
Automating Feature-Oriented Refactoring of Legacy Applications

Christian Kästner, Martin Kuhlemann
School of Computer Science

University of Magdeburg
{ckaestne,mkuhlema}@ovgu.de

Don Batory
Dept. of Computer Sciences
University of Texas at Austin

batory@cs.utexas.edu

Abstract

Creating a software product line from a legacy appli-
cation is a difficult task. We propose a tool that helps au-
tomating tedious tasks of refactoring legacy applications
into features and frees the developer from the burden of
performing laborious routine implementations.

1. Introduction

A software product line (SPL) aims at creating highly
configurable programs from a set of features. To reduce
costs and risks, developers often take an extractive approach
for creating the SPL by refactoring and decomposing one or
more legacy applications into features [2]. In prior case stud-
ies, we detached optional features like transactions, statis-
tics, or caches from database systems, and experienced that
refactoring legacy applications manually is a complex and
difficult task containing many routine operations [7].

When decomposing a legacy application into features,
the developers focus is on identifying the feature code, i.e.,
classes, methods, fields, or statements associated with a cer-
tain feature. In contrast, the actual refactoring, consisting of
removing code fragments and reintroducing them in feature
modules, is a routine task that can be automated with a tool.

Previously, we built a tool called ColoredIDE to identify
and mark feature code in a legacy Java application. Now, we
use this marked code base to refactor a legacy application
into a software product line with multiple features.

Features in an SPL can be implemented in different ways.
Current research suggests to implement features as mixin
layers [12] or aspects [5, 8], but other implementation ap-
proaches are possible. In the prototype of our tool we inves-
tigated refactorings into feature modules implemented with
Jak [1] and AspectJ [8]. In this paper we focus on AspectJ
as target language and assume a basic knowledge of it.

2. Refactoring

The input of our refactoring tool is a list of features and
a marked version of the source code, where fragments are
associated to these features. In Figure 1 we show an ex-
ample class Stack with a feature Locking whose code is
underlined. Technically, features are associated to elements
in the abstract syntax tree (AST) of the source code, e.g.,
the AST node for the method lock (Line 8) and the state-
ments in Lines 3 and 5 are marked with the Locking feature
(underlined).

1 c l a s s Stack {
2 void push(Object o) {
3 Lock lock = lock(o);
4 elementData[size++] = o;
5 lock.unlock();
6 }
7
8 Lock lock(Object o) { /*...*/ }
9 }

Figure 1. Marked Legacy Code

Our tool now creates a new project for the SPL with
directories for every feature and a directory for the base
code. The base code contains the original program without
any feature code. The feature directories contain aspects
that reintroduce the feature code. In Figure 2 we show the
resulting class of the base code and the aspect implementing
the Locking feature for our example. The SPL can now
be configured by selecting the directories to include in the
compilation process.

For the implementation of the AspectJ refactoring we fol-
low proposals for refactorings like Extract Introduction [6],
Move Field from Class to Inter-type [10], or Extract Ad-
vice [6].

3. Advanced Topics

Generally, our tool uses more sophisticated rewrites than
shown in the example above. For instance, when the feature



1 c l a s s Stack {
2 void push(Object o) {
3 elementData[size++] = o;
4 }
5 }

6 a s p e c t Synchronization {
7 void around(Stack stack, Object o) :
8 e x e c u t i o n(void Stack.push(Object)) && args(o) &&

t h i s(stack) {
9 Lock lock = stack.lock(o);

10 proceed(stack);
11 lock.unlock();
12 }
13 Lock Stack.lock(Object o) { /*...*/ }
14 }

Figure 2. Refactored SPL code

code is not placed at the beginning or end of the method.
AspectJ does not support statement level join points [11].
In some cases it is possible to advise a method call that is
located next to the feature code, in other cases we have to
create artificial join points by preparing the base code. For
example, we introduce calls to empty hook methods [11] or
perform a preliminary Extract Method refactoring [4].

Furthermore, code can be associated with multiple fea-
tures. Such code is usually a result of feature interactions,
e.g., when one feature calls a method introduced by an-
other feature. To refactor such cases we use the derivative
model by Liu et al. [9] and create separate modules con-
taining aspects for these code fragments. Again our tool
automates the creation of the additional modules and the
refactorings.

Finally, our tool initially refactored every marked code
fragment individually. That means that advanced AspectJ
mechanisms, e.g., pattern expressions for homogeneous
pointcuts, were not employed. However, our tool combines
pointcuts where advice statements have equal bodies with
automated Extract Pointcut refactorings [3]. Thus, our refac-
toring tool takes advantage of AspectJ’s capabilities and
reduces code replication automatically.

4. Conclusion

Refactoring a legacy application into features to create a
SPL is a difficult and laborious task. It consists of detecting
features in the legacy code and of their refactoring. While
detecting features is an interactive procedure the refactoring
can be automated completely. We propose a refactoring
tool which generates an SPL implemented in Jak or AspectJ
based on marked legacy code.

Figure 3. ColoredIDE Screenshot

References

[1] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling Step-
Wise Refinement. IEEE Trans. Softw. Eng., 30(6), 2004.

[2] P. Clements and C. Kreuger. Point/Counterpoint: Being
Proactive Pays Off/Eliminating the Adoption Barrier. IEEE
Software, 19(4), 2002.

[3] L. Cole and P. Borba. Deriving Refactorings for AspectJ.
In Proc. Int’l Conf. Aspect-Oriented Software Development,
2005.

[4] M. Fowler. Refactoring. Improving the Design of Existing
Code. Addison-Wesley, 1999.

[5] M. L. Griss. Implementing Product-Line Features by Com-
posing Aspects. In Proc. Int’l Software Product Line Confer-
ence. 2000.

[6] S. Hanenberg, C. Oberschulte, and R. Unland. Refactoring of
Aspect-Oriented Software. In Proc. Net.ObjectDays, 2003.

[7] C. Kästner. Aspect-Oriented Refactoring of Berkeley DB.
Master’s thesis, University of Magdeburg, Germany, 2007.

[8] G. Kiczales et al. An Overview of AspectJ. In Proc. Europ.
Conf. Object-Oriented Programming. 2001.

[9] J. Liu, D. Batory, and C. Lengauer. Feature Oriented Refactor-
ing of Legacy Applications. In Proc. Int’l Conf. on Software
Engineering, 2006.

[10] M. P. Monteiro and J. M. Fernandes. Towards a Catalog of
Aspect-Oriented Refactorings. In Proc. Int’l Conf. Aspect-
Oriented Software Development, 2005.

[11] G. C. Murphy et al. Separating Features in Source Code: an
Exploratory Study. In Proc. Int’l Conf. on Software Engineer-
ing. 2001.

[12] Y. Smaragdakis and D. Batory. Mixin Layers: an Object-
Oriented Implementation Technique for Refinements and
Collaboration-Based Designs. ACM Trans. Softw. Eng.
Methodol., 11(2), 2002.

2


