
This is a e-reader friendly version of the paper

Klaus Ostermann, Paolo G. Giarrusso,
Christian Kästner, and Tillmann Rendel.
Revisiting Information Hiding: Reflections
on Classical and Nonclassical Modular-
ity. To appear in Proceedings of the 25th
European Conference on Object-Oriented
Programming (ECOOP). Springer-Verlag,
2011.

This is an author version of the work. It is posted here
for your personal use. Not for redistribution. The defini-
tive version will be published by Springer.

Created May 15, 2011



Revisiting Information Hiding:
Reflections on Classical and

Nonclassical Modularity

Klaus Ostermann, Paolo G. Giarrusso,
Christian Kästner, Tillmann Rendel

University of Marburg, Germany

Abstract

What is modularity? Which kind of mod-
ularity should developers strive for? Despite
decades of research on modularity, these basic
questions have no definite answer. We submit
that the common understanding of modularity,
and in particular its notion of information hid-
ing, is deeply rooted in classical logic. We an-
alyze how classical modularity, based on clas-
sical logic, fails to address the needs of devel-
opers of large software systems, and encour-
age researchers to explore alternative visions

2



of modularity, based on nonclassical logics, and
henceforth called nonclassical modularity.

1 Introduction

Modularity has been an important goal for software
engineers and programming language designers, and
over the last decades much research has provided
modularity mechanisms for different kinds of software
artifacts. But despite significant advances in the theory
and practice of modularity, the actual goal of modular-
ity is not clear, and in fact different communities have
quite different visions in this regard. On the one hand,
there is a classical notion of modularity grounded in
information hiding, which manifests itself in modular-
ization mechanisms such as procedural/functional ab-
straction and abstract data types. On the other hand,
there are novel (and not so novel) notions of modular-
ity that emphasize extensibility and separation of con-
cerns at the expense of information hiding, such as
program decompositions using inheritance, reflection,
exception handling, aspect-oriented programming, or
mutable state and aliasing, all of which may lead to
dependencies between modules that are not visible in
their interfaces.

This work is an attempt to better understand the



relation between these different approaches to mod-
ularity by relating them to logic. Classical logic is the
school of logic prevalent in modern mathematics, most
notably first-order predicate logic. We argue that the
“modularity = information hiding” point of view is rooted
in classical logic, and we illustrate that many of the
modularity problems we face can be interpreted in a
novel way through this connection, since the limita-
tions of classical logic as a representation formalism
for human knowledge are well-known. This is in stark
contrast to the programming research community, in
which information hiding is nowadays such an undis-
puted dogma of modularity that Fred Brooks even felt
that he had to apologize to Parnas for questioning it [9].
Our analysis of information hiding in terms of classical
logic suggests that there are good reasons to rethink
this dogma.

To make one thing clear upfront: We do of course
not propose to abandon information hiding or modular-
ity in general; rather, we suggest to investigate different
notions of information hiding (and corresponding mod-
ule systems), inspired by nonclassical logics, that align
better with how humans structure and reason about
knowledge.

Since there is no precise definition of modularity
available, we will use the following working definition in
the beginning: Modularity denotes the degree to which



a system is composed of independent parts, whereby
‘independent’ implies reusability, separate understand-
ability and so forth.

A concern is separated if its code is localized in
a single component of a system, such as a file, a
class, or a container. Information hiding denotes the
distinction between the interface of a software com-
ponent and its implementation. The interface specifi-
cation should be weaker than the implementation so
that an interface allows multiple possible implementa-
tions and hence leaves room for evolution that does
not invalidate the interface. The interface specification
being weaker also means that an implementation can
have multiple interfaces at the same time; in particu-
lar, one can talk about the interface of a module to an-
other module as its weakest interface necessary to sat-
isfy the other module’s needs [62]. An interface is also
an abstraction of the implementation because it does
not only hide (parts of) the implementation but also ab-
stracts over it, that is, it allows reasoning on a more
abstract level. For instance, rather than describing par-
tial details of a sorting algorithm, it just states that the
result is a sorted list.

A key question in information hiding is which infor-
mation to hide and which information to expose. Par-
nas suggested the heuristic to hide what is ‘likely to
change’ [58].



Modularity can also be viewed from the technical
perspective of module constructs in programming lan-
guages. Module constructs typically enforce desirable
properties such as separate compilation through type
systems or other restrictions and analyses. While we
appreciate the numerous wonderful works on mod-
ule constructs, in this paper we want to discuss the
more general question of how to organize, decompose,
and reason about complex software systems, which is
more basic than the question of how to enforce a given
decomposition discipline by module constructs.

In the remainder of this paper, we formulate and
defend the following five hypotheses:

1. The modularity and abstraction mechanisms that
we use today are in deep ways tied to classical
logic (and henceforth called classical modularity
in the remainder of this paper; Sec. 2).

2. Classical modularity mechanisms and reasoning
frameworks do often not align with how program-
mers reason about their programs (Sec. 3).

3. Successful information hiding is limited by the
degree of separation of concerns, the inherent
complexity of the system, and the need to sup-
port software evolution (Sec. 4).



4. The explanation for these problems is that pro-
grams are not like abstract, idealized scientific
models – an analogy that has shaped the under-
standing of modeling in software development –
but rather complex real-world systems (Sec. 5).

5. To overcome these problems, we have to weaken
the assumptions of classical modularity and in-
vestigate notions of modularity based on non-
classical logics. Some existing attempts to es-
cape classical modularity can be understood as
being based on nonclassical logics (Sec. 6).

We conclude the paper with a proposal for a novel defi-
nition of modularity that makes the connection between
a program and the logic in which we reason about its
properties explicit.

2 Modularity and classical logic

The classical understanding of modularity is highly re-
lated to (and possibly shaped by) classical logic, and
therefore, the basic principles and limitations of classi-
cal logic are relevant for modularity, too.

The spirit of classical logic is captured by the fol-
lowing quote from Lakatos:



The ideal theory is a deductive system with
an indubitable truth injection at the top (a fi-
nite conjunction of axioms) — so that truth,
flowing down from the top through the
safe truth-preserving channels of valid in-
ferences, inundates the whole system. [37]

This view of logic and proofs can be distilled into a
number of basic principles, such as

• The principle of explosion: Everything follows
from a contradiction.

• Monotonicity of entailment: If a statement is
proven true, its truth cannot be renounced by
adding more axioms to the theory, because
proofs are for eternity, and if we learn more, we
do not have to revise earlier conclusions.

• Idempotency of entailment: A hypothesis can be
used many times in a proof.

and also a number of “nonprinciples” or “don’ts”, such
as:

• Inductive reasoning – generalizing from exam-
ples – is unsound.

• Reasoning by defaults (such as “typically birds
can fly”) or Occam’s razor (prefer the simplest
explanation) is unsound.



• Closed-world reasoning, such as drawing con-
clusions by searching the knowledge database,
is unsound.

These basic principles are common to all classical
logics [21], that is, the logics most commonly used in
mathematical reasoning since Frege’s Begriffsschrift,
most notably first-order predicate logic.

Although, nowadays, these and similar properties
are often taken for granted, they are actually specific
to classical logics. Nonclassical logics do not have all
of these properties, or may allow reasoning using one
of the aforementioned “nonprinciples”. For instance,
paraconsistent logics give up the principle of explo-
sion, that is, a contradiction has only “local” conse-
quences and does not render the whole theory trivial.
Another example are nonmonotonic logics, which give
up the monotonicity of entailment. A well-known proof
rule which is nonmonotonic is negation-as-failure [11],
which means that a proposition is considered true if its
negation cannot be proven – an example of closed-
world reasoning. A well-known logic that gives up
idempotency of entailment and monotonicity is linear
logic [22].

A fundamental concept in logic is the distinction be-
tween proof theory and model theory [27]: For a set of
axioms A formulated in the logic we can, via the syn-



tactic deduction rules of the proof theory of that logic,
prove theoremsA ` T . On the other hand, we have the
semantic notion of a model or structure M of a set of
axioms, which is a mathematical structure that satisfies
all axioms: M |= φ for all φ ∈ A using an interpreta-
tion function that assigns mathematical objects to the
symbols occurring in the axioms. These semantic and
syntactic views are typically related by soundness and
completeness theorems. A soundness theorem says
that all theorems that can be deduced from the axioms
(the theory of the axioms) hold in all models of the ax-
ioms. The completeness theorem says that every the-
orem that holds in all models can also be deduced.

How is this related to modularity? In the following,
we discuss some principles that we believe to consti-
tute our understanding of (classical) modularity as in-
formation hiding, and relate them to classical logic as
described above. We do not claim that all these princi-
ples have necessarily been shaped with classical logic
in mind, but we believe that classical logic is the best
formalization of the notion of abstraction that connects
all these principles.

2.1 Information Hiding and Abstraction

Information hiding is to distinguish the concrete imple-
mentation of a software component and its more ab-



stract interface, so that details of the implementation
are hidden behind the interface. This supports modu-
lar reasoning and independent evolution of the “hidden
parts” of a component [58]. If developers have carefully
chosen to hide those parts ‘most likely to change’ [58],
most changes have only local effects: The interfaces
act as a kind of firewall that prevents the propagation
of change.

Abstraction can be seen as a different take on in-
formation hiding, focusing more on the removal of in-
formation and the generalization of concrete to param-
eterized components that can be instantiated again.
This includes the idea of having more than one instan-
tiation of the same abstract component at the some
time, thereby promoting code reuse.1

Both information hiding and abstraction imply some
notion of substitutability : A module’s implementation
can be replaced by a different implementation adher-
ing to the same interface, and since the implementa-
tion was hidden to other components in the system
in the first place, these other components should not
be disturbed by the change. Parnas was one of the
first researchers to investigate this influence of infor-

1Parnas and his colleagues have often used the word abstract
interface for what we call just interface [60, 8]; in Parnas’ terminol-
ogy, an interface is between two software modules and describes the
assumptions one module makes about the other.



mation hiding on software evolution [58, 63], but the
idea shows up in many different forms:

• In structured programming, control structures
such as loops hide the details of control flow
management. Compilers are then free to choose
among different implementations of the control
structure with low-level jumps.

• Procedural and functional abstraction hide the
implementation of an algorithm behind a proce-
dure or function signature/contract. A procedure
or function can then be replaced by a different
implementation of the same contract.

• In object-oriented programming, encapsulation
can be used to achieve information hiding.2 Ob-
jects of a class can then be replaced by ob-
jects of a subclass. The Liskov substitution prin-
ciple [41] codifies this idea: The instances of a
subclass should have the same observable be-
havior as the instances of the superclass when
observed through the interface of the superclass,
so that substitution of a subclass instance for
a superclass instance does not change the ob-
servable behavior of the overall program.

2Encapsulation is a somewhat ambiguous term. We follow
Booch’s definition [5] here.



• Data abstraction mechanisms hide the internal
representation of an abstract data type, for in-
stance, whether a complex number is stored in
polar or Cartesian coordinates [67]. Logically,
abstract data types are a form of existential
quantification [48]. The internal representation of
an abstract data type can be replaced with a dif-
ferent representation type supporting the same
interface. Reynolds formalized and proved this
property of abstract data types in his abstraction
theorem [67].

The distinction between an interface and imple-
mentations of that interface, which is the at the core of
information hiding and abstraction, is related to logic.
The interface corresponds to a set of axioms, and the
implementation of the interface corresponds to a model
of the axioms. Substitutability is reflected by the fact
that the same theorems hold for all models of the ax-
ioms (by soundness of the logic), hence we cannot
distinguish two different models within the theory. The
heuristic of hiding what is most likely to change is re-
flected by the design of axiom systems (say, the ax-
ioms of a group in abstract algebra) in such a way that
there are many interesting models of the axioms.



2.2 Reductionism and Compositionality

Reductionism is the belief that a complex system can
be understood completely by understanding its parts
and the rules with which they are composed. This very
general idea is not limited to software systems, and it
has been described many times in the history of sci-
ences, for instance, by Descartes [14]. A more recent
take by Dawkins [13] describes hierarchical reduction-
ism as the idea that complex systems can be described
with a hierarchy of organizations, each of which is only
described in terms of objects one level down in the hi-
erarchy. For instance, a computer can be explained in
terms of the operation of hard drives, processors, and
memory, but it is not necessary to talk about logical
gates, or even about electrons in a semiconductor. It
is not surprising that this idea has been picked up and
advocated in programming once program size became
an issue [16, 59].

Reductionism is an implicit assumption underlying
classical modularity: When analyzing a modular soft-
ware system, we want to understand it in terms of our
understanding of the modules that constitute the sys-
tem [63].

In the context of language semantics, the ideas
of reductionism have been formally stated as compo-
sitionality. A semantics is compositional if the mean-



ing of a complex expression is fully determined by
the meanings of its constituent expressions and the
rules used to combine them, rather than by the con-
stituent expressions themselves. Compositionality is
deeply grounded in mathematics through its relation
to the notions of structure-preserving mappings, that
is, homomorphisms and morphisms in universal alge-
bra and category theory respectively, since a composi-
tional function preserves the structure of its argument,
and conversely a structure-preserving mapping is com-
positional [49].

As in the case of information hiding and abstrac-
tion, compositionality implies a strong notion of substi-
tutability: If a subprogram is substituted by a different
subprogram with the same meaning, the meaning of
the whole program will still be the same. In other words,
we can successfully reason more abstractly on an ex-
pression by thinking of its meaning rather than of the
expression itself. When reasoning about the program,
we can identify expressions having the same meaning.
This process is typically called equational reasoning.
Since the actual expression is hidden behind its mean-
ing, compositionality can also be seen as a specific
form of information hiding by considering the meaning
of a program to be its interface.

Classical logic reflects the ideas of compositional-
ity and reductionism in two ways: First, classical logic



is compositional in the sense that a subset of the ax-
ioms of the theory can be exchanged by other axioms
if they are logically equivalent (which means that they
have the same deductive closure) without changing the
set of theorems that hold for the whole set of axioms.
Second, the “meaning function” (such as: determining
whether a formula holds in a specific model) of classi-
cal logic is also compositional, meaning that the truth
value of a composite formula is determined by the truth
values of its constituents.

In the field of programming, compositionality is the
hallmark of denotational semantics [78] and initial al-
gebra semantics [23]. The denotation of a program is
an abstraction of the program: different programs (such
as 1+2 and 3) have the same denotation (such as the
mathematical object 3). In this sense, the denotation
can be understood as an abstraction of the program,
or, conversely, a program can be understood to be a
model of its denotation. This may sound somewhat as
if it is the other way around, since the denotation func-
tion maps syntax to semantics, but it makes sense if
we consider the program to stand for its “actual denota-
tion” when executed on physical hardware. The “actual
denotations” of 1+2 and 3 are clearly different. They
differ, for instance, in their power consumption or heat
production of the CPU and required runtime. The differ-
ence between denotation and “actual denotation” hints



at a principal limitation of compositionality: Those as-
pects of the “actual denotation” of a program that are
abstracted over in its denotation may, to some user, be
just as important as those that are reflected by its de-
notation. To take a practical example, whether a com-
piler of a programming language performs tail-call opti-
mization [76] or not will often determine whether a pro-
gram can be executed successfully or terminate with a
stack overflow error. One can of course always enrich
the semantic domain by more elements of the “actual
denotation” (or abstractions of the “actual denotation”,
such as a specification of the space behavior of proce-
dure calls [12]), but it is not clear when to stop enriching
the domains, since different stakeholders need to work
with different equivalence classes of programs.

2.3 Idealization

The notion of idealization can be traced back at least
to Plato and his idea of ideas or forms [71]. He holds
that there are abstract notions – ideas – that capture
the essence of aspects of our real life, yet never actu-
ally occur in real life. For instance, there are no perfect
circles in real life, yet we can talk about the idea of a
perfect circle.

Idealization was used systematically by Galileo,
who, in his study of bodies in motion, made assump-



tions such as frictionless surfaces and spheres of per-
fect roundness. The motivation for idealization is that
actual scientific objects are too complicated, hence
they need to be summarized to a few properties rel-
evant to the phenomenon under study.

In the computer science community, Dijkstra moti-
vates idealization from a modularity perspective as fol-
lows:

A scientific discipline separates a fraction
of human knowledge from the rest: we
have to do so, because, compared with
what could be known, we have very, very
small heads. [17]

Modularization and idealization are hence rather simi-
lar ideas: To deal with complexity by being able to con-
centrate on those things that are relevant to the task at
hand and to ignore the rest for the time being. Ideal-
ization is an implicit assumption underlying modularity:
Our understanding (or, the interface) of a module is an
idealization of the actual implementation of the mod-
ule. Interfaces are an idealization in the sense that they
assume that some aspects of the implementation are
not relevant (such as whether a display update is trig-
gered when calling an interface function), which may
lead to false assumptions about the implementations
of the modules [33].



The axiomatic method of classical logic described
in the beginning of this section can be seen as a for-
malization of idealization, where the axioms play the
role of an idea, and its models are the real-world ob-
jects captured by that idea.

2.4 Monotonicity

Monotonicity is the idea that we want to prove things
“once and for all”. It means that we never have to with-
draw a conclusion when we learn more. For instance,
if we establish a property of a software system in a
monotonic logic, we never have to revise that property
when more components are added to the system. As
described above, monotonicity is one of the defining
properties of classical logics.

Program logics such as Hoare logic [28] are typi-
cally monotonic: Enlarging the program does not invali-
date what was proved about the contained smaller pro-
gram. Also, operational models of programming lan-
guages can in most cases be considered a monotonic
logic in the following sense: If we consider the equa-
tional theory implied by the operational semantics of
the language, then typically we have the property that
if e = e′, then E[e] = E[e′] for an evaluation con-
text E that plugs the expression into a bigger pro-
gram [50, 81]. This congruence property allows us to



reason about the behavior of programs in a modular
way: We do not have to revise our conclusions about
program behavior when we enlarge the program or use
it as subprogram in a bigger program.

2.5 Summary

The common notion of modularity, especially the facet
of information hiding, is deeply related to classical
logic. We take compositionality of abstractions and
monotonicity in reasoning about them for granted.
Classical logic shapes our thinking and expectation of
modularity. However, as we will argue next, humans
(and hence programmers) do not always organize and
reason about knowledge in accordance with classical
logic, which threatens the implicit assumption of clas-
sical modularity, namely that information hiding in the
strong sense presented here is the best means to deal
with software complexity.

3 Programmers use Nonclassical
Reasoning

Although our modularity mechanisms are shaped by
classical logic, programmers frequently reason about



software systems in nonclassical logics. Programmers
use inductive reasoning, use default reasoning and Oc-
cam’s razor, and use negation-as-failure and closed-
world reasoning, as we will illustrate. All these means
of reasoning are unsound from the perspective of clas-
sical logic (and have been formalized in various non-
classical logics), but are still used in everyday de-
velopment and maintenance tasks. Hence, classical
modularity mechanisms frequently do not support pro-
grammers adequately when reasoning about their pro-
grams.

3.1 Programmers use Inductive Reason-
ing

Programmers routinely infer a general software prop-
erty from observing individual cases. For example,
from a lack of bugs in specific cases, developers ten-
tatively infer the lack of bugs of a software. This is the
essence of testing. From the perspective of classical
logic, however, a successful test case shows nothing;
only a failed test case produces new knowledge.

Similarly, developers sometimes explore the behav-
ior of a software module by testing it on some inputs,
and infer, through inductive reasoning, general laws
on how the module behaves, especially when its APIs



are underspecified. Alternatively, they might know the
behavior of a module A only partially, use it to build
module B, and later learn details about the behavior of
A (for instance, corner cases) by testing the complete
software.

The success of tools like Daikon [19] or the tech-
nique from Henkel and Diwan [26], which discover
likely program invariants or algebraic specifications by
inductive reasoning over test case results, also illus-
trates that inductive reasoning over programs does
produce useful knowledge.

We could argue that inductive reasoning is un-
sound and programmers should not use it, but there
are good arguments to the contrary. First, all basic the-
ories in natural sciences are essentially the product of
inductive (or abductive) reasoning; all theories in natu-
ral sciences can only potentially be falsified, but never
be proven correct [64]. In that sense, inductive rea-
soning has a quite impressive track record. Second,
inductive reasoning is natural human behavior. This
hypothesis is supported by the basic learning mech-
anism of the human brain at the neuronal level, known
as Hebbian learning [25]: Our brain learns correlation
between different concepts and expects that this corre-
lation will repeat in the future. Conditioned reflexes are
a prime example of such learning process. Recent ad-
vances in computational neuroscience provide models



that successfully explain many higher-level behaviors
through the basic mechanism of Hebbian learning [47].
Detailed studies are available mostly for vision (for in-
stance, illusory contours are explained this way), but
brain processing uses the same fundamental process-
ing mechanisms for all kinds of information; thus, re-
searchers conjecture that all brain functions might be
explained in terms of associative learning.

3.2 Programmers use Default Reasoning
and Occam’s razor

Programmers tend to use the simplest explanation they
can imagine for an experienced phenomenon, such as
a bug. Similarly, they tend to predict the simplest be-
havior consistent with the interface for a software entity,
such as an API. Nevertheless, they regard such expla-
nations and predictions as tentative, that is, program-
mers infer them nonmonotonically and revise them
when contradicting evidence is discovered.

Default reasoning and Occam’s razor are com-
mon in everyday development tasks; consider the fol-
lowing examples: (1) Developers might assume that
an API function will not perform the side effect of
formatting the harddrive or modifying the value of
the provided arguments unless it is explicitly spec-



ified. (2) When a program terminates by printing
"NullPointerException", developers typically as-
sume a raised NullPointerException as cause,
rather than a println("NullPointerException")
instruction in the program. (3) Developers may expect
that getter methods do not mutate the receiver object
and can thus be safely invoked in a read-only fashion
from multiple threads. (4) Developers might observe
patterns in an API from a few of its members, and use
such inferred patterns as default rules. Default reason-
ing is also acknowledged by design principles such as
the principle of least astonishment [4], which recom-
mends that the API should not contradict common pre-
dictions of the programmer.

Of course, these reasoning patterns can lead to in-
valid results when additional observations are made.
This is actually quite common and may be the cause
for some debugging efforts. For example, the second
author shared the third assumption about thread-safe
getter methods and had to revise his reasoning in a
program using a well-known open-source library.

Again, we could put the blame for false prelimi-
nary conclusions on the programmer, but Occam’s ra-
zor and default reasoning appear to be “hard-wired”
human behavior, as also supported by the law of präg-
nanz in Gestalt psychology, which says that we tend to
order our experience in a way which is regular, orderly,



symmetric and maximizes simplicity [77].

3.3 Programmers use Negation As Fail-
ure and Closed-World Reasoning

Programmers often reason about a closed code base.
For example, when removing a method that is presum-
ably no longer necessary, they confirm that the method
is actually no longer necessary by checking whether
this method is still called in the current code base.
These kinds of API changes are of course avoided if
possible, if the API is used by a large number of appli-
cations outside the control of the programmer or com-
pany, but it is well-known that this means that APIs of-
ten become a kind of “software asbestos” [35, 3] or
leads to versioning problems such as the infamous
‘DLL hell’, if the API change cannot be avoided.

Reasoning about callers of a method is an exam-
ple of the negation-as-failure proof rule, which allows to
deduce a property ¬P from failure of proving P [11] (for
instance, with P = “method foo is used ”). It is an ex-
ample of closed-world reasoning [65] as well, because
such (nonmonotonic) reasoning might be invalidated
when the considered scenario is extended to elements
allowing to prove P . Negation as failure and closed-
world reasoning are both incompatible with classical



logic.
Conflicts between classical logic and closed-world

reasoning frequently arise during software evolution,
especially in the context of APIs. Stable APIs are very
difficult to achieve in open systems that might be ex-
tended by others (it is essentially impossible to ever
remove any API functionality). Therefore, many devel-
opers are less strict about stability and information hid-
ing and tend toward a closed-world assumption. For
example, the Linux kernel developers do not guaran-
tee stable APIs and instead strongly urge maintainers
of external code to submit that code for inclusion in the
kernel, so it can be reasoned about and evolved to-
gether with the APIs in a closed-world fashion [36].

Closed-world reasoning is also required to estab-
lish many other important properties of software, for in-
stance, temporal or concurrency properties. This holds
for informal manual reasoning, but is even more ob-
vious when one considers automated tools such as
model checkers and static analyses, which assume a
closed world when reasoning about source code. A
property established in one code base may no longer
hold in a larger versions of the program. For instance,
suppose a module acquires lock A and then lock B
(while holding lockA) and model checking ensures this
module is safe; suppose then a new module is intro-
duced, acquiring locks A and B in the reverse order.



As we know, this will cause a deadlock, which will af-
fect also the existing module. These limitations are of
course well-known in these communities (e.g., [1, 40]);
we mention them here to support our point that pro-
grammers and their tools routinely and successfully
used inductive reasoning.

3.4 Discussion

We have shown that in many cases programmers use
reasoning that does not align with classical logic and
which causes problems in the context of classical mod-
ularity. One could ask, whether we should blame pro-
grammers or the modularity mechanisms. For exam-
ple, we could blame programmers, because they are
presumably just too lazy to use proper reasoning, or
we could blame modularity mechanisms, because they
do not support programmers adequately.

We take sides with the programmers for two rea-
sons: First, we have evidence that various patterns
of nonclassical reasoning are “hard-wired” into human
intelligence. It seems natural to us that programming
methodology should embrace rather than denunciate
the way of reasoning humans are born with. Second,
many important properties of programs just cannot be
established using classical reasoning: Viewed as ax-
ioms of logical theories, module interfaces are highly



incomplete, that is, for many propositions P neither P
nor ¬P can be proven classically (such as in the exam-
ples from above: P = “method foo is used ”, or P =
“the program is deadlock -free”). Hence, programmers
are essentially forced to use nonclassical reasoning,
because there is no way to prove or reject many rele-
vant properties with classical reasoning.

These two reasons suggests that the power of clas-
sical “modular reasoning” is rather limited, because it
only works for so few properties. We believe that mod-
ularity mechanisms should be adapted accordingly to
better reflect how programmers reason about code. In
light of this finding, the next section will analyze the
limitations of classical information hiding in detail.

4 Limits of Information Hiding

Information hiding is typically regarded as a core
achievement and goal of modularity in the struggle to
reduce complexity [63]. However, programmers often
experience limitations where information hiding is dif-
ficult or does not seem to pay off. In the following, we
describe some situations where the limitations of infor-
mation hiding become apparent.



4.1 Operational Behavior & Interface De-
tail

If a stakeholder wants to reason about “nonfunctional”3

aspects of a system, such as time or space complexity
or power consumption, he probably needs to reason
about implementation details hidden behind abstrac-
tion barriers.

For example, when hiding the representation of
complex numbers as either Cartesian or polar coor-
dinates [67], the choice of representation is irrelevant
from the perspective of Reynold’s abstraction theorem,
as already discussed in Section 2.1. However, the im-
plementation choice makes a difference when execut-
ing the program on physical hardware. For example,
different implementations have different time or space
behavior of the operations, different rounding errors,
different optimizations that the compiler will apply, or
different power consumption. To some stakeholders,
such concerns may well be important; while some re-
quire higher performance, others require higher preci-
sion.

3Actually the word nonfunctional is a misnomer, since nonfunc-
tional properties are just as important aspects of the function of a
system as its “functional” properties. The wording is unfortunate, be-
cause it is an excuse to pretend that some aspects of a system can
be ignored when “modeling” a system, see also the discussion in
Sec. 5.



To support the information needs of such a stake-
holder, one could expose performance and precision
information, for example, by adding additional con-
straints to the interface of the complex-number data
type. But with each additional constraint, the possible
implementations are more and more limited, until even-
tually all information is exposed, and just one possible
implementation remains. By strengthening the inter-
face, the distinction between interface and implemen-
tation is weakened, and information hiding is rendered
useless. In logic, this situation is formalized by the no-
tion of completeness, which denotes a logical theory
that has just one model (up to isomorphism).

In a modular structure based on a nonclassical
form of information hiding, it may be possible to es-
tablish additional interface properties by nonclassical
(e.g., inductive or default) reasoning, without explicitly
stating all of them in the interface. A concrete example
would be a default rule which says that "getter" meth-
ods usually do not perform side-effects. An example
of inductive reasoning would be to observe that many
functions of an API that access the file system are not
thread-safe, and generalize this finding to all API func-
tions that access the file system. In the field of logic,
the problem of having to state too many properties ex-
plicitly to reason about an ‘API’ is known as the qualifi-
cation problem, which we will discuss in more detail in



Sec. 4.5.

4.2 Large Systems

When information is hidden behind an abstraction bar-
rier, there are potential stakeholders (or concerns),
who are interested in that hidden information. There-
fore, the success of information hiding depends on
whether such potential stakeholders (or concerns) and
their information needs are relevant for the system or
not – and, the larger the software system, the more
likely a relevant stakeholder exists. In that sense, we
argue that strict information hiding is problematic in
large systems. This has strong implications on prac-
tice, as we exemplify with the Linux kernel.

Surrounding the origins of the Linux kernel there is
a well-known debate about how to design an operating
system kernel between Linus Torvalds, the original de-
veloper behind Linux, and Andrew Tanenbaum, an op-
erating system researcher [15]. At the heart of the de-
bate lies another debate about modularity. Academics
argued that kernels of operating systems should be
written using loosely coupled independent modules
and that interface boundaries should be enforced
through shared-nothing, message-passing-based con-
currency (known as microkernel design [79]). In con-
trast, Linux uses a monolithic kernel design which does



not enforce information hiding strictly.
In a nutshell, Torvalds’ motivation for neglecting in-

formation hiding is that parts of the kernel are highly in-
terdependent.4 They require so much knowledge about
each others implementation that there remains little to
hide. Torvalds himself provides (among many others)
the following example:

This is an example of how things [differ-
ent modules] are not “independent”. The
filesystems depend on the VM [Virtual
Memory subsystem], and the VM depends
on the filesystem. You can’t just split them
up as if they were two separate things (or
rather: you can split them up, but they still
very much need to know about each other
in very intimate ways).5

So, programmers of the Linux kernel, and in fact of
most other operating systems as well, accept a weaker
form of modularity because so much information would
have to be exposed in interfaces that information hiding
does no longer add enough value.

4Actually, also performance is a common argument for monolithic
kernels. Although some modularity mechanisms may arguably add
some performance penalties, we ignore this aspect to concentrate
on the issue at hand.

5http://kt.earth.li/kernel-traffic/kt20050103_289.
html#1



A related issue of large systems arises with cross-
cutting concerns such as transactions or concurrency.
The problem that such concerns are very hard to mod-
ularize with classical modularity mechanisms has been
the motivation for aspect-oriented programming [32].6

If such concerns are not modularized, however, a basic
assumption of information hiding, namely monotonic-
ity, does not hold anymore: Composing two programs
which are each separately correct with respect to, say,
lock-based concurrency or transactions, are in general
no longer correct when composed. More importantly,
the noncomposability can in general not be deduced
from the interfaces of these components (or it is at least
not clear how to document the components in such a
way that it is). Hence, the monotonicity assumption of
classical modularity fails when concerns are not prop-
erly separated.

4.3 Separation of Concerns and the
Dominant Decomposition

When taking the point of view that what is hidden be-
hind an interface is (or belongs to) a concern, it be-
comes obvious that better separation of concerns re-

6There is no consensus whether AOP solves these problems
(e.g., [34]) but this is not relevant to our point.



duces the amount of information hiding in the system.
For instance, in the canonical AOP example of updat-
ing a display when a figure element changes [33], a
figure element module hides less information behind its
interface when the display updating logic is separated
from the figure element module. In that sense, and con-
trary to the common notion that information hiding and
separation of concerns go hand in hand, information
hiding and separation of concerns can actually be con-
tradictory.

The tyranny of the dominant decomposition [80]
also reflects a major limitation of information hiding:
What can be hidden behind an interface depends on
the choosen decomposition, but there is no “best” de-
composition; rather, from each point of view (such as
the points of views of the different stakeholders) a dif-
ferent decomposition (and hence information hiding
policy) would be most appropriate. What one stake-
holder would hide as an implementation detail behind
an interface is of primary importance to another stake-
holder, who would hence choose a different decompo-
sition that exposes that information.

4.4 Software Evolution

Even if a software system is successfully modularized,
and the information needs of all stakeholders and con-



cerns are reflected in the interfaces of components, in-
formation hiding might still hinder software evolution.
This might be surprising at first, because information
hiding is supposed to facilitate software evolution by
hiding design decisions behind interfaces, so that they
can be changed at will. The problem is that the original
developers have to anticipate change and to modular-
ize the software accordingly.

Unfortunately, it is not clear how to decide up-front
which design decisions need to be hidden and which
need to be exposed. Parnas heuristic of hiding what
is most likely to change is difficult to follow.7 If a de-
sign decision is exposed in the interface of a compo-
nent, this aspect of the component cannot be evolved
in a modular fashion later. But if the design decision is
hidden behind the interface, software evolution might
bring a new stakeholder (or concern) into the system
which needs to access that hidden information. So, to
support the information need of this stakeholder (or
concern), the design decision should not have been
hidden in the first place.

An example for this situation is discussed in the

7The wording ‘most likely’ indicates that one has to use nonclassi-
cal – such as inductive or probabilistic but in any case nonmonotonic
– reasoning to determine the modular structure of a system. Hence
the illusion of staying within classical logic all the way through breaks
together one way or the other.



aforementioned display-update example: When the
Point figure element hides its update logic behind its
interface, the system cannot evolve to support also a
Line abstraction based on Point, since the update
logic of Line cannot be implemented without detailed
knowledge about the update logic of Point [33].

One could argue that successful modularization
just needs better planning [61] to better assess what is
likely to change, but we believe that this is an implausi-
ble assumption because large-scale software systems
are assembled from many independently developed
and independently evolving parts; hence, a big global
“plan” is infeasible and unanticipated changes are un-
avoidable in long-living projects. In fact, the mere as-
sumption of a monolithic global plan is contradictory to
modularity.

4.5 Information Hiding and Classical
Logic

As lesson, we infer from these examples that the larger
and more complex a software system is, the harder a
strict classical discipline of information hiding can be
maintained. There are many concerns that, when sep-
arated, need to expose implementation detail in such
a way that information hiding is impaired. Developers



have to decide what information to hide and what to
separate. This is a fundamental problem of classical
modularity, which can be traced back to problems well-
known in classical logic. For instance, the qualification
problem describes the problem that

in order to fully represent the conditions for
the successful performance of an action,
an impractical and implausible number of
qualifications would have to be included in
the sentences expressing them [44].

McCarthy gives the following example:

The successful use of a boat to cross a
river requires, if the boat is a rowboat, that
the oars and rowlocks be present and un-
broken, and that they fit each other. Many
other qualifications can be added, making
the rules for using a rowboat almost impos-
sible to apply, and yet anyone will still be
able to think of additional requirements not
yet stated.

From the perspective of modularity, the qualification
problem is clearly about information hiding, or more
precisely, about the difficulty of information hiding in
classical logic.



We believe that a possible solution can be to re-
strict the expectations of information hiding driven by
classical logic (for instance, not to expect to prove pro-
gram properties “once and for all”), and open us to less
strict forms of information hiding, as we will discuss in
Section 6.

5 Programs are not models

What is the cause of the failures of classical modu-
larity discussed in the previous two sections? We be-
lieve that the answer to this question lies in the no-
tion of modeling and idealization from natural sciences
(and, eventually from Plato’s ideas and Aristotle’s no-
tion of essence), as discussed in Section 2: A sci-
entific model8 of a physical phenomenon removes in-
formation not relevant for the purpose of the model,
and makes simplifying assumption to distill the core of
the phenomenon the model is supposed to illustrate.
It is not surprising that classical logic is a good match
to describe natural scientific models, since historically,
mathematics and logics were developed as auxiliary
sciences to support natural science.

8In this section we use the term model to denote scientific model
and not as the term is used in logic, which is confusingly different.



It seems tempting to assume that software is a
model in that sense, too, and we believe that this is
indeed a wide-ranging implicit assumption of many
software researchers. Software engineering books talk
about “modeling” all the time. There is even a branch
of software engineering called "model-driven develop-
ment", in which the actual programs are explictly called
"models". The Object Management Group defines: "An
object models a real world entity" [52], and the point of
view that programs should model the real world has
been quite important in Simula and the whole Scandi-
navian tradition to OO programming [42].

However, large software systems are not like that.
They have to take into account the desires and needs
of many different stakeholders. They have to deal and
interact with the real world, which means that simpli-
fying assumptions often turn out to be false. Instead
of being like a scientific model, software systems are
more like a mix of many overlapping and interacting
models. One could of course say that a mix of overlap-
ping models is another, more complicated model. But
we believe that it is no longer useful to consider big pro-
grams to be models of a part of reality, but rather to be
a part of reality. For instance, while at some early stage
the programming concept of an order may have been a
model of a hand-written document in a company, there
are nowadays typically no artefacts beyond the record



in the database that represent the order: It is the or-
der. In contrast to a natural science model, a program
is not describing a physical phenomenon – it is, when
running, a physical phenomenon.

In natural sciences the problems of idealization
and abstract models are well-known, of course. For
instance, when trying to compute the movements of
actual bodies in motion, aspects such as friction or
air resistance have to be taken into account – the
simplifying assumptions do not hold anymore. Tak-
ing all these additional influences into account turns
Galileo’s simple models into highly complex computa-
tions. Even in natural sciences itself, there is discus-
sion about whether scientific models are really accu-
rate descriptions of physical phenomena [10], and a
process of de-idealization and de-simplification is pro-
posed to turn the model into an accurate description of
reality [46, 39].

The problem of multiple overlapping models, which
manifests itself as the tyranny of the dominant decom-
position in software (cf. Sec. 4.3), is also well-known in
natural scientific modeling:

All of our theories and models are tight-
ened together only because they apply to
the same empirical reality but do not enter
into any further relations (deductive or oth-



erwise). We are confronted with a patch-
work of theories and models, all of which
hold ceteris paribus in their specific do-
mains of applicability. [24]

Complex, de-idealized patchworks of scientific
models, as required for simulations of the real world,
are much more akin to large software systems, since
both have to deal with many aspects of reality and do
not have the luxury to abstract over aspects that are
inconvenient for a simple, elegant model.

The misleading analogy between programs and
natural scientific models explains the failure of infor-
mation hiding, since classical logic – the foundation of
information hiding – is the framework in which scientific
models are implicitly or explicitly formulated.

6 Towards Nonclassical Modular-
ity

In the beginning of Sec. 1, we have pointed out several
modularity mechanisms that can be used to improve
extensibility or separation of concerns, but have been
criticized for restricting information hiding and mod-
ular reasoning, for instance inheritance [75], aspect-
oriented programming [2], reflection, aliasing and mu-



tation [51, 54], multithreading [20], and exception han-
dling [69].

Many of these modularity mechanisms can be un-
derstood to leave the “safe” world of classical logic, and
indeed they can be understood to correspond to differ-
ent nonclassical logics. Here are a few examples.

Aspect-Oriented Programming and Reflection. In
earlier work, the first author has shown that aspect-
oriented programming can be understood in terms of a
nonmonotonic logic called default logic [56]. The idea
is that one can reason by default that the semantics of
a method call is to execute the corresponding method
body, similar to how classes themselves can be inter-
preted as defining a default behavior that may be re-
fined by subclasses (see discussion of inheritance be-
low). Aspects that intercept such method calls are con-
sidered exceptions to that default rule. Hence, in this
setting, one can – using defaults – reason locally about
the program behavior. In case one learns later that the
default assumption turns out to be wrong, there is a
controlled process of updating the conclusions one has
drawn from the invalid default assumption [56]. Using
the logic proposed in this paper, one can establish a
property such as “display updating is consistently ap-
plied when the data changes” modularly, by only con-



sidering the aspect that maintains this property.
Reflection (e.g., [74]) is also known to be a pow-

erful modularity mechanism (e.g., [31]), but is in con-
flict with information hiding, since implementation de-
tails of foreign modules can be observed and modified.
Not surprisingly, reflection is also frowned upon in clas-
sical logic ever since the paradoxes of naive set the-
ory (Russel paradox, Cantor paradox, etc.) have been
discovered – all of which rely on a form of reflection,
namely self-application.

Aliasing and Mutation. The program-verification
community has developed separation logic [68] to rea-
son about programs using pointers, aliasing, etc., in a
modular way. Separation logic is a nonclassical logic,
since the structural rules of weakening (monotonicity
of entailment) and contraction (idempotency of entail-
ment) do not hold [53]. Instead, the so-called frame
rule allows the programmer to reason about each rou-
tine separately, given that the parts of the heap that are
modified by each routine are disjunct [68]. The frame
rule solves a particular instance of the frame problem
[45], which has been a major motivation for the devel-
opment of many nonclassical logics and is at the same
time a typical modularity problem, namely how to spec-
ify what a module does not do, without enumerating all



possibilities [6].
Separation logic seems to be compatible with clas-

sical information hiding at first. However, the frame rule
forces one to make all sharing and aliasing in the pro-
gram explicit in the specification, which is contrary to
the idea of using implicit communication via shared
variables to reduce coupling and hence improve mod-
ularity [18, Sec. 2] [72, Sec. 4.8.2]. Specifying shar-
ing and aliasing explicitly has a ripple effect, because
typically the callers of the components that share vari-
ables have to know about this, hence the callers of
the callers have to know, and so forth [72, Sec. 4.8.2],
which means that the usage of separation logic in such
cases becomes a form of closed-world reasoning. So
one has only two choices: Either give up the modularity
that can be gained by implicit communication, or use a
stronger – unsound – form of the frame rule, similar to
circumscription [44], that allows one to tentatively com-
pose proofs of properties of program parts even if they
do potentially communicate implicitly.

Inheritance. Ideas to understand classes in object-
oriented languages as giving nonmonotonic default
definitions that may be refined by subclasses are al-
most as old as object-oriented programming itself [66,
73]. More recently, variants of separation logic (see



above) have been proposed to reason about object-
oriented programs [57]. These logics illustrate that in-
heritance is a nonclassical modularity mechanism.

Temporal Logics. Temporal logics, such as linear-
time logic (LTL), are a common formalism to rea-
son about temporal properties of programs, especially
concurrent programs [43]. Temporal logics assume a
closed world, which means that the whole program (or
state machine) to be verified must be fully known, and
results established for one program do not automat-
ically hold for extensions of that program (nonmono-
tonicity) or compositions of multiple programs [1].

Closed-World Modularity. Some approaches em-
brace closed-world reasoning and instead focus on tool
support to dealing with nonmodular systems. For ex-
ample, FEAT helps to discover and document scat-
tered concerns and can afterward support reason-
ing about the still-scattered concerns (a closed knowl-
edge base) by providing navigation support [70]. Vir-
tual separation of concerns [30] emphasize editable
views on code and whole-program analysis to reason
about scattered implementations of a concern instead
of enforcing a separation into modules. Ideas of effec-
tive views [29] and on-demand remodularization [55]



take this even a step further and actually rewrite the
source code on demand to match the form of locality
or information hiding that the programmer needs for a
task.

Error Handling. Lanier remarked that software
“breaks before it bends” [38]. That is, a single failure
(such as a null-pointer access) in a minor part can
cause inconsistencies in the whole program, just like a
single inconsistency in a logical theory allows to prove
every proposition (including contradictory ones). We
believe this similarity is not accidental: Software inher-
its this property from the principle of explosion of clas-
sical logic. One of the common points is that both a
software module and a logical theory require the per-
fect consistency (such as: freedom of bugs), even if
software modules are in daily practice are rarely ex-
empt from inconsistencies.

Interestingly, both in logic and in software differ-
ent but similar means have been developed to deal
with such explosions/crashes. In logic, the field of
paraconsistent logics [7] deals with logics that are
inconsistency-tolerant, that is, where one can still draw
reasonable nontrivial conclusions even if there is an in-
consistency in some part of the theory. This is similar
in spirit to attempts in computer science to limit the ef-



fects of errors, such as null pointer errors or nontermi-
nation, that would otherwise destroy a running program
immediately.

For instance, insulating faults by partitioning a soft-
ware in different processes is a traditional best practice
in the Unix culture, because it increases stability.

More recently, Martin Rinard and his group intro-
duced the notion of failure-oblivious computing [69]
whose idea is that applications should continue to pro-
duce reasonable results despite unexpected errors,
and proposed innovative and even surprising tech-
niques for doing so. These techniques are often met
with resistance, because they change the local seman-
tics of the program (for instance, by skipping loop iter-
ations to improve performance). That is contrary to the
spirit of classical modularity; however, the only alterna-
tive is the principle of explosion.

Nonstrict programming languages (such as
Haskell) can also be understood to restrict the prop-
agation of a common error, namely nontermination.
The connection to paraconsistent logics becomes
particularly obvious when one identifies inconsistency
with nontermination, which is also suggested by the
fact that the same symbol, ⊥, is used to denote
both inconsistency in logic and nontermination in
denotational semantics.



Discussion. While the results discussed in this sec-
tion are rather preliminary and require a more formal
investigation, we still consider it striking that many pro-
gram structuring mechanisms that have been criticized
for violating information hiding are at the same time
similar to developments in nonclassical logics. Also,
the motivations for these developments are often simi-
lar as well, for instance, avoiding the propagation of er-
rors for both error recovery mechanisms and paracon-
sistent logics, or avoiding an excessive number of qual-
ifications for both aspect-oriented programming and
nonmonotonic logics (cf. Sec. 4.5).

We believe that these similarities indicate that the
programming community should acknowledge that pro-
grams are a form of knowledge representation, and the
same considerations with regard to modularity, extensi-
bility, ease of reasoning, and so forth, apply to both log-
ics and programs. Until now, programming languages
have usually been developed independently of logics,
and logics to reason about various properties of the
program have only been added as an afterthought. We
believe that there is a lot of potential in the idea to
make use of the connection between programming on
one hand and logics and knowledge representation on
the other hand, and develop modularity constructs and
their logic side by side instead.



7 Conclusions

The traditional point of view on modularity as informa-
tion hiding is deeply rooted in classical logic and in-
herits both its merits and limitations. As a device to
structure the knowledge embodied by large-scale soft-
ware system it is problematic, since there is a deep
mismatch between the idealizing form of modeling for
which classical logic was designed, and the multi-
stakeholder reality of complex software systems. Some
existing ideas to escape the limitations of traditional
information hiding can be understood as being based
on nonclassical logics. We propose to turn this obser-
vation into a principled design methodology for future
modularity mechanism in which the modularity mech-
anism, its information hiding policy, and a correspond-
ing (potentially nonclassical) logic are developed side
by side. It does not make sense to judge a modularity
mechanism through the glasses of a logic that does not
match to the logic with which knowledge is organized
in this modularity mechanism.

In fact, we believe that it is useful to adopt a novel
definition of modularity9 that takes the relation between
programs, its modules, and the logic we use to reason
about the program into account.

9This direction was actually suggested by an anonymous re-
viewer of this paper.



Instead of talking about modularizing concerns – a
term that has often been understood in a rather syntac-
tic way – we propose to talk about modularizing prop-
erties of a program. Since the way we establish a prop-
erty depends on the logic, modularity is also relative to
the used logic L. Hence we can define property P to
be modularized in a program unit U (which we assume
to include its interface to the rest of the program) of
a program, if P can be proved from U in L, or, using
formal notation, U `L P .

Under this definition, cohesion denotes that a pro-
gram unit modularizes a single (or few) coherent pro-
gram properties. Program units are coupled, if an im-
portant property can only be proved from a larger set
of program units, or even the whole program. A perfect
(perhaps unattainable) modularization is one where all
properties required by the specification are modular-
ized.

We hope this definition will help to correct what we
perceive to be a modularity bias: That some desired
properties – such as the aforementioned “functional”
properties of a system – are more important to modu-
larize than other (“nonfunctional”) properties.



8 Acknowledgements

We particularly thank David L. Parnas for feedback,
historical notes, and interesting discussions about an
earlier draft of this paper. We also thank the reviewers
for quite helpful comments. The authors of this work
are supported by the ERC Starting Grant No. 203099.

References

[1] M. Abadi and L. Lamport. Composing specifica-
tions. ACM Trans. Program. Lang. Syst., 15:73–
132, January 1993.

[2] J. Aldrich. Open modules: Modular reasoning
about advice. In Proc. Europ. Conf. Object-
Oriented Programming (ECOOP), volume 3586 of
LNCS, pages 144–168, 2005.

[3] T. T. Bartolomei, K. Czarnecki, R. Lämmel, and
T. van der Storm. Study of an API migration for
two XML APIs. In Proc. Conf. Software Language
Engineering (SLE), LNCS. Springer, 2010.

[4] J. Bloch. How to design a good API and why it
matters. In Companion Int’l Conf. Object-Oriented



Programming, Systems, Languages & Applica-
tions (OOPSLA), pages 506–507. ACM, 2006.

[5] G. Booch. Object-Oriented Analysis and Design
with Applications. Addison-Wesley, 2007.

[6] A. Borgida, J. Mylopoulos, and R. Reiter. On the
frame problem in procedure specifications. IEEE
Trans. Softw. Eng., 21:785–798, October 1995.

[7] M. Bremer. An Introduction to Paraconsistent
Logics. Peter Lang Publishing, 2005.

[8] K. H. Britton, R. A. Parker, and D. L. Parnas. A
procedure for designing abstract interfaces for de-
vice interface modules. In Proc. Int’l Conf. Soft-
ware Engineering (ICSE), pages 195–204. IEEE
Press, 1981.

[9] F. P. Brooks. The mythical man-month: After 20
years. IEEE Software, 12:57–60, 1995.

[10] N. Cartwright. How the laws of physics lie. Claren-
don Press, 1983.

[11] K. L. Clark. Negation as failure. In Logic and Data
Bases, pages 293–322, 1977.

[12] W. D. Clinger. Proper tail recursion and space ef-
ficiency. In Proc. Conf. Programming Language



Design and Implementation (PLDI), pages 174–
185. ACM, 1998.

[13] R. Dawkins. The Blind Watchmaker. Norton &
Company, 1986.

[14] R. Descartes. Discourse on the Method of Rightly
Conducting One’s Reason and of Seeking Truth
in the Sciences. Available online at http://www.
gutenberg.org/etext/59, 1637.

[15] C. DiBona, S. Ockman, and M. Stone, editors.
Open Sources: Voices from the Open Source
Revolution. O’Reilly & Associates, Inc., 1999.

[16] E. W. Dijkstra. The structure of “THE”-
multiprogramming system. In Proc. ACM Sym-
posium on Operating System Principles, pages
10.1–10.6. ACM, 1967.

[17] E. W. Dijkstra. Selected Writings on Computing: A
Personal Perspective, chapter EWD 447: On the
role of scientific thought, pages 60–66. Springer-
Verlag, 1982.

[18] E. Ernst. Method mixins. In Proc.
Net.ObjectDays/GSEM, pages 145–161. GI,
2005.



[19] M. D. Ernst, J. Cockrell, W. G. Griswold, and
D. Notkin. Dynamically discovering likely program
invariants to support program evolution. IEEE
Trans. Softw. Eng., 27(2):99–123, 2001.

[20] C. Flanagan, S. N. Freund, S. Qadeer, and S. A.
Seshia. Modular verification of multithreaded pro-
grams. Theor. Comput. Sci., 338:153–183, June
2005.

[21] D. Gabbay. Classical vs non-classical logic. In
Handbook of Logic in Artificial Intelligence and
Logic Programming, volume 2. Oxford University
Press, 1994.

[22] J.-Y. Girard. Linear logic. Theoretical Computer
Science, 50:1–102, 1987.

[23] J. A. Goguen, J. W. Thatcher, E. G. Wagner, and
J. B. Wright. Initial algebra semantics and contin-
uous algebras. J. ACM, 24(1):68–95, 1977.

[24] S. Hartmann and R. Frigg. Scientific models. In
S. Sarkar and J. Pfeifer, editors, The Philosophy
of Science: An Encyclopedia, Vol. 2, pages 740–
749. Routledge, 2005.

[25] D. Hebb. The organization of behavior. John Wi-
ley & Sons, 1949.



[26] J. Henkel and A. Diwan. Discovering algebraic
specifications from Java classes. In In ECOOP,
pages 431–456. Springer, 2003.

[27] P. Hinman. Fundamentals of Mathematical Logic.
A K Peters, 2005.

[28] C. A. R. Hoare. An axiomatic basis for computer
programming. Commun. ACM, 12(10):576–580,
1969.

[29] D. Janzen and K. De Volder. Programming with
crosscutting effective views. In Proc. Europ. Conf.
Object-Oriented Programming (ECOOP), volume
3086 of LNCS, pages 195–218. Springer-Verlag,
2004.

[30] C. Kästner and S. Apel. Virtual separation of
concerns – A second chance for preprocessors.
Journal of Object Technology (JOT), 8(6):59–78,
2009.

[31] G. Kiczales, J. Lamping, C. V. Lopes, C. Maeda,
A. Mendhekar, and G. Murphy. Open implemen-
tation design guidelines. In Proc. Int’l Conf. Soft-
ware Engineering (ICSE), pages 481–490. ACM,
1997.

[32] G. Kiczales, J. Lamping, A. Mendhekar,
C. Maeda, C. V. Lopes, J.-M. Loingtier, and



J. Irwin. Aspect-oriented programming. In
ECOOP, pages 220–242, 1997.

[33] G. Kiczales and M. Mezini. Aspect-oriented pro-
gramming and modular reasoning. In Proc. Int’l
Conf. Software Engineering (ICSE), pages 49–58.
ACM, 2005.

[34] J. Kienzle and R. Guerraoui. AOP: Does it make
sense? The case of concurrency and failures. In
Proc. Europ. Conf. Object-Oriented Programming
(ECOOP), volume 2374 of LNCS, pages 113–
121. Springer Berlin / Heidelberg, 2002.

[35] S. Klusener, R. Lämmel, and C. Verhoef. Architec-
tural Modifications to Deployed Software. Science
of Computer Programming, 54:143–211, 2005.

[36] G. Kroah-Hartman. The Linux kernel driver
interface. http://git.kernel.org/?p=
linux/kernel/git/torvalds/linux-2.6.
git;a=blob;f=Documentation/stable_api_
nonsense.txt.

[37] I. Lakatos. A renaissance of empiricism in the re-
cent philosophy of mathematics. Br J Philos Sci,
27(3):201–223, 1976.



[38] J. Lanier. One half of a manifesto: Why stupid
software will save the future from neo-darwinian
machines. wired 8.12, 2000.

[39] R. Laymon. Idealizations and the testing of
theories by experimentation. In P. Achinstein
and O. Hannaway, editors, Observation Exper-
iment and Hypothesis in Modern Physical Sci-
ence, pages 147–173. M.I.T. Press, 1985.

[40] H. Li, S. Krishnamurthi, and K. Fisler. Verifying
cross-cutting features as open systems. SIG-
SOFT Softw. Eng. Notes, 27:89–98, November
2002.

[41] B. H. Liskov and J. M. Wing. A behavioral notion
of subtyping. ACM Trans. Program. Lang. Syst.,
16(6):1811–1841, 1994.

[42] O. L. Madsen and B. Møller-Pedersen. A uni-
fied approach to modeling and programming. In
Proc. Int’l Conf. on Model Driven Engineering
Languages and Systems (MODELS’10), volume
6394 of LNCS, pages 1–15. Springer, 2010.

[43] Z. Manna and A. Pnueli. The temporal logic of re-
active and concurrent systems. Springer-Verlag,
1992.



[44] J. McCarthy. Circumscription—a form of non-
monotonic reasoning. Artificial Intelligence,
13:27–39, 1980.

[45] J. McCarthy and P. J. Hayes. Some philosophi-
cal problems from the standpoint of artificial intel-
ligence. Machine Intelligence, 4:463–502, 1969.

[46] E. McMullin. Galilean Idealization. Studies in the
History and Philosophy of Science, 16:247–273,
1985.

[47] R. Miikkulainen, J. A. Bednar, Y. Choe, and
J. Sirosh. Computational Maps in the Visual Cor-
tex. Springer, 2005.

[48] J. C. Mitchell and G. D. Plotkin. Abstract types
have existential type. ACM Trans. Program. Lang.
Syst., 10(3):470–502, 1988.

[49] R. Montague. Universal grammar. In Formal Phi-
losophy, pages 222–246, 1970.

[50] J. H. Morris. Lambda-Calculus Models of
Programming Languages. PhD thesis, Mas-
sachusetts Institute of Technology, 1968.

[51] J. Noble, J. Vitek, and J. Potter. Flexible
alias protection. In Proc. Europ. Conf. Object-



Oriented Programming (ECOOP), pages 158–
185. Springer-Verlag, 1998.

[52] Object Management Group (OMG). Object man-
agement architecture guide, ed 2.0, 1992.

[53] P. W. O’Hearn, David, and D. J. Pym. The logic of
bunched implications. Bulletin of Symbolic Logic,
5:215–244, 1999.

[54] P. W. O’Hearn, H. Yang, and J. C. Reynolds. Sep-
aration and information hiding. In Proc. Symp.
Principles of Programming Languages (POPL),
pages 268–280. ACM, 2004.

[55] H. Ossher and P. Tarr. On the need for on-demand
remodularization. In Position Paper for Aspects
and Dimensions of Concern Workshop, ECOOP.
Citeseer, 2000.

[56] K. Ostermann. Reasoning about aspects with
common sense. In Proc. Int’l Conf. Aspect-
Oriented Software Development (AOSD), pages
48–59. ACM, 2008.

[57] M. J. Parkinson and G. M. Bierman. Separation
logic, abstraction and inheritance. In Proc. Symp.
Principles of Programming Languages (POPL),
pages 75–86. ACM, 2008.



[58] D. L. Parnas. On the criteria to be used in decom-
posing systems into modules. Commun. ACM,
15(12):1053–1058, 1972.

[59] D. L. Parnas. On a “buzzword”: Hierarchical struc-
ture. In Proceedings of IFIP Congress ’74, pages
336–339. North-Holland, 1974.

[60] D. L. Parnas. Use of abstract interfaces in the
development of software for embedded computer
systems. Technical report, NRL Report No. 8047,
1977.

[61] D. L. Parnas. The secret history of information
hiding. In Software pioneers: contributions to
software engineering, pages 399–409. Springer-
Verlag, 2002.

[62] D. L. Parnas. Precise documentation: The key to
better software. In S. Nanz, editor, The Future of
Software Engineering, pages 125–148. Springer,
Berlin Heidelberg, 2011.

[63] D. L. Parnas, P. C. Clements, and D. M. Weiss.
The modular structure of complex systems. In
Proc. Int’l Conf. Software Engineering (ICSE),
pages 408–417. IEEE Press, 1984.



[64] K. R. Popper. Conjectures and refutations: The
growth of scientific knowledge. Harper & Row,
1968.

[65] R. Reiter. On closed world data bases. In Logic
and Data Bases, pages 55–76, 1977.

[66] R. Reiter. A logic for default reasoning, pages 68–
93. Morgan Kaufmann Publishers Inc., 1987.

[67] J. C. Reynolds. Types, abstraction and parametric
polymorphism. In IFIP Congress, pages 513–523,
1983.

[68] J. C. Reynolds. Separation logic: A logic for
shared mutable data structures. In Proc. Sympo-
sium on Logic in Computer Science (LICS), pages
55–74. IEEE Computer Society, 2002.

[69] M. C. Rinard, C. Cadar, D. Dumitran, D. M. Roy,
T. Leu, and W. S. Beebee. Enhancing server
availability and security through failure-oblivious
computing. In Proc. Symposium on Operating
Systems Design & Implementation (OSDI), pages
303–316, 2004.

[70] M. Robillard and G. C. Murphy. Concern graphs:
Finding and describing concerns using structural



program dependencies. In Proc. Int’l Conf. Soft-
ware Engineering (ICSE), pages 406–416. ACM,
2002.

[71] S. D. Ross. Plato’s Theory of Ideas. Oxford Uni-
versity Press, 1951.

[72] P. V. Roy and S. Haridi. Concepts, Techniques,
and Models of Computer Programming. MIT
Press, 2004.

[73] E. Sandewall. Expert systems. chapter Non-
monotonic inference rules for multiple inheritance
with exceptions, pages 239–247. IEEE Computer
Society Press, 1990.

[74] B. C. Smith. Reflection and semantics in LISP.
In Proc. Symp. Principles of Programming Lan-
guages (POPL), pages 23–35. ACM, 1984.

[75] R. Stata and J. V. Guttag. Modular reason-
ing in the presence of subclassing. In Proc.
Conf. Object-Oriented Programming, Systems,
Languages & Applications (OOPSLA), pages
200–214. ACM, 1995.

[76] G. L. Steele. Debunking the “expensive proce-
dure call” myth or, procedure call implementa-
tions considered harmful or, LAMDBA: The ulti-



mate GOTO. Technical report, Massachusetts In-
stitute of Technology, 1977.

[77] R. Sternberg. Cognitive Psychology. Thomson
Wadsworth, 2008.

[78] J. E. Stoy. Denotational Semantics: The Scott-
Strachey Approach to Programming Language
Semantics. MIT Press, 1977.

[79] A. S. Tanenbaum, J. N. Herder, and H. Bos. Can
we make operating systems reliable and secure?
Computer, 39:44–51, 2006.

[80] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton,
Jr. N degrees of separation: Multi-dimensional
separation of concerns. In Proc. Int’l Conf. Soft-
ware Engineering (ICSE), pages 107–119. IEEE
Computer Society, 1999.

[81] A. K. Wright and M. Felleisen. A syntactic
approach to type soundness. Inf. Comput.,
115(1):38–94, 1994.


