
Systems into Modules. Commun. ACM, 15(12):1053–1058,
1972.

[33] N. Pennington. Stimulus Structures and Mental Represen-
tations in Expert Comprehension of Computer Programs.
Cognitive Psychologys, 19(3):295–341, 1987.

[34] L. Prechelt et al. Two Controlled Experiments Assessing
the Usefulness of Design Pattern Documentation in Program
Maintenance. IEEE Trans. Softw. Eng., 28(6):595–606, 2002.

[35] M. Robillard and G. Murphy. Representing Concerns in Source
Code. ACM Trans. Softw. Eng. & Methodology, 16(1):1–38,
2007.

[36] B. Sharif and J. Maletic. An Eye Tracking Study on camelCase
and under score Identifier Styles. In Proc. Int’l Conf. Program
Comprehension, pages 196–205. IEEE CS, 2010.

[37] B. Shneiderman and R. Mayer. Syntactic/Semantic Interactions
in Programmer Behavior: A Model and Experimental Results.
International Journal of Parallel Programming, 8(3):219–238,
1979.

This paper is the authors version and presented here for personal use only. Any other use may violate the IEEE Copyright



[38] E. Soloway and K. Ehrlich. Empirical Studies of Programming
Knowledge. IEEE Trans. Softw. Eng., 10(5):595–609, 1984.

[39] A. von Mayrhauser and M. Vans. Program Comprehension
During Software Maintenance and Evolution. Computer,
28(8):44–55, 1995.

[40] J. Yellott. Correction for Fast Guessing and the Speed
Accuracy Trade-off in Choice Reaction Time. Journal of
Mathematical Psychology, 8:159–199, 1971.

This paper is the authors version and presented here for personal use only. Any other use may violate the IEEE Copyright




