An investigation of misunderstanding code
patterns in C open-source software projects

Flavio Medeiros, Gabriel Lima,
Guilherme Amaral, Sven Apel, Christian
Kistner, Marcio Ribeiro & Rohit Gheyi

Empirical Software Engineering
An International Journal

ISSN 1382-3256

Empir Software Eng
DOI 10.1007/510664-018-9666-x

VOLUME 22, NUMBER 3, June 2017

EMPIRICA[

SOFTWARE
ENGINEERING

AN INTERNATIONAL JOURNAL

f

EDITORS-IN-CHIEF:

ROBERT FELDT

THOMAS ZIMMERMANN

@ Springer

@ Springer



Your article is protected by copyright and

all rights are held exclusively by Springer
Science+Business Media, LLC, part of
Springer Nature. This e-offprint is for personal
use only and shall not be self-archived in
electronic repositories. If you wish to self-
archive your article, please use the accepted
manuscript version for posting on your own
website. You may further deposit the accepted
manuscript version in any repository,
provided it is only made publicly available 12
months after official publication or later and
provided acknowledgement is given to the
original source of publication and a link is
inserted to the published article on Springer's
website. The link must be accompanied by
the following text: "The final publication is
available at link.springer.com”.

@ Springer



Empirical Software Engineering
https://doi.org/10.1007/510664-018-9666-x

@ CrossMark

An investigation of misunderstanding code patternsin C
open-source software projects

Flavio Medeiros' © . Gabriel Lima' - Guilherme Amaral? - Sven Apel® -
Christian Késtner® - Marcio Ribeiro? - Rohit Gheyi®

Published online: 22 November 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract

Maintenance consumes 40% to 80% of software development costs. So, it is essential to
write source code that is easy to understand to reduce the costs with maintenance. Improv-
ing code understanding is important because developers often mistake the meaning of code,
and misjudge the program behavior, which can lead to errors. There are patterns in source
code, such as operator precedence, and comma operator, that have been shown to influence
code understanding negatively. Despite initial results, these patterns have not been evalu-
ated in a real-world setting, though. Thus, it is not clear whether developers agree that the
patterns studied by researchers can cause substantial misunderstandings in real-world prac-
tice. To better understand the relevance of misunderstanding patterns, we applied a mixed
research method approach, by performing repository mining and a survey with develop-
ers, to evaluate misunderstanding patterns in 50 C open-source projects, including Apache,
OpenSSL, and Python. Overall, we found more than 109K occurrences of the 12 patterns
in practice. Our study shows that according to developers only some patterns considered
previously by researchers may cause misunderstandings. Our results complement previous
studies by taking the perception of developers into account.

Keywords Misunderstanding patterns - Repository mining - Survey

1 Introduction

Software maintenance is the modification of a software product after delivery to add new
functionalities, correct faults, improve design or performance, or adapt programs to differ-
ent hardware (ISO/IEC/IEEE 2006). Maintenance consumes 40% to 80% of the software
development costs (Glass 2001). So, writing code that is easy to understand and to change
(Pahal and Chillar 2017; Buse and Weimer 2008) is essential to reduce costs and time to
market (Jha et al. 2016). In open-source projects, in which often many developers contribute

Communicated by: Christoph Treude

P4 Flavio Medeiros
flavio.medeiros @ifal.edu.br

Extended author information available on the last page of the article.

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-018-9666-x&domain=pdf
http://orcid.org/0000-0002-5142-7499
mailto: flavio.medeiros@ifal.edu.br

Empirical Software Engineering

to the code base, it is necessary to pay special attention to code understanding and standards
to keep the code easier to review, debug, and to find bugs, as described in the guidelines for
contributors! of the project Curl, as well as in a number of research studies (Stamelos et al.
2002; Beller et al. 2014; Rigby et al. 2008).

Even when developers take care of the code base, they often misunderstand the meaning
of source code, and misjudge a program’s true behavior (Gopstein et al. 2017). This happens
even when considering small and isolated patterns in the source code, which can still lead
to significant runtime errors. Thus, it is not only important to define a proper high-level
architecture of the system (Fowler et al. 1999; Gamma et al. 1995), but also to avoid certain
code patterns that influence code understanding negatively. (Gopstein et al. 2017) discussed
a number of bugs related to small and isolated code patterns that caused losses of millions
of dollars, such as Apple’s goto fail SSL bug (Bland 2014), the Ariane 5 floating point
overflow (Dowson 1997), and the cascading network failure of AT&T (Burke 1995).

In the past, researchers have evaluated such misunderstanding patterns in C programs by
performing controlled experiments with programmers (Gopstein et al. 2017; Schulze et al.
2013; Malaquias et al. 2017). A misunderstanding pattern is a small code excerpt that can
influence code understanding negatively. These studies showed that certain code patterns
influence code understanding negatively. However, the participants of the experiment of
Gopstein et al. (2017), for instance, were undergraduate students with at least three months
of experience, which might not be sufficient to understand complex programming language
concepts in detail.

To obtain a better understanding about the relevance of misunderstanding patterns in
practice, we applied a mixed research method approach (Creswell and Clark 2011; Easter-
brook et al. 2008), by applying software repository mining, and by conducting a survey with
software developers, with the goal of evaluating misunderstanding code patterns in 50 real-
world open-source projects, such as Apache, OpenSSL, and Python. We aim at answering
the following research questions:

— RQI. What is the frequency of occurrences of misunderstanding patterns in open-
source projects?

— RQ2. Do developers of open-source projects agree that misunderstanding patterns
influence code understanding negatively?

— RQ3. What are the guidelines that open-source projects provide to avoid misunder-
standing code patterns?

— RQ4. Do developers of open-source projects accept pull requests to remove instances
of misunderstanding patterns?

Our study considers 12 misunderstanding patterns, which we collected by analyzing
the results of previous work and by studying guidelines for contributors of open-source
projects. We selected the patterns dangling else and initializations in conditions from the
guidelines of open-source projects, and the other misunderstanding patterns from Gopstein
et al. (2017). We found occurrences of the majority of patterns studied in this work. In
the presence of misunderstanding patterns, developers might misjudge the program behav-
ior, and introduce runtime errors accidentally. Overall, we found more than 109 thousand
occurrences of 11 out of 12 patterns considered in our study. However, we found no occur-
rences of pattern reversed subscript, which is criticized in prior work (Gopstein et al. 2017),
considering the 50 C projects.

Uhttps://github.com/curl/curl/blob/master/docs/CODE_STYLE.md

@ Springer


https://github.com/curl/curl/blob/master/docs/CODE_STYLE.md

Empirical Software Engineering

By means of a survey with 97 developers, we learned that most developers agree that
the presence of 6 out of 12 misunderstanding patterns can influence code understanding
negatively. The reason is that the 6 misunderstanding patterns require developers to know
specific programming language concepts in advance to understand how the patterns work.
For instance, there is no way to know for sure how a boolean expression is going to be
evaluated without knowing exactly the operator precedence rules.

Furthermore, we found that the majority of guidelines for code contributors in open-
source projects, address code style, pull request information, and bug report instructions.
The guidelines instruct developers to use specific tools or mailing lists for sending pull
requests, and bug reports, and they describe very specific code style issues, such as to use
spaces instead of tabs for indentation, and to include spaces before and after operators. Only
a few projects provide guidelines regarding code understanding, such as Curl, Librdkafka,
OpenSSL, and Reactos, which guide developers to avoid certain misunderstanding patterns.

To learn about the relevance of misunderstanding patterns, we submitted 35 pull requests
to remove instances of misunderstanding patterns that we found in open-source projects.
We received feedback for 21 pull requests, and developers accepted 8 pull requests (38%).
Despite this being a clear sign that removing misunderstanding pattern is beneficial, we
learned that developers do not like to change code that is working to improve only code
style issues without fixing bug, or adding new functionalities, which might be one of the
reasons for the rather low acceptance rate. A replication package for this study is available
at our supplementary Website? and Zenodo (Medeiros et al. 2018b).

The key contributions of this article are:

— A better understanding regarding which code patterns may influence code understand-
ing negatively, based on a study that triangulates the results of a survey, repository
mining, and pull request submissions, considering real-world settings (Section 4);

— A set of patterns that influence code understanding negatively about which most
developers of open-source projects agree (Section 4.3);

— A dataset of 50 C projects, showing that certain misunderstanding patterns occur
frequently in practice (Section 4.3).

The remainder of this article is organized as follows. Section 2 discusses a real bug related
to the use of a misunderstand pattern. In Section 3, we introduce the misunderstanding pat-
terns studied in this article. Section 4 presents the settings and results of the empirical study,
which we performed to better understand misunderstanding code patterns. In Section 5, we
list several code guidelines for practitioners deduced from our empirical study. Section 6
presents a literature review of related work, and Section 7 summarises the article.

2 Motivating Example

Developers often make mistakes when trying to understand small, and isolated parts of the
source code, which can lead to errors. For instance, OpenH264> is a project implement-
ing a codec library that supports H.264 encoding and decoding. In Fig. 1a, we present an
excerpt of OpenH264’s source code. It contains a runtime error arising from the misunder-
standing pattern dangling else, which we discuss in Section 3. Notice that there is an else
statement at Line 9. This statement is supposed to belong to the if statement that starts at

2http://cpsoftware.com.br/patterns/index.html
3http://www.openh264.org/

@ Springer


http://cpsoftware.com.br/patterns/index.html
http://www.openh264.org/

Empirical Software Engineering

a b

1. while (iAnyMbLeftInPartition > @) { 1. while (iAnyMbLeftInPartition > @) {
2 int32_t iSliceSize = 0; 2. int32_t iSliceSize = 0;

3 int32_t iPayloadSize = 0; 3. int32_t iPayloadSize = 0;

4. 4.

5. if (iSliceldx >= pSliceCtx) { 5. if (iSliceldx >= pSliceCtx) {

6 if (pCtx->iActiveThreads == 1) 6. if (pCtx->iActiveThreads == 1) {
7 if (DynSlice (pCtx)) 7. if (DynSlice (pCtx))

8. return MEMALLOCERR; 8. return MEMALLOCERR;

9. else if (iSlice >= pSliceCtx) { 9. } else if (iSlice >= pSliceCtx) {
10. return MEMALLOCERR; 10. return MEMALLOCERR;

11 ! 11. 3

12. %} 12. 3}

13.3} 13.3}

Fig.1 a A code snippet of OpenH264 with an error arising from the misunderstanding pattern dangling else,
b a solution to fix the error by adding curly brackets

Line 6. However, there is no curly bracket, so the else statement actually belongs to the
if statement that starts at Line 7. The reason is that else statements in C belong to the
innermost 1f statement when there is no curly bracket. During code reviews, the develop-
ers of OpenH264 fixed the error that we discussed here by adding curly brackets,* as we
can see in Fig. 1b.

Many coding standards and style guides recommend to use curly brackets to avoid the
misunderstanding pattern dangling else. The Mozilla coding style guide,? for instance,
suggests developers to always include brackets, even in single-line blocks of if/else
statements. Other authors (Scott 2000; Cannon et al. 2000; Darnell and Margolis 1996)
stated that if you have a nested mixture of i f/else statements, especially with misleading
indentation, even expert developers may introduce errors.

Previous studies (Gopstein et al. 2017; Dijkstra 1968; Elgot 1976; Marshall and Web-
ber 2000; Wulf and Shaw 1973) refer to misunderstanding patterns that may cause runtime
errors similar to the one that we discuss here. However, little effort has been put into under-
standing the relevance of these patterns using real-world settings. Most prior work performs
controlled experiments with students (Gopstein et al. 2017; Schulze et al. 2013; Malaquias
et al. 2017), with at least three months of experience (Gopstein et al. 2017), which might
not be sufficient to understand details regarding programming language concepts. In this
article, we study misunderstanding patterns by using a corpus of 50 C open-source projects
(see Table 2), on which we performed an empirical study to better understand such patterns,
as we discuss in Section 4.

3 Misunderstanding Patterns in Source Code
In this section, we describe the misunderstanding patterns that we considered in our study.

We collected these patterns by analyzing the results of different studies (Creswell and Clark
2011; Easterbrook et al. 2008), including a review of previous work, and by studying the

“https://rbcommons.com/s/OpenH264/r/465/diff/ 1#0
Shttps://developer.mozilla.org/docs/Mozilla/Developer_guide/Coding_Style

@ Springer


https://rbcommons.com/s/OpenH264/r/465/diff/1#0
https://developer.mozilla.org/docs/Mozilla/Developer_guide/Coding_Style

Empirical Software Engineering

guidelines for contributors provided by 36 open-source projects of our corpus, and the
Mozilla, Google,® and Linux” coding style guides.

We include only patterns that we can detect syntactically without using semantic infor-
mation. For instance, Gopstein et al. (2017) present a pattern related to the use of the same
variable for different purposes. To detect it, we need semantic information. So, we have not
considered this pattern in our study. Next, we present one example of each pattern included
in our study, but our tool is also able to detect variations of the patterns. The complete list
of the variations is available at our Website.

In Pattern 1, on the left side, we present the misunderstanding pattern dangling else. It is
not obvious that the el se statement starting at Line 4 is part of the if statement that starts
at Line 2, except for the indentation that may change during maintenance tasks. There is
an implicit concept in this code snippet, and developers need to know that the el se clause
belongs to closest i f statement. On the right side, we show one possible way to remove this
pattern, in which there are no doubts regarding the respective 1f/else statement.

1. if (cond_1) {
1. if (cond_1) 2. if (cond_2) {
2. if (cond_2) 3. stmt_1
3. stmt_1 > 4. } else {
4. else 5. stmt_2
5. stmt_2 6. }

7. %

Pattern 1 (Dangling Else)

We present the misunderstanding pattern initialization in conditions in Pattern 2, on the
left side. Note that variable var_1 is initialized and compared to the result of a function in
Line 1. Again, developers need to know that an assignment returns the value of the expres-
sion on the left, that is, the value of var_1, in this case. On the right side, we present a
possibility to remove this misunderstanding pattern by separating the initialization from the
if statement condition.

var_1l = func_1Q);

if (var_l == @) {
stmt_1

}

1. if (Cvar_l = func_1Q)) == @) {
stmt_1 .

AWN R

2o
3ok

Pattern 2 (Initialization in Conditions)

In Pattern 3, we illustrate the pattern logic as control flow. As we can see on the left side,
the call to func_1 is performed only if var_1 is true or different from 0. The reason
is that C evaluates the second argument of the logical && operator only when the first one
evaluates to true. On the right side of Pattern 3, we use an if statement to make this
situation clearer.

We illustrate the pattern conditional operator on the left side of Pattern 4. In this pattern,
we have an assignment that depends on the value of a variable. We can make this clearer
on the right side of Pattern 4 by showing explicitly that we will change the value of var_1
only if var_2 is equal to 3.

Shttps://github.com/google/styleguide
7https://www.kernel.org/doc/html/v4.10/process/coding-style.html

@ Springer


https://github.com/google/styleguide
https://www.kernel.org/doc/html/v4.10/process/coding-style.html

Empirical Software Engineering

1. if (var_1l) {

1. var_1 && func_1Q0); func_10);

\4

2
3. }

Pattern 3 (Logic as Control Flow)

1. if (var_2 == 3) {
2. var_1l = 2;
3.}

1. var_1 = (var_2 == 3) ? 2 : var_1;

\

Pattern 4 (Conditional Operator)

In Pattern 5, left side, we show the pattern operator precedence. As we can see, it is not clear
that the second part of the expression is going to be evaluated first, as operator && has precedence
over operator | |. On the right side, we can make this clearer by adding parentheses.

1. var_1 || var_2 && var_3; » 1. var_1 || (var_2 && var_3);

Pattern 5 (Operator Precedence)

We present the pattern comma operator on the left side of Pattern 6. In this pattern,
the statements inside the parentheses are executed in sequential order. For instance, as we
can see, var_2 will have its value summed by one, followed by the assignment of var_2
to var_1. On the right side of Pattern 6, we make the order explicit by separating the
statements in different lines.

1. var_2 = var_2 + 1;
2. var_1 = var_2;

1. var_1 = (var_2 += 1, var_2); >

Pattern 6 (Comma Operator)

On the left side of Pattern 7, we present the pattern reversed subscript. In this pattern, we
access an integer array (arr_1) and use printf to output the value stored at the second
position of the array. Notice that this is not the common way of reading values from arrays,
but still valid in C. On the right side of Pattern 7, we show the common way of reading array
values used by the majority of developers.

1. printf(“%d”, 1[arr_1]);

1. printf(“%d”, arr_1[1]);

\4

Pattern 7 (Reversed Subscript)

On the left side of Pattern 8, we present the pattern pointer arithmetic. Notice that there
is a pointer (ptr_1) that receives the address of an integer array (arr_1). Instead of using

@ Springer



Empirical Software Engineering

pointers, we can use an integer variable to represent the array index, as we show on the right
side of Pattern 8.

1. ptr_1 = arr_1; 1. int var_1 = 0;
2. ptr_1++; > 2. var_l++;
3. printf (“%d”, *ptr_1); 3. printf(“%d”, arr_1[var_1]);

Pattern 8 (Pointer Arithmetic)

In Pattern 9, we present the pattern multiple initializations at the same line. As we can
see on the left side, var_1 and var_2 are both initialized in Line 1. On the right side, we
separate the initializations in different lines of the source code to make clear that both are
initialized. Notice that we may extend this pattern to other types of statements, not only
initializations.

1. int var_1
2. int var_2

10;
20;

1. int var_1 = 10, var_2 = 20;

Pattern 9 (Multiple Initializations at the Same Line)

On the left side of Pattern 10, we present the pattern assignment as value. Notice that, in
this pattern, we have variable var_1 receiving the result of an assignment. In this case, we
assign 10 to variable var_2, which is the value of the left expression. As a consequence,
the value 10 is going to be assigned to var_1 too. On the right side of Pattern 10, we
separate the assignments in different lines of the source code.

1. var_1l
2. var_2

Il

10;
10;

1. var_1 = var_2 = 10; >

Pattern 10 (Assignment as Value)

In Pattern 11, on the left side, we present the pattern post-increment. As we can see, first
var_1 receives the value of var_2, and then var_2 is incremented. On the right side of
Pattern 12, we make the sequence of executions explicit. The implicit concept here is that
variable var_2 is incremented, but only after the assignment of its value to var_1.

1. var_1l
2. var_2

var_2;
var_2 + 1;

1. var_1l = var_2++; P>

Pattern 11 (Post-Increment)

In Pattern 12, on the left side, we illustrate the pattern pre-increment. First, var_2 is
incremented, and then var_1 receives the value of var_2. On the right side of Pattern 12,

@ Springer



Empirical Software Engineering

we again make the sequence of executions explicit. The implicit concept here is that variable
var_2 is incremented, but before the assignment of its value to var_1.

1. var_2
2. var_1

var_2 + 1;
var_2;

1. var_1l = ++var_2;

Pattern 12 (Pre-Increment)

In Fig. 2, we present a summary of all patterns considered in our study. Notice that Fig. 2 show
only the misunderstanding pattern, not presenting the alternatives to remove each pattern.

4 Study Settings and Results

In this section, we present the settings of our empirical study, which considers a corpus of
50 C open-source projects.

The goal of our empirical study is to analyze C projects with respect to evaluating the
relevance of our 12 misunderstanding patterns in practice.

4.1 Research Questions

Specifically, we address the following research questions:

— RQI1. What is the frequency of occurrences of misunderstanding patterns in open-
source projects?

— RQ2. Do developers of open-source projects agree that misunderstanding patterns
influence code understanding negatively?

SiF Cemaeld) lfsgrg:a;_l = func 1) = 0 var_1 && func_10);
if (cond_2) } - - -
stmt_1
else Pattern 2: Initialization in Conditions Pattern 3: Logic as Control Flow
stmt_2
Pattern 1: Dangling Else var_1 = (var_2 == 3) ? 2 : var_1; var_1 || var_2 && var_3;
Pattern 4: Conditional Operator Pattern 5: Operator Precedence
_ _ . . woy A . ptr_1 = arr_1;
var_1 = (var_2 += 1, var_2); printf(“%d”, 1[arr_1]);
ptr_1++;
rintf (“%d”, *ptr_1);
Pattern 6: Comma Operator Pattern 7: Reversed Subscript P ¢ , *ptrl);
Pattern 8: Pointer Arithmetic
int var_1 = 10, var_2 = 20; var_1l = var_2 = 10; var_1l = var_2++; ||var_1 = ++var_2;
Pattern 10: Assignment Pattern 11: Pattern 12:
Pattern 9: Multiple Initializations as a Value Post-Increment Pre-Increment

Fig.2 Summary of all patterns considered in our study

@ Springer



Empirical Software Engineering

— RQ3. What are the guidelines that open-source projects provide to avoid misunder-
standing code patterns?

— RQ4. Do developers of open-source projects accept pull requests to remove instances
of misunderstanding patterns?

4.2 Study Setup

To answer these research questions, we selected a corpus of 50 C open-source projects,
including Apache, OpenSSL, and Python. Our corpus contains projects from different
domains, such as operating systems, Web servers, text editors, security libraries, and
databases. For the selection of subject projects, we used GHTorrent (Gousios 2013) with
the goal of identifying active projects by sorting them based on the number of stars and pull
requests on GitHub. In addition, we considered only projects that use C as the primary lan-
guage of the project. That is, we considered column “language” in GHTorrent. The dataset
we used was from March 23, 2018. We list all subject projects in Table 2.

For RQ1, we conducted a static analysis to count the number of occurrences of misun-
derstanding code patterns in the subject projects. We implemented a Java tool that searches
for occurrences of misunderstanding patterns based on SrcML.? a tool that generates XML
files from source code. Our tool is available at the supplementary Website with an example
showing how our tool operates.

To answer RQ2, we conducted a developer survey to learn about the relevance of misun-
derstanding patterns based on the perception of developers. In Appendix A, we present our
survey, which includes 12 questions about the misunderstanding patterns (one per pattern),
and three additional questions related to the experience of developers, and free text boxes to
get additional misunderstanding pattern candidates from developers. To recruit participants,
we collected relevant information about developers by mining the software repositories of
the projects in our corpus. To select developers to participate in the survey, we measured
code churn metric to select the most active developers from each project. Then, we arbi-
trarily selected a number of developers from the active ones to send emails asking them to
fill our survey. Overall, we sent emails to 701 developers, of which 97 (14%) developers
completed the survey.

For RQ3, we studied the guidelines for code contributors provided by 36 projects of
our corpus to identify guidelines with respect to misunderstanding patterns. We searched
for guidelines by performing a manual analysis of the respective project repositories. We
considered a project to contain guidelines for contributors when there is at least one file, or
a specific section, focusing on providing guidelines information. In most projects, we found
these guidelines in the contributing.md file at the root of the repository. To some
projects, we searched the guidelines in the complete software repository.

To answer RQ4, we submitted 35 pull requests, arbitrarily selected from pattern
instances that we found, to the respective software projects suggesting developers to remove
misunderstanding patterns; we counted the number of patches accepted.

4.3 Results and Discussion

In this section, we present the results regarding our study.

8http://www.srcml.org/

@ Springer


http://www.srcml.org/

Empirical Software Engineering

Table 1 Percentage of projects with occurrences, occurrences per thousand lines of code, and the frequency
category

Pattern Projects Occurrence/KLOC Category
Multiple Initializations 100% 66.67 highly used
Conditional Operator 98% 12.05 commonly used
Initialization in Conditions 11% 6.41 commonly used
Assignment as Value 94% 3.02 commonly used
Pointer Arithmetic 74% 0.87 little used

Post Increment 78% 0.57 little used

Pre Increment 80% 0.48 little used
Operator Precedence 54% 0.27 little used
Dangling Else 40% 0.09 little used
Logic as Control Flow 50% 0.12 little used
Comma Operator 0.02% 0.003 little used
Reversed Subscript 0% - not used

RQ1: What is the frequency of occurrences of misunderstanding patterns in open-source
projects?

To answer this question, we measured the following metrics, as presented in Table 1: the
percentage of projects with occurrences of misunderstanding patterns; and the number of
occurrences of the patterns per thousand lines of code. Then, we classified the patterns into
categories based on their frequencies. For this, we used the following rules: (1) not used: no
occurrence found; (2) little used: at least 1 occurrence to 1.000 occurrences; (3) commonly
used: for patterns with more than 1.000 and less than 10.000 occurrences; and (4) highly
used: more than 10.000 occurrences (Table 2).

The patterns conditional operator, multiple initializations, and assignment as value, are
used in the majority of open-source projects. We found the pattern multiple initializations
in all projects analyzed in our study. In contrast, we did not find occurrences of the pattern
reversed subscript.

Regarding the number of occurrences per thousand lines of code, the pattern multiple
initializations is definitely the most occurring in practice; we found more than 66 occur-
rences of this pattern per thousand lines of code. In a previous study, Gopstein et al. (2018)
found that the patterns analyzed in their work appeared on average once every 23 lines. In
our study, the patterns appeared on average once every 11 lines of code.

We classified the pattern multiple initializations as highly used in practice, 3 patterns
as commonly used, 7 patterns as little used, and 1 misunderstanding pattern as not used in
practice (see Table 1). In Fig. 3, we present the numbers of occurrences for the patterns
considered in our study. We do not show pattern reversed subscript, for which we did not
find occurrences. In addition, we omitted pattern comma operator (only 4 occurrences), and
patterns conditional operator and multiple initializations (high numbers of occurrences).

For instance, we found almost 80K occurrences of pattern multiple initializations, and
conditional operator, of which we found almost 15K occurrences.

To study the current state of existing tools with regards to warn developers about
misunderstanding patterns, we checked which patterns the tools detect. Existing tools can

@ Springer



Empirical Software Engineering

Table 2 Overview of the subject projects

Project Domain LOC Dev Commits Guides
Apache Web Server 201 032 36 30 536

Cinder C++ Library 140 731 100 8425 v
Citus Database 65 409 28 1661 v
Cleanflight Controller Firmware 420 295 262 10 391 v
Cmake Build Tool 223 007 570 38 541 v
Cmus Music Player 3730 92 2122 v
Collectd Statistic Library 94 520 320 9852 v
Contiki Operating System 253 667 160 12 325 v
Ctags Tags Implementation 76 874 94 5761

Curl Command Line Tool 108 802 392 22 794 v
Dmd Compiler 77 051 159 18511 v
Edk2 Firmware 149 3867 144 23168 v
FFmpeg Video Tool 868 058 931 89 831 v
FreeRDP Remote Desktop 247 437 201 11 599

Git Code Mirror 174 715 1163 49 935

Glfw Open GL Library 26 154 104 3555 v
Grpc RPC Framework 14 266 306 30434 v
Hiredis Database 3902 79 591

Irssi Chat Client 53612 72 5524 v
Jansson JSON Tool 6827 54 847

JohnTheRipper Password Cracker 231211 86 14 320

Krb5 Security Library 262 323 58 19 304 v
Libpng Image Library 51987 23 3199

Librdkafka C++ Library 45127 93 2444 v
Libssh2 SSH Library 27377 71 1907

Libuv 1/0 Library 49 634 289 3952 v
Libwebsockets Websocket Library 53412 152 2380

Lxc Linux Containers 52770 279 6251 v
Mongo Database 484 903 327 40354 v
Mpv Video Player 115 403 240 46 085 v
OpenSSL SSL Library 273284 313 21259 v
Phpredis Database 12 482 77 1912

Poco C++ Library 317911 171 4724 v
Premake-core Premake 148 105 77 3057

Python Compiler 288 002 112 561

Omk_Firmware Controller Firmware 148 160 489 7074 v
Radare2 Reverse Engineering 421778 444 17 051 v
Reactos Operating System 404 2406 73 70 684 v
Redis Database 86 358 243 6528 v
RetroArch Libretro API 396 618 236 41940 v
Riot-os Operating System 152294 171 3150 v

@ Springer



Empirical Software Engineering

Table2 (continued)

S2n Security Library 18 664 61 1888 v
Silver Searcher Search Tool 3840 179 1968 v
Statsite Administration Tool 15083 61 705

Stb C++ Library 14 948 929 1442 v
Swift Corelibs 118n Tool 77 994 220 3252 v
Syslog-ng Log Daemon 89 242 72 6866 v
Systemd System Manager 297 896 894 31825 v
Tvheadend Streaming Server 126 041 196 9916 v
Weechat Chat Client 167 572 84 8427 v

detect only two patterns. The Gce compiler, the Clang static analyzer,? and PVS Studio'® are
able to warn developers about the use of patterns dangling else, and operator precedence.
All the other patterns are not detected by these tools.

SUMMARY

The magority of patterns analyzed in our study (92%) are used in practice
by real developers of open-source C projects. The pattern reversed subscript
does not occur in practice, and the patterns dangling else, comma operator,
and logic as control flow occur only rarely.

RQ2: Do developers of open-source projects agree that misunderstanding patterns
influence code understanding negatively?

As the core of the survey, we asked developers 12 questions (each in Likert item) to eval-
uate how positive or negative the influence of using a particular misunderstanding pattern
is. We used the following options as possible answer: fotally positive, positive, neither posi-
tive or negative, negative, or totally negative. At the end of the survey, we added a question
about years of experience, and two open text boxes for additional comments.

Analyzing the answers of 97 software developers, we found that most developers agree
that the use of 6 out of 12 of our patterns (50%) might cause misunderstandings. In Fig. 4,
we present the results of the survey. The patterns comma operator and reversed subscript are
the ones that most developers agree on causing misunderstandings, more than 90% of devel-
opers that filled the survey. This is in line with our results for RQ1, as software developers
do not use these patterns in practice.

For the misunderstanding patterns dangling else, initialization in conditions, logic as
control flow, and operator precedence, our results show that more than 60% of developers
agree that they may influence code understanding negatively. Three out of these four pat-
terns are classified as little used in RQ1, the exception is pattern initialization in conditions,
which is commonly used in practice by developers of open-source projects.

9https://clang-analyzer.llvm.org/
10https://www.viva64.com/en/pvs-studio/

@ Springer


https://clang-analyzer.llvm.org/
https://www.viva64.com/en/pvs-studio/

Empirical Software Engineering

Dangling else

Initialization in conditions ! !/ ' | |
Logic as control flow

Operator precedence

Pointer arithmetic I

Assignment as a value I N B
Post-increment
Pre-increment

1000 2000 3000 4000 5000 6000 7 000 8 000

Fig. 3 Frequency of occurrences of the patterns

To investigate the relationship between perception of misunderstanding (RQ2), and how
often the patterns are used in practice (RQ1), we calculate Spearman’s correlation coeffi-
cient. Overall, we found a strong correlation: rho = 0.93. In Table 3, we show the data
regarding the category of occurrences for each pattern, and the percentage of developers
that agreed that the patterns influence code understanding negatively. As we can see, the
majority of patterns that are not used or little used are perceived as negative by developers.
However, this does not hold for pattern initialization in conditions, which is perceived as
negative by 76.29% of developers, but which is commonly used in practice.

According to the majority of developers, the four patterns, conditional operator, pointer
arithmetic, multiple initializations, assignment as a value, are neither negative or positive.
The patterns post-increment and pre-increment, most developers state that they do not cause
misunderstandings.

According to the results of Gopstein et al. (2017), the misunderstanding patterns logic
as control flow, conditional operator, operator precedence, comma operator, assignment
as value, post-increment, pre-increment, and reversed subscript, influence code understand-
ing negatively. The results of Gopstein et al. (2017) differ from our results, as we did
not find that the patterns conditional operator, assignment as value, pre-increment, and
post-increment, influence code understanding negatively based on the answers of develop-
ers. Our results are in line with the results of Gopstein et al. (2017) with regards to the

NI

20000 40 000 60 000 80 000

Strongly Neutral Strongly
Negative Positive

Comma operator
Reversed subscript
Dangling else
Initialization in conditions
Logic as control flow
Operator precedence
Conditional operator
Pointer arithmetic
Multiple initializations
Assignment as a value
Post-increment
Pre-increment

Fig.4 Results of the survey

@ Springer



Empirical Software Engineering

Table 3 Correlation between perception of misunderstanding and how often the patterns are used in practice

Pattern Frequency category Negative perception
Comma Operator not used 100%
Reversed Subscript not used 91.75%
Dangling Else little used 71.73%
Logic as Control Flow little used 88.66%
Operator Precedence little used 80.40%
Pointer Arithmetic little used 39.18%
Post Increment little used 31.96%
Pre Increment little used 21.65%
Initialization in Conditions commonly used 76.29%
Conditional Operator commonly used 8.25%
Assignment as Value commonly used 8.25%
Multiple Initializations highly used 12.37%

pattern pointer arithmetic, in which both studies could not conclude that this pattern
influences code understanding negatively.

SUMMARY

The majority of developers agree that 6 out of 12 patterns (50%)
considered in our study may cause misunderstandings in practice. For
most patterns that developers do not agree to negatively influence
understanding, the magority of developers is neutral.

RQ3: What are the guidelines that open-source projects provide for developers regarding
misunderstanding code patterns?

The majority of open-source projects analyzed in our study (72%) provide development
guidelines for contributors; see column “Guides” in Table 2. We studied these code guide-
lines with the goal of identifying rules relevant to misunderstanding patterns. This way,
we learned that the majority of the guidelines focus mainly on code style issues, and pull
request and bug reporting information.

Still, we found a few guidelines suggesting developers to avoid four patterns considered
in our study. The guidelines of Curl suggest developers to avoid the pattern initialization in
conditions. In fact, we found only 9 occurrences of this pattern in Curl, while this pattern is
very frequent in other projects, such as OpenSSL, and Reactos. In addition, the Curl project
also suggests to avoid multiple statements in the same line, as is the case in pattern multiple
initializations. However, we found 175 occurrences of this pattern in Curl. The guidelines
of OpenSSL guide developers to avoid using nested if statements with else branches
without brackets, that is, the pattern dangling else. In OpenSSL, we found no occurrences
of this pattern, and 40% of the projects that we analyzed contain occurrences of this pattern.

In Librdkafka, the guidelines mention explicitly to add parentheses to avoid operator
precedence problems, supporting the pattern operator precedence. However, we found 26
occurrences of the pattern in the Librdkafka project, which also appears in 54% of the
projects analyzed with similar numbers of occurrences.

@ Springer



Empirical Software Engineering

Despite the small number of code guidelines targeting misunderstanding patterns, they
do not seem to help avoiding the patterns in practice. Among the four patterns mentioned in
the guidelines, more than 60% of developers agree that the patterns dangling else, operator
precedence, and initializations in conditions influence code understanding negatively. In
contrast, the pattern multiple initializations is not perceived as negative by most developers.

The guidelines of the other subject projects also suggest code style issues, but focus
more on fine-grained issues, such as the use of spaces for indentation instead of tabs, and
white spaces around operators. The Google, Linux, and Mozilla guides also focus on fine-
grained issues, and not on the patterns analyzed in our study, except for pattern dangling
else, which is mentioned in Mozilla’s guide. Table 4 presents some guidelines that we found
by analyzing our corpus of open-source projects. In some projects, such as Dmd and Grpc,
the guidelines suggest developers to avoid submitting pull requests that do not fix issues,
such as a bug or warning. In other words, these projects guide developers to avoid submitting
pull requests to change only the code style (e.g., removing a misunderstanding pattern). It
should be done only when fixing other issues in the code base.

In general, there is not a set of specific development guidelines to improve understanding
in open-source projects. However, some projects claim to address code understanding by
providing guidelines to code style and argue that the use of a common code style makes the
code base easier to review, debug, and figure out why things go wrong, such as in Curl. In
OpenSSL, the guidelines say that coding style is all about readability and maintainability,
which they check by using available tools, such as the Clang analyzer.

SUMMARY

There are only few guidelines for contributors that are specific
to misunderstanding patterns. Open-source projects argue to tackle
understanding by using a common set of guidelines for code style that
do not focus on patterns, but on fine-grained issues, such as the use of
spaces for indentation instead of tabs, and white spaces around operators.

RQ4: Do developers of open-source projects accept pull requests to remove misunder-
standing code patterns?

We submitted 35 pull requests, arbitrarily selected, to open-source projects, of which
we received responses to 26 pull requests. We ignored 5 of our own pull requests because
developers mentioned that they were from third-party dependencies or deprecated code. We
did not submit pull requests for projects involved in the survey to avoid bias. Notice that
it could influence developers to accept or reject pull requests after seen the patterns in the
survey. As we discussed in the subject selection (Section 4.2), we selected active projects
by sorting C projects based on the number of pull requests with the purpose of receiving
fast feedback from developers.

We submitted the 35 pull requests manually. So, this is the first reason for why we were
not able to submit hundreds of pull requests. In addition, and more importantly, developers
of open-source projects do not seem to like to receive pull requests that change only style
without fixing problems. Thus, as our pull request study was not bringing benefits to the
projects, we decided to avoid submitting more pull requests.

Before submitting pull requests, we studied the guidelines of the project, when avail-
able, to avoid introducing code style issues. For the projects that we submitted pull request

@ Springer



Empirical Software Engineering

Table 4 The guidelines that open-source projects provide for contributors

Guideline Projects #
Use C99 style for comments Collectd, Krb5, Libuv, Librdkafka, 10
Lxc, Mpv, OpenSSL, RetroArch,
s2n, and Weechat
Use spaces for indentation Collectd, Curl, Edk2, Krb5, Libuv, 9
Mapserver, Mongo, OpenSSL, s2n,
and Weechat
Use consistent names for variables and functions CleanFlight, Curl, FFmpeg, Librd- 9
kafka, Lxc, Libuv, Poco, OpenSSL,
and Weechat
Use bracket for every block even with a single statement Contiki, Cmus, Edk2, Lxc, Micropy- 6
thon, and Radare2
Do not write long lines with more than 79 columns Curl, Cmus, Krb5, OpenSSL, and 5
Weechat
Use a tool to check code style, such as Clang Curl, Mapserver, and Mongo 4
No brackets for blocks with one statement Curl, Krb5, Librdkafka, and 4
OpenSSL
Avoid warnings in all major platforms Curl, OpenSSL, and Python 3
Use space around binary operators Curl, Mpv, and OpenSSL 3
Define macros, typedefs and enums in uppercase Openssl, Linux 2
Keep function return type at a single line alone Krb5, Mruby 2
Do not write long functions CleanFlight, and OpenSSL 2
Open bracket at next line of function definition Curl, and Krb5 2
Use C89 style for comments Mruby, and Poco 2
Always use parentheses in evaluations Weechat 1
Avoid global variables CleanFlight 1
Avoid checking platforms and operating Curl 1
systems in #ifdefs
Do not change auto generated code Grpc 1
Do not check conditions (true, false, or null) Curl 1
Do not include assignments in conditions Curl 1
Do not use space after unary operators OpenSSL 1
Do not use space before parentheses Curl 1
Do not use spaces at the end of lines Krb5 1
Else branch starts at the next line of a closing bracket Curl 1
Nested compound statements must have brackets OpenSSL 1
Never write multiple statements on the same line Curl 1
Opening bracket at the same line of the statement Curl 1
Use column alignment when breaking statements Curl 1
in multiple lines
Use one space for preprocessor directives indentation Openssl 1
Use one white space after command keywords Krb5 1
Use brackets to make operator precedence explicit Librdkafka 1
Use tabs for indentation Radare2 1

@ Springer



Empirical Software Engineering

to, John the Ripper and FreeRDP do not provide guidelines. According to our experience,
developers tend to reject patches because of very small code style problems (Medeiros et al.
2013, 2015b, 2018a). However, developers accepted 8 (38%) out of 21 pull requests consid-
ered in our study that we received feedback for. We submitted the 8 pull requests accepted to
the following projects: Curl, Grpc, John the Ripper, Map Ready, Mruby, Poco, RetroArch,
and Systemd.

Specifically, the developers of the 8 open-source projects accepted pull requests to
remove the following misunderstanding patterns: 2 pull requests to remove dangling else,
2 pull requests to remove operator precedence, 2 pull requests to remove conditional
operator, 1 pull request to remove assignment as value, and 1 pull request to remove post-
increment. The patterns dangling else and operator precedence are perceived as negative by
developers according to the results of our survey. However, developers also accepted pull
requests for the patterns conditional operator, assignment as value, and post-increment,
which are not perceived as negative according to the survey. Notice that we did not submit
pull requests to remove the pattern reversed subscript because we did not find occurrences
of this patterns in practice.

To compare the acceptance rate of our study to the acceptance rate of pull requests sub-
mitted by developers, we analyzed the number of pull requests accepted and rejected for
the projects that we submitted pull requests. Overall, the acceptance rate of the open-source
projects considering all pull requests closed, on average, is 29%, lower than the accep-
tance rate of our study (38%). The details about this study is available at the supplementary
Website.

Developers rejected 13 (62%) out of 21 pull requests that we submitted to open-source
projects for which we received feedback. In most cases, developers said that the original
version of the code is also readable, that the pattern is commonly used in practice, or that
they prefer to handle such issues by following standard guidelines, such as the Google Code
Style guides. In Table 5, we present the patches rejected and the reasons raised by developers
for rejection.

Table 5 Patches rejected by developers

Project Pattern Reason exposed by developers
Dmd Conditional Operator (P4) Chaining ternary expressions is a
common pattern in some code
bases.
FreeRDP Init. in Condition (P2) It is not really necessary and more or less preference.
Irssi Dangling Else (P1) All style-related changes handled in a specific pull request.
Libgit2 Operator Precedence (P5) I don’t think this is much more
readable. I definitely prefer the
brevity.
Open TX Assign. as Value (P10) The original code doesn’t seem unreadable.
Ossec Hids Cond. Operator (P4) Both versions seem easy enough to read.
Machine Kit  Operator Precedence (P5) That is a very commonly used C assignments.
MapReady Pre Increment (P11) I prefer the ++ style of increment-
ing myself, it’s pretty standard C at
this point.
Mpv Operator Precedence (P5) The short-circuiting behavior is
already pretty common knowledge.
Radare Logic as Control Flow (P3)  Itis clear and valid for their coding style.

@ Springer



Empirical Software Engineering

In some projects, such as Dmd and Grpc, the guidelines suggest developers to avoid sub-
mitting pull requests that do not fix issues, such as a bug or warning. In other words, these
projects guide developers to avoid submitting pull requests to change only the code style.
It should be done only when fixing other issues in the code base. This might be a possible
reason for the high percentage of rejected patches. It is important to note that developers
rejected patches even to remove patterns that more than 60% of software developers agree
on to influence code understanding negatively, such as the pull requests submitted to Irssi,
Dmd, and Libgit2.

We also submitted pull requests to projects suggesting developers to change the guide-
lines. Here, we submitted 5 pull requests and received feedback from 4 pull requests. Many
developers agreed with our guidelines by making a number of positive comments, saying
that they agree with most guidelines, that the guidelines may improve maintainability, and
that the guidelines help to avoid compiler warnings. For instance, a developer from project
Cleanflight mentioned that “[he] fully agrees with the first two patterns: dangling else, and
logic as control flow”.

We also received negative feedback for some misunderstanding patterns, including the
Cleanflight project, such as for the pattern operator precedence, in which developers men-
tioned that it is better to use parentheses only when they are required, such as the sentences
of a developer saying that “brackets are there to alter the normal operator precedence, and
when seeing a bracket you should be able to assume that the operator precedence has been
altered. Extra brackets make the code less readable and less understandable”. However, we
also received opposite opinions at the same pull request, such as a developers from Clean-
flight mentioning that “[he] prefers to have parenthesis always, to [him] it makes simpler
to read”.

Furthermore, some developers mentioned that the project follows the Google Code
guides, and that the contributor’s guidelines are not the best place to include an exhaustive
list of misunderstanding patterns. A developer from the Libuv project mentioned that “[/he]
dislikes the direction this pull request is suggesting. [He does not] think [that] an exhaustive
list of good coding practices is really appropriate for a file like contributing.md”. Overall,
three pull requests were rejected, and one is under review.

SUMMARY

Developers accepted 8 out of 21 pull requests (38%) for which we received
feedback. For the others, developers stated mostly that the current version
of the code is fine and they resist to change the code, as it is working
without errors.

4.4 Threats to Validity

Next, we discuss potential threats to validity of our study, considering the opinion of
developers, occurrences of misunderstanding patterns in practice, analysis of contributors
guidelines, and pull request submission.

Regarding the occurrences of patterns in practice, we used SrcML,!! which uses heuris-
tics that may fail in source code with undisciplined preprocessor directives (Liebig et al.

Uhttp://www.srcml.org/

@ Springer


http://www.srcml.org/

Empirical Software Engineering

2011). To minimize this threat, we did not include projects with high numbers of undisci-
plined preprocessor directives (Liebig et al. 2011), and the majority of projects included in
our study do not use the C preprocessor heavily. To minimize this threat, we performed a
small experiment to test our tool. We detected 17 patterns manually, from 6 projects. Ini-
tially, the tool was able to detect 13 patterns. In addition, we included 50 patterns detected
by the tool published at the study of Gopstein et al. (2017), and our tool detected 44 pat-
terns. When performing this experiment, we detected some problems in the implementation
and fixed the issues. The current version of our tool is able to detect all 67 patterns con-
sidered in the experiment. It is important to notice that the numbers reported in this article
have been generated by using the current version of our tool.

We found that the majority of developers (52%) have less than five years of experi-
ence with C. A couple of developers sent us additional comments saying that “experienced
programmers should be able to understand all of the given code patterns immediately”
and “if a programmer has any difficulties to understand even a single of the given pat-
terns, he probably has only a couple of years of experience with C”. To address this
threat, we analyzed the results of the survey by separating the developers into two different
groups: (1) less than five years of experience; and (2) developers with more than five years
of experience. Still, we found that the results are very similar, minimizing this threat to
validity.

In our pull requests, we submitted modifications that do not add new functionali-
ties, nor fix bugs or warnings. As many projects guide developers to avoid submitting
pull requests addressing code style issues only, we might have a bias in our study. To
understand this threat, we collected information about the reasons that made developers
reject our pull requests, by discussing with developers on the pull request via the GitHub
infrastructure.

5 Guidance for Practitioners

Our study has several implications for practitioners that use the C language in practice as
well as for researchers interested in program comprehension, as we discuss next.

We found that the most developers (at least 60%) do not recommend the use of the
following patterns in practice: dangling else, initialization in conditions, logic as con-
trol flow, operator precedence, comma operator, and reversed subscript. Thus, it may
be advisable to avoid the use of these patterns. Furthermore, it could be useful to
include information about them in the code guidelines of open-source projects, as we
already found for four patterns: Curl suggests developers to avoid initialization in con-
ditions, and multiple initializations; OpenSSL, and Reactos guide developers to avoid
dangling else; and Librdkafka mentions explicitly to avoid the pattern operator precedence.
Our study provides a first step to develop guidelines grounded in research data and taking into
account developer preferences and acceptance.

We found many open-source projects guiding developers to avoid pull requests that only
make stylistic improvements of source code without fixing bugs or warnings. It would be
interesting to include tools to check certain patterns in new pull requests, so that we could
avoid new occurrences of these misunderstanding patterns. Furthermore, there might be a
need to develop tools, integrated with the current IDE used by developers of C open-source
projects, to avoid developers to add new occurrences of misunderstanding patterns as well as

@ Springer



Empirical Software Engineering

to remove existing occurrences. External tools that detect guideline violations automatically
(such as misunderstanding patterns) and propose fixes (e.g., refactorings) can likely have
a larger impact on practice, and may simplify the work of developers. Refactoring tools
may also suggest to remove misunderstanding patterns when developers are fixing bugs and
warnings.

Researchers might use the results of our study to make their tools more attractive to
developers by taking their perspective and needs into account. As we discussed in previous
work (Medeiros et al. 2015a), developers are not aware of research tools. Thus, researchers
should not only take the perception of developers into account, but they also need to interact
somehow with practice, through pull requests to open-source projects, for example, to make
developers aware of their tools. Moreover, our results motivate further research to study
automated refactorings to remove misunderstandings.

6 Related Work

There has been research on misunderstanding patterns since at least the late sixties. Dijk-
stra published a study discussing the problems of using go to statements (Dijkstra 1968).
According to his study, go to statements should be abolished from all high-level program-
ming languages, as it becomes terribly hard to understand the sequence of execution of
programs in the presence of go to statements. A follow-up study discusses several pro-
gramming language taboos, including the go to statement, and agreed with the problems
of having explicit control transfers using go to statements (Marshall and Webber 2000).
In a recent study, Nagappan et al. (2015) have studied the use of go to statements empir-
ically, and the results show that developers are still using these statements, but developers
limit themselves to use go to in certain constructs, avoiding unrestricted use as discussed
by Dijkstra (1968).

Researchers also discussed the problems of other patterns and language constructs,
such as global mutable state. For example, researchers argued to avoid global vari-
ables and use local ones to guarantee that variables are starting from known values in
every path of execution. Marshall and Webber (2000) mention that the standard advice
to notice developers today is that global variables are bad and you should not use it.
Waulf and Shaw (1973) claimed that global variables are a major contributing factor in
programs which are difficult to understand, and should be abolition from modern pro-
gramming languages. Another example are magic numbers, which are constants used in
the code, such as array sizes, character positions, and so on Kernighan and Pike (1999).
According to researchers, every magic number should have a name for its own to ease
understanding.

A topic frequently related to understanding is the discipline of preprocessor directives.
Several studies criticized the use of the C preprocessor regarding its lack of separation of
concerns, and code obfuscation, which make maintenance, and program comprehension
difficult. Spencer and Collyer (1992) argue that developers normally tend to use the prepro-
cessor to workaround problems instead of dealing with portability in the right way, that is,
planning in advance and structuring the code accordingly.

Ernst et al. (2002) presented an empirical study on the C preprocessor by analyzing
26 packages comprising 1.4 MLOC. They found that most C preprocessor usage follows

@ Springer



Empirical Software Engineering

simple patterns. The researchers also discussed about the undisciplined use of the C pre-
processor and its problems, such as that it makes the program more difficult to understand.
Baxter (1992) proposed DMS, a source-code transformation tool for C and C++. In a more
recent work (Baxter and Mehlich 2001), the authors used the DMS tool and emphasized
the problem of using unstructured directives. Garrido and Johnson (2003) developed the
CRefactory, a refactoring tool for C to remove certain patterns of preprocessor usage to min-
imize the problems related to code understanding. Liebig et al. (2011) analyzed 40 systems
and suggested that developers can introduce subtle syntax errors when using undisciplined
directives. The authors found that the undisciplined use of the preprocessor corresponds to
15.6% of the total number of directives.

Developers sometimes refer to the excessive use of preprocessor directives as the
“#ifdef hell” (Lohmann et al. 2006).

A specific practice that has been discussed is the undisciplined use of preprocessor direc-
tives, that is, conditional compilation directives that do not align with the syntactic code
structure. Undisciplined use of preprocessor directives has been related to error proneness,
as we discussed in our previous studies (Medeiros et al. 2013, 2016, 2018a; Késtner et al.
2011), decrease of code understanding and code maintainability (Baxter and Mehlich 2001;
Ernstet al. 2002), and limitations in tool support, as discussed in a previous study (Padioleau
2009).

In our previous work, we performed some studies by using different methods, such as
surveys (Medeiros et al. 2015a, 2018a), interviews (Medeiros et al. 2015a), repository min-
ing (Medeiros et al. 2013, 2016, 2018a), and controlled experiments (Feigenspan et al.
2013), to analyze the problems of undisciplined preprocessor use taking the perception of
developers into account. Here, we use a similar approach but considering other aspects of
the C language.

Gopstein et al. (2017) presented a set of misunderstanding patterns of C programs. They
performed two controlled experiments, on a sample composed largely by students, that
showed that the set of patterns analyzed increased significantly the misunderstanding rates.
They considered patterns such as pre-increment, if ternary initializations, and macro oper-
ator precedence. We included 10 misunderstanding patterns from Gopstein et al. (2017) in
our study with the goal of evaluating them in a real-world setting, involving developers from
open-source projects. In a recent study, Gopstein et al. (2018) used a corpus of 14 open-
source projects to measure the prevalence misunderstanding patterns. Their results showed
that the patterns analyzed appear on average once every 23 lines. In addition, their study
showed that there is a strong correlation between misunderstanding patterns and commits to
fix bugs. In our study, we found an occurrence of misunderstanding pattern every 11 lines
of code on average.

Fowler et al. (1999) defined a set of bad code smells, which are structures in the code
that we can refactor to improve the design of existing systems. The work of Fowler et
al. focuses more on high-level design issues, such as architectural code smells, while our
work considers more fine-grained patterns. Other researchers used obfuscation techniques
to make the source code more difficult to understand with the purpose of protecting intellec-
tual properties by hindering reverse engineering attacks. Herzberg and Pinter (1987) present
protocols that enable software protection, without causing substantial overhead in distri-
bution and maintenance, based on DES and RSA. Collberg et al. (1997) reviewed various
techniques to obfuscate code and proposed a code obfuscation strategy based on obfuscating
transformations.

@ Springer



Empirical Software Engineering

To summarize, there are several studies discussing the problems and the importance
of code understanding for software evolution and maintenance. Here, we complement
previous work by evaluating a set of misunderstanding patterns by taking the perception of
real developers into account.

7 Concluding Remarks

In this article, we discuss a mixed-method study on misunderstanding patterns, including
repository mining and analysis, and a survey with developers. We considered 50 C open-
source projects and showed that the majority of the misunderstanding patterns, taken from
a previous study (Gopstein et al. 2017), are commonly used in practice.

In our survey, we found that developers agreed that the use of 6 out of the 12 pat-
terns influence code understanding negatively. For the other 6 patterns, most developers are
indifferent.

By analyzing the guidelines of the 50 subject projects, we found that most guidelines do
not address code understanding. They focus rather on information about how to structure
pull requests, which tools developers should use, and how to report bugs. Furthermore, the
majority of the guidelines regarding code style address fine-grained issues, such as the use
of spaces for indentation instead of tabs, use of spaces before and after operators, and not to
write long lines with more than 80 columns.

To understand the relevance of misunderstanding patterns, we submitted 35 pull requests
to remove misunderstanding patterns in open-source projects, for which we received feed-
back for 21 pull requests, and developers accepted 8 (38%) pull requests. Despite this low
acceptance rate, our results suggest that developers tend not to accept pull requests that
do not fix errors and warnings, and developers tend to resist to change source code that is
working.

In future work, we are planing to extend our study to other programming languages
with the purpose of identifying new misunderstanding patterns that developers should
avoid in practice. Furthermore, we intend to define and evaluate refactorings to remove
misunderstanding patterns automatically.

Acknowledgments We would like to thank Dan Gopstein for the useful feedback regarding our study.
Apel’s work has been supported by the German Research Foundation (AP 206/6). This work was funded by
CNPq (308380/2016-9, 477943/2013-6, 460883/2014-3, 465614/2014-0, 306610/2013-2, 307190/2015-3,
and also CNPq 409335/2016-9), FAPEAL (PPG 14/2016), and CAPES grants (175956 and 117875).

Appendix A: Survey with Developers

We are investigating specific C constructions (code patterns) in the source code. This survey
presents some code patterns and ask you about their influence in terms of understanding
the source code. For each question we will present the code patterns at the Left-Hand Side
(LHS) and an alternative on the Right-Hand Side (RHS).

You should be able to answer our survey in around 10-15 minutes. We will use your
answers to understand the practical use of code patterns and develop supporting tools. We
really appreciate your help. Thanks!

@ Springer



Empirical Software Engineering

Question 1
; if (0
1Fi§x2y) if ()
fO; fO;
aléi g } else {
a0; X } 90;
LHS RHS

How negative or positive is the impact of using LHS instead of RHS on code *
understanding?

Totally positive

Positive

Neither negative or positive
Negative

Totally negative

Question 2

if ((x = FO) = O){ x = O

if (x = 0){
; // do something // do something

X |
LHS RHS

How negative or positive is the impact of using LHS instead of RHS on code *
understanding?

Totally positive

Positive

Neither negative or positive
Negative

Totally negative

@ Springer



Empirical Software Engineering

Question 3

if Of
x & fO; fO;

LHS RHS

*

How negative or positive is the impact of using LHS instead of RHS on code
understanding?

Totally positive

Positive

Neither negative or positive
Negative

Totally negative

Question 4
if (FO)
X = 2;
x=fOQ?22:3; } else {
x = 3;
X |3
LHS RHS

*

How negative or positive is the impact of using LHS instead of RHS on code
understanding?

Totally positive

Positive

Neither negative or positive
Negative

Totally negative

@ Springer



Empirical Software Engineering

Question 5

x |y & z; X |x Il Cy & z)

LHS RHS

How negative or positive is the impact of using LHS instead of RHS on code
understanding?

Totally positive

Positive

Neither negative or positive
Negative

Totally negative

*

Question 6

= 1;
x=C+=1,9;| X [0

LHS RHS

How negative or positive is the impact of using LHS instead of RHS on code
understanding?

Totally positive
Positive
Neither negative or positive

Negative

Totally negative

*

@ Springer




Empirical Software Engineering

Question 7

int[] a; int[] a;

prinf(“%d”, 1[a]);| X |prinf(“%d”, a[1]);

LHS RHS

*

How negative or positive is the impact of using LHS instead of RHS on code
understanding?

Totally positive
Positive

Neither negative or positive

Negative
Totally negative
Question 8
"abcdef"+3 X |&"abcdef" [3]
LHS RHS

*

How negative or positive is the impact of using LHS instead of RHS on code
understanding?

Totally positive

Positive

Neither negative or positive
Negative

Totally negative

@ Springer



Empirical Software Engineering

Question 9

int x = 10;

int x = 10, y = 20;
X lint y = 20;

LHS RHS

*

How negative or positive is the impact of using LHS instead of RHS on code
understanding?

Totally positive
Positive

Neither negative or positive

Negative
Totally negative
Question 10
x = 20;
X =y = 20;
X |y = 20;
LHS RHS

*

How negative or positive is the impact of using LHS instead of RHS on code
understanding?

Totally positive

Positive

Neither negative or positive
Negative

Totally negative

@ Springer



Empirical Software Engineering

Question 11

variablel = variable2;
X
variable2 = variable2 + 1;

LHS RHS

variablel = variable2++;

*

How negative or positive is the impact of using LHS instead of RHS on code
understanding?

Totally positive
Positive

Neither negative or positive

Negative
Totally negative
Question 12
; » variable2 = variable2 - 1;
variablel = --variable?; X variablel = variablez;
LHS RHS

*

How negative or positive is the impact of using LHS instead of RHS on code
understanding?

Totally positive

Positive

Neither negative or positive
Negative

Totally negative

@ Springer



Empirical Software Engineering

For how long do you work with C?*

Less than a year
More than one year and less than three years
More than three years and less than five years

More than five years

Do you have suggestions of additional patterns like the ones presented that we
can study regarding code understanding?

Please leave any additional comments bellow.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

Baxter ID (1992) Design maintenance systems. Commun ACM 35(4):73-89

Baxter I, Mehlich M (2001) Preprocessor conditional removal by simple partial evaluation. In: Proceedings
of the working conference on reverse engineering, IEEE, WCRE, pp 281-290

Beller M, Bacchelli A, Zaidman A, Juergens E (2014) Modern code reviews in open-source projects: which
problems do they fix? In: Proceedings of the working conference on mining software repositories. ACM,
pp 202-211

Bland M (2014) Finding more than one worm in the apple. Commun ACM 57(7):58-64

Burke D (1995) All Circuits are Busy Now: The 1990 AT&T Long Distance Network Collapse. California
Polytechnic State University

Buse RP, Weimer WR (2008) A metric for software readability. In: Proceedings of the international
symposium on software testing and analysis. ACM, pp 121-130

Cannon LW, Elliott RA, Kirchhoff LW, Miller JH, Milner JM, Mitze RW, Schan EP, Whittington NO,
Spencer H, Brader M, Cannon LW, Elliott RA, Kirchhoff LW, Miller JH, Milner JM, Mitze RW, Schan
EP, Whittington NO, Spencer H, Brader M (2000) Recommended C style and coding standards

Collberg C, Thomborson C, Low D (1997) A taxonomy of obfuscating transformations. Technical Report
148, Department of Computer Science. University of Auckland

Creswell JW, Clark VLP (2011) Designing and Conducting Mixed Methods Research. SAGE Publications,
Thousand Oaks

Darnell PA, Margolis PE (1996) C: A Software Engineering Approach. Springer, Berlin

Dijkstra EW (1968) Go to statement considered harmful. Commun ACM 11(3):147-148

Dowson M (1997) The Ariane 5 software failure. SIGSOFT Softw Eng Notes 22(2):84-93

Easterbrook S, Singer J, Storey MA, Damian D (2008) Selecting empirical methods for software engineering
research. Springer, Berlin, pp 285-311

@ Springer



Empirical Software Engineering

Elgot CC (1976) Structured programming with and without go to statements. IEEE Trans Softw Eng SE-
2(1):41-54

Ernst M, Badros G, Notkin D (2002) An empirical analysis of C, preprocessor use. IEEE Trans Softw Eng
28(12):1146-1170

Feigenspan J, Kistner C, Apel S, Liebig J, Schulze M, Dachselt R, Papendieck M, Leich T, Saake G (2013)
Do background colors improve program comprehension in the #ifdef hell? Empir Softw Eng 18(4):699—
745

Fowler M, Beck K, Brant J, Opdyke W, Roberts D, Gamma E (1999) Refactoring: Improving the Design of
Existing Code. Addison-Wesley, Reading

Gamma E, Helm R, Johnson R, Vlissides J (1995) Design Patterns: Elements of Reusable Object-oriented
Software. Addison-Wesley, Reading

Garrido A, Johnson R (2003) Refactoring C with conditional compilation. In: Proceedings of the IEEE
international conference on automated software engineering. IEEE, pp 323-326

Glass RL (2001) Frequently forgotten fundamental facts about software engineering. IEEE Softw 18(3):112—
111

Gopstein D, Tannacone J, Yan Y, DeLong L, Zhuang Y, Yeh MKC, Cappos J (2017) Understanding misun-
derstandings in source code. In: Proceedings of the 2017 11th joint meeting on foundations of software
engineering. ACM, ESEC/FSE 2017, pp 129-139

Gousios G (2013) The GHTorent dataset and tool suite. In: Proceedings of the working conference on mining
software repositories. IEEE Press, pp 233-236

Gopstein D, Zhou H, Frankl P, Cappos J (2018) Prevalence of confusing code in software projects: atoms of
confusion in the wild. In: Proceedings of the working conference on mining software repositories. ACM

Herzberg A, Pinter SS (1987) Public protection of software. ACM Trans Comput Syst 5(4):371-393

ISO/IEC/IEEE (2006) Iso/iec/ieee international standard for software engineering - software life cycle
processes - maintenance. Std 14764-2006, pp 1-58

Jha MM, Vilardell RMF, Narayan J (2016) Scaling agile scrum software development: providing agility and
quality to platform development by reducing time to market. In: 2016 IEEE 11th international conference
on global software engineering (ICGSE), pp 84-88

Kistner C, Giarrusso P, Rendel T, Erdweg S, Ostermann K, Berger T (2011) Variability-aware parsing
in the presence of lexical macros and conditional compilation. In: Proceedings of the object-oriented
programming systems languages and applications, ACM, pp 805-824

Kernighan BW, Pike R (1999) The Practice of Programming. Addison-Wesley, Reading

Liebig J, Kastner C, Apel S (2011) Analyzing the discipline of preprocessor annotations in 30 million lines of
C code. In: Proceedings of the international conference on aspect-oriented software development. ACM,
pp 191-202

Lohmann D, Scheler F, Tartler R, Spinczyk O, Schroder-Preikschat W (2006) A quantitative analysis of
aspects in the eCos kernel. In: Proceedings of the European conference on computer systems. ACM,
pp 191204

Malaquias R, Ribeiro M, Bonificio R, Monteiro E, Medeiros F, Garcia A, Gheyi R (2017) The discipline of
preprocessor-based annotations does #ifdef TAG N’ T #endif matter. In: Proceedings of the international
conference on program comprehension. IEEE Press, pp 297-307

Marshall L, Webber J (2000) Gotos considered harmful and other programmers taboos. In: Proceedings of
the workshop of the psychology of programming interest group. PPIG, pp 171-180

Medeiros F, Ribeiro M, Gheyi R (2013) Investigating preprocessor-based syntax errors. In: Proceedings of
the international conference on generative programming, concepts & experiences. ACM, pp 75-84

Medeiros F, Kistner C, Ribeiro M, Nadi S, Gheyi R (2015a) The Love/Hate Relationship with the C Pre-
processor: An Interview Study. In: European conference on object-oriented programming (ECOOP),
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Leibniz International Proceedings in Informatics
(LIPIcs), vol 37, pp 495-518

Medeiros F, Rodrigues I, Ribeiro M, Teixeira L, Gheyi R (2015b) An empirical study on configuration-
related issues: Investigating undeclared and unused identifiers. In: Proceedings of the ACM SIGPLAN
international conference on generative programming, concepts and experiences. ACM, pp 35-44

Medeiros F, Kistner C, Ribeiro M, Gheyi R, Apel S (2016) A comparison of 10 sampling algorithms for
configurable systems. In: Proceedings of the international conference on software engineering. ACM,
pp 643-654

Medeiros F, Ribeiro M, Gheyi R, Apel S, Kastner C, Ferreira B, Carvalho L, Fonseca B (2018a) Discipline
matters: refactoring of preprocessor directives in the #ifdef hell, vol 44

@ Springer



Empirical Software Engineering

Medeiros F, Silva G, Amaral G, Apel S, Kistner C, Ribeiro M, Gheyi R (2018b) Investigating Misunder-
standing Code Patterns in C Open-Source Software Projects (Replication Package). https://doi.org/10.
5281/zenodo.1461534

Nagappan M, Robbes R, Kamei Y, Tanter E, McIntosh S, Mockus A, Hassan AE (2015) An empirical study
of goto in C code from GitHub repositories. In: Proceedings of the joint meeting on foundations of
software engineering. ACM, NY, pp 404-414

Padioleau Y (2009) Parsing C/C++ code without pre-processing. In: Proceedings of the international
conference on compiler construction. Springer, pp 109-125

Pahal A, Chillar RS (2017) Code readability: a review of metrics for software quality. Int J Comput Trends
Technol 46(1):1-58

Rigby PC, German DM, Storey MA (2008) Open source software peer review practices: a case study of the
Apache server. In: Proceedings of the international conference on software engineering. ACM, pp 541—
550

Schulze S, Liebig J, Siegmund J, Apel S (2013) Does the discipline of preprocessor annotations matter?
a controlled experiment. In: Proceedings of the international conference on generative programming,
concepts and experiences. ACM, pp 65-74

Scott ML (2000) Programming language pragmatics. Morgan Kaufmann Publishers Inc., San Francisco

Spencer H, Collyer G (1992) #ifdef considered harmful, or portability experience with C News. In: USENIX
summer technical conference, pp 185-197

Stamelos I, Angelis L, Oikonomou A, Bleris GL (2002) Code quality analysis in open source software
development. Inf Syst J 12(1):43-60

Waulf W, Shaw M (1973) Global variable considered harmful. SIGPLAN Not 8(2):28-34

Flavio Medeiros is a professor in the Federal Institute of Alagoas,
Brazil. His research interests include configurable systems with a
high amount of variability, refactoring and software product lines. He
received his Doctoral degree in Computer Science from the Federal
University of Campina Grande, Brazil, in 2016.

Gabriel Lima is a student of Information Systems in the Federal
Institute of Alagoas (IFAL), Brazil. His research interests include
refactorings and software engineering.

@ Springer


https://doi.org/10.5281/zenodo.1461534
https://doi.org/10.5281/zenodo.1461534

Empirical Software Engineering

@ Springer

Guilherme Amaral is a student of Computer Science at Federal Uni-
versity of Alagoas (UFAL), Brazil. His research interests are tracking
and fixing bad smells to improve overall code quality and human
comprehension.

Sven Apel holds the Chair of Software Engineering at the Univer-
sity of Passau, Germany. The chair is funded by the esteemed Emmy
Noether and Heisenberg Programs of the German Research Founda-
tion (DFG). Prof. Apel received his Ph.D. in Computer Science in
2007 from the University of Magdeburg, Germany. His research inter-
ests include software product lines, software analysis, optimization,
and evolution, as well as empirical methods and the human factor in
software engineering.

Christian Kastner is an assistant professor in the School of Com-
puter Science at Carnegie Mellon University. He received his PhD
in 2010 from the University of Magdeburg, Germany, for his work
on virtual separation of concerns. For his dissertation he received
the prestigious GI Dissertation Award. His research interests include
correctness and understanding of systems with variability, including
work on implementation mechanisms, tools, variability-aware anal-
ysis, type systems, feature interactions, empirical evaluations, and
refactoring.



Empirical Software Engineering

Marcio Ribeiro is a professor in the Comput- ing Institute at Fed-
eral University of Alagoas. He holds a Doctoral degree in Computer
Science from the Federal University of Pernambuco (2012). He also
holds the ACM SIGPLAN John Vlissides Award (2010). His PhD
thesis has been awarded as the best in Computer Science of Brazil
in 2012. In 2014, Marcio Ribeiro was the General Chair of the
most important sci- entific event in Software of Brazil, the Brazilian
Conference on Software (CBSoft). His research interests include con-
figurable systems, variability-aware analysis, refactoring, empirical
software engineering, and software testing.

Rohit Gheyi is a professor in the Department of Computer Science at
Federal University of Campina Grande. His research interests include
refactorings, formal methods, and software product lines. He holds a
Doctoral degree in Computer Science from the Federal University of
Pernambuco.

@ Springer



Empirical Software Engineering

Affiliations

Flavio Medeiros' 2 . Gabriel Lima' - Guilherme Amaral? - Sven Apel® -

Christian Késtner® - Marcio Ribeiro? - Rohit Gheyi®

Gabriel Lima
gabriellima.silva96 @ gmail.com

Guilherme Amaral
guiganey @gmail.com
Sven Apel

apel @uni-passau.de

Christian Késtner

kaestner@cs.cmu.edu

Marcio Ribeiro

marcio @ic.ufal.br

Rohit Gheyi

rohit@dsc.ufcg.edu.br
I Federal Institute of Alagoas (IFAL), Maceid, Alagoas, Brazil
2 Federal University of Alagoas (UFAL), Maceid, Alagoas, Brazil
Universitit Passau, Passau, Germany
4 Carnegie Mellon University (CMU), Pittsburgh, Pennsylvania, USA
5 Federal University of Campina Grande (UFCG), Paraiba, Brazil

@ Springer


http://orcid.org/0000-0002-5142-7499
mailto: gabriellima.silva96@gmail.com
mailto: guiganey@gmail.com
mailto: apel@uni-passau.de
mailto: kaestner@cs.cmu.edu
mailto: marcio@ic.ufal.br
mailto: rohit@dsc.ufcg.edu.br

	An investigation of misunderstanding code patterns in c
	Abstract
	Abstract
	Introduction
	Motivating Example
	Misunderstanding Patterns in Source Code
	Study Settings and Results
	Research Questions
	Study Setup
	Results and Discussion
	Threats to Validity

	Guidance for Practitioners
	Related Work
	Concluding Remarks
	Appendix A Survey with Developers
	References
	Affiliations


