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ABSTRACT
Large Language Models (LLMs) are increasingly integrated into
software applications. Downstream application developers often
access LLMs through APIs provided as a service. However, LLM
APIs are often updated silently and scheduled to be deprecated,
forcing users to continuously adapt to evolving models. This can
cause performance regression and affect prompt design choices, as
evidenced by our case study on toxicity detection. Based on our
case study, we emphasize the need for and re-examine the concept
of regression testing for evolving LLM APIs. We argue that re-
gression testing LLMs requires fundamental changes to traditional
testing approaches, due to different correctness notions, prompting
brittleness, and non-determinism in LLM APIs.

CCS CONCEPTS
• Software and its engineering→ Software testing and debugging.

KEYWORDS
Large Language Models (LLM), regression testing

ACM Reference Format:
Wanqin Ma, Chenyang Yang, and Christian Kästner. 2024. (Why) Is My
Prompt Getting Worse? Rethinking Regression Testing for Evolving LLM
APIs. In Conference on AI Engineering Software Engineering for AI (CAIN
2024), April 14–15, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3644815.3644950

1 INTRODUCTION
Large LanguageModels (LLMs) are increasingly integrated into soft-
ware applications [16]. Due to the high cost of developing and main-
taining in-house LLMs, many applications rely on LLM APIs pro-
vided by companies like OpenAI, Anthropic, and Google [3, 13, 26].
Although LLM APIs provide easy access to state-of-the-art models,
they also bring in uncertainties for their downstream applications: It
is not uncommon for application developers to find their carefully
engineered prompts that worked yesterday work less well after
updates from the LLM provider’s side [7, 30]. In Figure 1, we high-
light such an example from our case study on a toxicity detection
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Prompt A: 
Classify the text as ”toxic”
or “non-toxic”. 

Document: [text omitted] 
Label: toxic 

Document: [text omitted] 
Label: non-toxic 

Document: {input} 
Label:

Prompt B: 
Classify the text as ”toxic”
or “non-toxic”.   

Toxic comments can be 
identity attacks, insulting, 
obscene, sexual-explicit, 
or threats. 

Document: {input} 
Label:

Input: Any fool knows Star Trek is the best albeit lacking the 
technology available to more recent shows. Your post is total crap. 

Output:

text-davinci-003 gpt-3.5.turbo-instruct
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text-davinci-003

gpt-3.5-turbo-instruct

non-toxic ❌

    toxic ✔

    toxic ✔

non-toxic ❌

Prompt A Prompt B

Figure 1: An LLM API update from text-davinci-003 to gpt-
3.5-turbo-instruct causes a major performance downgrade
on classifying toxic comments. The API update also changes
the prompt choice: Prompt A (left) now outperforms Prompt
B (right) by 8.7% accuracy.

task, where the LLM API update from text-davinci-003 to gpt-
3.5-turbo-instruct causes a major performance downgrade and
changes the good choices for prompt selection.

Similar to traditional web service API [18] and more conven-
tional ML APIs [9], updates to server-side LLM API controlled by a
different party are hard to deal with. First, LLMAPIs can be updated
silently: OpenAI’s gpt-3.5-turbo model has been updated twice
(by Nov 2023) but the updates are not visible to the downstream
developers. Such silent API updates change only the underlying
LLM but not the API signature1, causing unexpected behavioral

1For our purpose, an LLM API describes both the signature of the service and its
behavior. In this work, we primarily focus on behavior changes that are difficult to
document and detect.
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changes (e.g., formatting of generated code) [7] to the applica-
tion developers. Second, LLM APIs are scheduled to be deprecated
and discontinued [27], effectively forcing application developers
to adopt newer API versions. For example, the text-davinci-003
model will be deprecated on Jan 2024. The forced transition to
gpt-3.5-turbo-instruct can cause unexpected prompt perfor-
mance changes, including the introduced performance downgrade
as illustrated in our example in Figure 1.

To cope with evolving LLM APIs, application developers need
support for monitoring and analyzing how their prompts perform
differently when the LLM API changes. Existing software engi-
neering practices suggest that regression testing is essential for
identifying changes between software versions, often particularly
to ensure that fixed bugs are not reintroduced [34]. We argue that
LLM application developers should take a similar approach. How-
ever, existing regression testing practices can not directly translate
in the LLM context, as we will illustrate. Based on our observa-
tions in the case study, we highlight three fundamental changes for
regression testing LLM APIs:

First, LLM regression tests should be defined at a different gran-
ularity. In traditional software engineering, a single breaking re-
gression test would indicate a bug in the software implementation.
In contrast, it is common for ML models to change predictions
for individual data points after updates. The common practice is
to examine overall model accuracy, which has been criticized for
being coarse-grained [33]. To gain a more nuanced understanding
than overall model accuracy, LLM regression tests should be de-
fined over data slices rather than on single predictions or the entire
dataset. This calls for a different correctness notion, as “regression”
is defined over slice-level aggregated metrics and the slice-level test
only fails when the metrics change beyond a threshold.

Second, LLM regression tests need to monitor both model and
prompt updates. It is well-known that prompt engineering can
greatly influence LLMs’ performance [19]. As we will show, we ob-
served that different prompt designs regress or improve differently
on the same API update, making the optimal prompt design change
from API version to version. We argue that tracking both LLM and
prompt versions is essential for LLM regression tests.

Third, LLM regression tests need to deal with non-determinism of
LLM APIs. LLMs are known to produce non-deterministic outputs:
Non-determinism is often introduced intentionally for generating
high-quality outputs with a non-zero temperature [e.g., 12], but can
even be observed with a zero temperature setting [29], where the
LLM should deterministically predict the next most likely token.
It is necessary to deal with flakiness in LLM regression tests by
considering their inherent non-determinism.

In summary, our paper has the following contributions:

• An exploratory case study on toxicity detectionwith the GPT-
3.5 model family, showing API upgrades can cause significant
performance deterioration, and that prompt is an important
factor in behavioral changes.

• A re-examination of the concept of regression testing for
LLM APIs and its required fundamental changes, due to
different correctness notions, prompting brittleness, and non-
determinism in LLMs.

• A vision on research opportunities in supporting systematic
regression testing for prompting LLM APIs.

2 BACKGROUND AND RELATEDWORK
2.1 Evolving AI APIs
As ML models are increasingly provided as a cloud service through
APIs (e.g., Perspective API [14], ChatGPT [26], Amazon Rekogni-
tion [23]), it has been noticed that these models evolve over time
without clear documentation [10, 37], similar to traditional web
service API [18]. This can pose risks to downstream application
developers, who do not have control over model updates and can
potentially suffer from performance regression [7, 9].

Beyond demonstrating the problem, there has only been limited
work on actually supporting developers facing evolving APIs not
under their control. The most prominent example for ML models
is done by Cummaudo et al. [9], where they focus on detecting
changes in the label space and prediction confidence for vision APIs.
Our work extends the existing literature by explicitly adapting the
concept of regression testing in the LLM contexts and highlighting
the need for more nuanced regression test suites.

2.2 The Rise of Prompting LLMs
LLMs present a fundamental shift in NLP applications through
the prompting interface, which allows rapid prototyping and iter-
ations [19]: Application developers can easily tweak prompts and
validate prompts on a few examples without the need to curate
data and build models. In a sense, the LLM together with a specific
prompt can be considered equivalent to a traditional specifically-
trained ML model for a specific task, such as toxicity detection.
However, the prompting paradigm also brings in the risk of prompt
brittleness, as prompts can be sensitive to small changes [21] and
the good choices for prompts change when the LLM changes. Our
work highlights prompts as an additional factor to consider for
regression testing LLMs.

2.3 ML Model Testing
ML models are usually evaluated by model fit using aggregated
metrics like accuracy, as models are expected to make occasional
mistakes [17]. However, traditional model evaluation has been
criticized for being coarse-grained [33] and suffering from issues
like spurious correlations [1]. Therefore, recent work has proposed
nuanced behavioral model testing as an alternative [25, 33], where
the testers explore nuanced model behaviors beyond a single score.

Prior work has explored different methods to explore and test
model behaviors [e.g., 32, 33, 41], as well as different ways to au-
tomate testing specific model behaviors [e.g., 35, 36] (see Yang
et al. [40] for a detailed survey). Another line of work on data slic-
ing [e.g., 4, 6, 11] focuses on identifying data regions where a model
under-performs. Our work introduces a new scenario for ML model
testing: regression testing over evolving LLM APIs.

3 CASE STUDY: TOXICITY DETECTION
Since regression of evolving LLM APIs is an emerging problem of
which we have little understanding, we first explored the problem
with an exploratory case study. We picked a paradigmatic case [42]
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Model Endpoint Type Training Method Release Date

gpt-3.5-turbo-instruct Text completion RLHF Sep 2023
gpt-3.5-turbo-0613 Chat RLHF June 2023
gpt-3.5-turbo-0301 Chat RLHF Mar 2023
text-davinci-003 Text completion RLHF Nov 2022
text-davinci-002 Text completion fine-tuning Mar 2022

Table 1: Representative models from OpenAI’s GPT-3.5 family [28], sorted by release date.

of toxicity detection, a task widely used for online content moder-
ation and long performed by models specifically trained for that
task [15], but recently LLMs with a suitable prompt have shown
similar or better performance [38]. Our case study aims to explore
(a) how prompt behaviors change (regress) over LLM updates and
(b) where regressions can be detected.2

3.1 Experiment Setup
3.1.1 Datasets. We selected two toxicity detection datasets for
our case study: Civil Comments [8] and GitHub Discussion [22],
covering different contents (generic vs. specialized) and text lengths
(short vs. long) for toxicity detection.

The Civil Comments dataset is collected from Civil Comments
platform, representing a wide range of comments on the Internet.
We sampled 1000 comments from the dataset, among which 41 are
toxic and 959 are non-toxic.

The GitHub Discussion Dataset contains 174 discussions, among
which 74 are toxic and 100 are non-toxic. The 74 toxic discussions
are collected using the links provided by an existing study [22],
and we randomly sample another 100 non-toxic discussions from
GitHub.

3.1.2 Models. We selected five widely used models from OpenAI’s
GPT-3.5 family [28]: gpt-3.5-turbo-instruct, gpt-3.5-turbo-
0613, gpt-3.5-turbo-0301, text-davinci-003, and text-davi-
nci-002 (shown in Table 1). Thesemodels were released over a span
of only 18 months, from March 2022 to September 2023, covering
different endpoint types (chat vs. completion) and training methods
(fine-tuning vs. RLHF). We treat each model pair as a potential
update and study 10 model update pairs in our experiment.

Noticeably, four out of these five models are already scheduled
to be deprecated in 2024, effectively forcing application develop-
ers to switch to one of the newer models. The models are also
updated silently: gpt-3.5-turbo-0301 and gpt-3.5-turbo-0613
are snapshots of the gpt-3.5-turbo model, which will soon point
to gpt-3.5-turbo-1106.

3.1.3 Prompts. We employed four prompting strategies to explore
how they behave differently on model updates:

• Simple instruction (P1): The prompt instructs the model
to classify the text as “toxic” or “non-toxic”, followed by the
text to classify. This serves as a simple baseline a developer
might first try.

• Simple instruction, placed last (P2): The same as above
but put instructions after the text. This design follows the
insight that LLMs have recency bias [45] and stating instruc-
tions last makes LLMs less likely to ramble [20].

2Code available at https://github.com/MAWanqin2002/LLM_Regression_Testing.

# Simple instruction (P1)
Classify the GitHub discussion as "toxic" or "non-toxic".

Only reply with the label.
Document: {text}

# Simple instruction, placed last (P2)
Document: {text}
Classify the GitHub discussion as "toxic" or "non-toxic".

Only reply with the label.

# Detailed instruction (P3)
Below is a GitHub discussion. Sometimes the discussion can

get heated and have toxic comments. Toxic comments can
contain curse words, can sound condescending, can be
mean to others, or can make people feel angry without
using offensive words.

Classify the GitHub discussion as "toxic" or "non-toxic".
Only reply with the label.

Document: {text}

# Simple instruction + Few-shot examples (P4)
Classify the GitHub discussion as "toxic" or "non-toxic".

Only reply with the label.

Document: [text omitted]
Label: toxic

Document: [text omitted]
Label: non-toxic

Document: {text}
Label:

Figure 2: Prompt templates for our experiments on the
GitHub discussion dataset. Templates for the Civil Com-
ments dataset are similar with some adaptations.

• Detailed instruction (P3): The prompt first describes the
classification goal in detail, explaining what the developer
deems toxic. The description is followed by the classification
instruction and the text to classify.

• Simple instruction + Few-shot examples (P4): After sim-
ple instructions, the prompt shows two examples, one toxic
and the other non-toxic, followed by the text to classify. This
follows the popular in-context learning paradigm [5].

We share the prompt templates in Figure 2.

3.1.4 Metrics. To evaluate the accuracy of each model + prompt
combination and monitor their changes, we use the standard per-
formance metrics accuracy and F1, and set model temperature to 0
to obtain the most likely predictions.

https://github.com/MAWanqin2002/LLM_Regression_Testing


CAIN 2024, April 14–15, 2024, Lisbon, Portugal Ma et al.

Model Civil Comments GitHub Discussion

P1 P2 P3 P4 P1 P2 P3 P4

gpt-3.5-turbo-instruct 0.688 0.518 0.733 0.820 0.638 0.793 0.770 0.793
gpt-3.5-turbo-0613 0.671 0.745 0.928 0.774 0.822 0.862 0.856 0.776
gpt-3.5-turbo-0301 0.767 0.743 0.915 0.733 0.810 0.799 0.868 0.816
text-davinci-003 0.862 0.814 0.938 0.933 0.655 0.672 0.644 0.655
text-davinci-002 0.803 0.587 0.861 0.822 0.839 0.874 0.810 0.770

Table 2: Accuracy for prompt (Pn) and model combinations on the Civil Comments and GitHub Discussion datasets. The
best-performing prompt(s) for each LLM API are highlighted in bold. We observed similar results for F1 scores.

3.2 Observations
3.2.1 Prompt performance can regress over API updates. First of
all, we found that regression does exist over API updates: 58.8%
of prompt + model combinations drop accuracy over API updates
(Table 2). Among them, 70.2% drop accuracy greater than 5%. No-
ticeably, across all different prompts, the model update from text-
davinci-002 to text-davinci-003 causes a consistent perfor-
mance drop (16.8% on average) on the GitHub Discussion Dataset
but a consistent performance increase (11.8% on average) on the
Civil Comments dataset. We hypothesize that the huge performance
differences are due to the new training method text-davinci-003
used, which causes major inconsistency across the two versions.

3.2.2 Model updates affect different prompting strategies differently.
We observed that among all model updates, 55% do not cause a
consistent performance drop or increase across prompts, i.e., the
same model update helps some prompts but hurts others for the
same task. Specifically, we found that the simplest prompt, P1,
drops accuracy in 75% of the model updates, while the few-shot
prompt, P4, only drops accuracy 45% of all times. Zooming in,
we can see that the update from gpt-3.5-turbo-0301 to gpt-
3.5-turbo-0613 caused a 9.6% accuracy drop for P1, but a 5.1%
increase for P4 on the Civil Comments dataset. This is particularly
concerning, as the update is silent when a developer uses the main
API gpt-3.5-turbo, which updates the underlying model from
time to time.

Such non-uniform performance changes cause a major problem
for prompt engineering: The developer may find that their carefully
engineered prompt is no longer the best choice after a silent API
update. For example, the detailed instruction prompt (P3) has been
the best-performing prompt up to the last model update, but falls
behind the few-shot prompt (P4) by 8.7% on the latest model (gpt-
3.5-turbo-instruct). This indicates that prompt engineering is
not a one-time effort, and calls for prompt versioning and prompt
monitoring (see detailed discussion in Section 4.2).

3.2.3 Regressions happen even when prompt performance improves.
Wealso found that overall 10.9% individual predictions regress (from
correct to wrong) over API updates. Almost always (87.9%) when
overall accuracy improves in an update, at least one previously
correct prediction regresses. For example, the model update from
text-davinci-002 to text-davinci-003 improves P3’s accuracy
on the Civil Comments dataset by 7.7%, but 1.8% of the previously
correct predictions now fail.

As such regressions are invisible in the aggregated accuracy
scores, it would be particularly concerning if the improvements

and regressions are not uniform–the prompt may work better on
some data slices but worse on others, causing fairness implications
even when overall accuracy stays stable or improves.

3.2.4 Regressions happen beyond the decision boundary. A natural
hypothesis is that regressions happen on data points that models
are less confident with (i.e. near the decision boundary). To explore
this hypothesis, following existing work [44], we use information
entropy to measure the model’s confidence on a data point:

𝐸 𝑗 =
∑︁
𝑖

−𝑝𝑖 𝑗 · log𝑝𝑖 𝑗

where 𝐸 𝑗 is the entropy on input 𝑗 , and 𝑝𝑖 𝑗 is the model’s proba-
bility to predict label 𝑖 on input 𝑗 . Intuitively, when the model’s
prediction probabilities are more evenly distributed across different
labels, the entropy is higher and the model is more uncertain on the
input. Since many LLM APIs do not expose the actual prediction
probabilities, we approximate a model’s prediction probabilities by
running it on the same input multiple (n=20) times with a non-zero
temperature (t=0.7).

Overall, we found that models are indeed more uncertain about
flipping data points on average (Table 3). However, we also found
that 63.8% of regressions happen when models are very confident
about their results (i.e. entropy= 0). This implies that model updates
can drastically change predictions on data points far away from
the decision boundary.

Across the models, we also found that different models show dif-
ferent levels of self-consistency: gpt-3.5-turbo-0301 seems to be
the most self-consistent one, while the update to gpt-3.5-turbo-
0613 makes it much less self-consistent. This indicates another
form of regression: While the two models’ accuracy is comparable,
the update can affect model calibration [45] and make the model
less self-consistent (or over-confident).

3.2.5 Regressions are not uniform across data slices. We next ex-
plore where regressions happen systematically for specific data
slices, with the metadata provided by the authors of the GitHub
Discussion dataset [22].

We found that 90% of regressions happen on toxic discussions, de-
spite only 42.5% of discussions being toxic in the dataset. Breaking
down the regression on toxic discussions by the provided meta-
data (Figure 3), we found that regressions are disproportionally
common when the toxicity is triggered by politics (25.7% overall
vs. 33.3% among regressions), targets code (21.6% vs. 33.3%), or is
severe (54.1% vs. 66.7%), suggesting that model updates can cause
systematic worse performance for these specific data slices.
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Model Civil Comments GitHub Discussion

Regression Improvement Unflipped Regression Improvement Unflipped

gpt-3.5-turbo-instruct 0.319 0.289 0.078 0.186 0.213 0.258
gpt-3.5-turbo-0613 0.190 0.138 0.025 0.267 0.139 0.063
gpt-3.5-turbo-0301 0.075 0.096 0.006 0.015 0.010 0.026
text-davinci-003 0.022 0.028 0.010 0.005 0.018 0.018
text-davinci-002 0.251 0.296 0.137 0.467 0.302 0.227
average 0.171 0.169 0.051 0.188 0.136 0.118

Table 3: Model entropy on the Civil Comments and GitHub Discussion datasets, averaged across all prompts.

0% 20% 40% 60% 80%100%
Distribution of toxicity trigger

overall
regression N/A

failed use of tool
past interactions
politics/ideology
technical disagreemen

trigger

0% 20% 40% 60% 80%100%
Distribution of toxicity target

overall
regression at code

at company
at people
selfdirected
undirected

target

0% 20% 40% 60% 80%100%
Distribution of toxicity severity

overall
regression no

yes

severity

Figure 3: Regressions disproportionally happen when the
toxicity relates to politics (25.7% vs. 33.3%), targets code (21.6%
vs. 33.3%), or is severe (54.1% vs. 66.7%).

3.2.6 Limitations. Readers should be careful when generalizing
the results beyond the current experiment settings:We used specific
prompt formats and sent the prompts as a single user request. The
optimal prompt design may change when the LLM API varies.

4 TOWARDS REGRESSION TESTING FOR
PROMPTING LLMS

Our exploratory case study highlights that model regression is a
real problem that is deeply affected by prompting and LLM non-
determinism. Based on our observations, we conclude with a discus-
sion on how researchers can support regression testing for LLMs.

4.1 Identifying Data Slices as Regression Test
Suites

In our case study, we found that individual predictions regress fre-
quently (10.9%). Therefore, treating each data point as a regression
test will simply be intractable. An alternative would be to look at
aggregated metrics over the entire dataset. However, this level of
monitoring is too coarse-grained and cannot inform developers on
how to debug and adjust their prompts.

We argue that LLM regression tests should be at the level of
slices. Our preliminary results show that it is possible to look at
semantic slices and localize where regressions happen (e.g., toxicity
targeting code for GitHub toxicity). However, our slicing relies on
extra metadata, which may not be available for many datasets.
Future research should further scaffold developers to identify data
slices as regression test suites, possibly by transferring existing

approaches like slice discovery [11] and error analysis [6, 39] on a
single model to regression testing.

4.2 Tracking Prompts for Regression Testing
Our case study points out that prompt performance can be unstable
across different APIs and each API has different best-performing
prompts. Therefore, developers need to track and update their
prompt (possibly from a history version), to maintain or improve
prompt+LLM performance.

However, existing prompt engineering practices provide insuffi-
cient support for prompt versioning and monitoring [43]– Informa-
tion and knowledge are often lost in the iterative prompt engineer-
ing process. Future research can design systems for prompt+LLM
tracking [e.g., 2, 24] to help developers explore behavioral changes,
debug regressions, and update their prompts.

4.3 Tackling Non-determinism in LLM
Regression Testing

Our case study shows that LLM predictions can flip a lot with a non-
zero temperature. This can cause lots of flakiness when we perform
regression testing for LLMs. Future research on LLM regression
testing should explicitly consider such non-determinism in their
research design. For example, to avoid a large sample size for each
regression test, researchers can develop suitable statistical tests and
test minimization strategies.

While our work focused on classification tasks, regressions can
also happen for generative tasks, where non-determinism is even
more common for generating high-quality outputs. To support re-
gression testing LLMs on generative tasks, future research should
consider incorporating multi-dimensional metrics [46] and sup-
porting developers in testing output properties specific to their
requirements [31].

ACKNOWLEDGMENTS
We thank Sherry Tongshuang Wu and Rohan Padhye for their
discussion and feedback on this work.

REFERENCES
[1] Julius Adebayo, Michael Muelly, Ilaria Liccardi, and Been Kim. 2020. Debugging

Tests for Model Explanations. In Proceedings of the 34th International Conference
on Neural Information Processing Systems (Vancouver, BC, Canada) (NIPS’20).
Curran Associates Inc., Article 60, 13 pages.

[2] Saleema Amershi, Max Chickering, Steven M. Drucker, Bongshin Lee, Patrice
Simard, and Jina Suh. 2015. ModelTracker: Redesigning Performance Analysis
Tools for Machine Learning. In Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems (Seoul, Republic of Korea) (CHI ’15).
Association for Computing Machinery, 337–346.



CAIN 2024, April 14–15, 2024, Lisbon, Portugal Ma et al.

[3] Anthropic. 2023. Claude. https://claude.ai/
[4] Guy Barash, Eitan Farchi, Ilan Jayaraman, Orna Raz, Rachel Tzoref-Brill, and

Marcel Zalmanovici. 2019. Bridging the Gap between ML Solutions and Their
Business Requirements Using Feature Interactions. In Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (Tallinn, Estonia) (ESEC/FSE 2019).
Association for Computing Machinery, 1048–1058.

[5] Tom Brown, BenjaminMann, et al. 2020. LanguageModels are Few-Shot Learners.
In Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates, Inc., 1877–
1901.

[6] Ángel Alexander Cabrera, Erica Fu, Donald Bertucci, Kenneth Holstein, Ameet
Talwalkar, Jason I. Hong, and Adam Perer. 2023. Zeno: An Interactive Framework
for Behavioral Evaluation of Machine Learning. In Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems (Hamburg, Germany) (CHI
’23). Association for Computing Machinery, Article 419, 14 pages.

[7] Lingjiao Chen, Matei Zaharia, and James Zou. 2023. How is ChatGPT’s behavior
changing over time? arXiv:2307.09009 [cs.CL]

[8] cjadams, Daniel Borkan, inversion, Jeffrey Sorensen, Lucas Dixon, Lucy Vasser-
man, and nithum. 2019. Jigsaw Unintended Bias in Toxicity Classification. https:
//kaggle.com/competitions/jigsaw-unintended-bias-in-toxicity-classification

[9] Alex Cummaudo, Scott Barnett, Rajesh Vasa, John Grundy, and Mohamed Ab-
delrazek. 2020. Beware the Evolving ‘intelligent’ Web Service! An Integration
Architecture Tactic to Guard AI-First Components. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (Virtual Event, USA) (ESEC/FSE 2020).
Association for Computing Machinery, 269–280.

[10] Alex Cummaudo, Rajesh Vasa, John Grundy, Mohamed Abdelrazek, and Andrew
Cain. 2019. Losing Confidence in Quality: Unspoken Evolution of Computer
Vision Services. In 2019 IEEE International Conference on Software Maintenance
and Evolution (ICSME). 333–342. https://doi.org/10.1109/ICSME.2019.00051

[11] Sabri Eyuboglu, Maya Varma, Khaled Saab, Jean-Benoit Delbrouck, Christopher
Lee-Messer, Jared Dunnmon, James Zou, and Christopher Ré. 2022. Domino:
Discovering systematic errors with cross-modal embeddings. arXiv preprint
arXiv:2203.14960 (2022).

[12] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi,
Ruiqi Zhong, Scott Yih, Luke Zettlemoyer, and Mike Lewis. 2023. InCoder: A
Generative Model for Code Infilling and Synthesis. In The Eleventh International
Conference on Learning Representations.

[13] Google. 2023. Bard. https://bard.google.com/chat
[14] Google. 2023. Using machine learning to reduce toxicity online. https://www.

perspectiveapi.com/
[15] Hossein Hosseini, Sreeram Kannan, Baosen Zhang, and Radha Poovendran. 2017.

Deceiving google’s perspective api built for detecting toxic comments. arXiv
preprint arXiv:1702.08138 (2017).

[16] Jean Kaddour, Joshua Harris, Maximilian Mozes, Herbie Bradley, Roberta
Raileanu, and Robert McHardy. 2023. Challenges and applications of large
language models. arXiv preprint arXiv:2307.10169 (2023).

[17] Christian Kästner. 2022. Machine Learning in Production: FromModels to Products.
[18] Jun Li, Yingfei Xiong, Xuanzhe Liu, and Lu Zhang. 2013. How does web service

API evolution affect clients?. In 2013 IEEE 20th International Conference on Web
Services. IEEE, 300–307.

[19] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and
Graham Neubig. 2023. Pre-Train, Prompt, and Predict: A Systematic Survey of
Prompting Methods in Natural Language Processing. ACM Comput. Surv. 55, 9,
Article 195 (jan 2023), 35 pages.

[20] Yanjun Liu, Xianfeng Zeng, Fandong Meng, and Jie Zhou. 2023. Instruction
Position Matters in Sequence Generation with Large Language Models. ArXiv
abs/2308.12097 (2023). https://api.semanticscholar.org/CorpusID:261076308

[21] Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp.
2022. Fantastically Ordered Prompts and Where to Find Them: Overcoming
Few-Shot Prompt Order Sensitivity. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, 8086–8098.

[22] Courtney Miller, Sophie Cohen, Daniel Klug, Bogdan Vasilescu, and Christian
Kästner. 2022. “Did You Miss My Comment or What?” Understanding Toxicity
in Open Source Discussions. In 2022 IEEE/ACM 44th International Conference on
Software Engineering (ICSE). 710–722. https://doi.org/10.1145/3510003.3510111

[23] Abhishek Mishra. 2019. Machine learning in the AWS cloud: Add intelligence
to applications with Amazon Sagemaker and Amazon Rekognition. https:
//aws.amazon.com/rekognition/

[24] Aditi Mishra, Utkarsh Soni, Anjana Arunkumar, Jinbin Huang, Bum Chul Kwon,
and Chris Bryan. 2023. PromptAid: Prompt Exploration, Perturbation, Testing
and Iteration using Visual Analytics for Large Language Models. arXiv preprint
arXiv:2304.01964 (2023).

[25] Aakanksha Naik, Abhilasha Ravichander, Norman Sadeh, Carolyn Rose, and
Graham Neubig. 2018. Stress Test Evaluation for Natural Language Inference.
In Proceedings of the 27th International Conference on Computational Linguistics.

Association for Computational Linguistics, 2340–2353.
[26] OpenAI. 2023. ChatGPT. https://chat.openai.com/
[27] OpenAI. 2023. Deprecations - OpenAI API. https://platform.openai.com/docs/

deprecations
[28] OpenAI. 2023. GPT-3.5 Documentation. Retrieved from. https://platform.openai.

com/docs/models/gpt-3-5
[29] Shuyin Ouyang, Jie M Zhang, Mark Harman, and Meng Wang. 2023. LLM is

Like a Box of Chocolates: the Non-determinism of ChatGPT in Code Generation.
arXiv preprint arXiv:2308.02828 (2023).

[30] radiator57. 2023. Experiencing Decreased Performance with ChatGPT-
4. https://community.openai.com/t/experiencing-decreased-performance-with-
chatgpt-4/234269

[31] Marco Tulio Ribeiro. 2023. Testing language models (and prompts) like we test
software. Medium (May 2023). https://towardsdatascience.com/testing-large-
language-models-like-we-test-software-92745d28a359

[32] Marco Tulio Ribeiro and Scott Lundberg. 2022. Adaptive Testing and Debugging
of NLP Models. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), Smaranda Muresan, Preslav
Nakov, and Aline Villavicencio (Eds.). Association for Computational Linguistics,
3253–3267.

[33] Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. 2020.
Beyond Accuracy: Behavioral Testing of NLP Models with CheckList. In Proceed-
ings of the 58th Annual Meeting of the Association for Computational Linguistics,
Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault (Eds.). Association
for Computational Linguistics, 4902–4912.

[34] Ian Sommerville. 2015. Software Engineering (10th ed.). Pearson.
[35] Zeyu Sun, Jie M. Zhang, Mark Harman, Mike Papadakis, and Lu Zhang. 2020.

Automatic Testing and Improvement of Machine Translation. In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering (Seoul, South
Korea) (ICSE ’20). Association for Computing Machinery, 974–985.

[36] Zeyu Sun, Jie M. Zhang, Yingfei Xiong, Mark Harman, Mike Papadakis, and
Lu Zhang. 2022. Improving Machine Translation Systems via Isotopic Replace-
ment. In Proceedings of the 44th International Conference on Software Engineering
(Pittsburgh, Pennsylvania) (ICSE ’22). Association for Computing Machinery,
1181–1192.

[37] Shangqing Tu, Chunyang Li, Jifan Yu, Xiaozhi Wang, Lei Hou, and Juanzi Li.
2023. ChatLog: Recording and Analyzing ChatGPT Across Time. arXiv preprint
arXiv:2304.14106 (2023).

[38] Yau-Shian Wang and Yingshan Chang. 2022. Toxicity detection with generative
prompt-based inference. arXiv preprint arXiv:2205.12390 (2022).

[39] Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer, and Daniel Weld. 2019. Erru-
dite: Scalable, Reproducible, and Testable Error Analysis. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, Anna Ko-
rhonen, David Traum, and Lluís Màrquez (Eds.). Association for Computational
Linguistics, 747–763.

[40] Chenyang Yang, Rachel A Brower-Sinning, Grace Lewis, Christian Kästner, and
Tongshuang Wu. 2023. Capabilities for Better ML Engineering. In Proceedings
of the AAAI-23 Workshop on Artificial Intelligence Safety (SafeAI) (Washington,
DC).

[41] Chenyang Yang, Rishabh Rustogi, Rachel Brower-Sinning, Grace A Lewis, Chris-
tian Kästner, and Tongshuang Wu. 2023. Beyond Testers’ Biases: Guiding Model
Testing with Knowledge Bases using LLMs. (12 2023). http://arxiv.org/abs/2310.
09668

[42] Robert K Yin. 2009. Case study research: Design and methods. Vol. 5. sage.
[43] J.D. Zamfirescu-Pereira, Richmond Y. Wong, Bjoern Hartmann, and Qian Yang.

2023. Why Johnny Can’t Prompt: How Non-AI Experts Try (and Fail) to Design
LLM Prompts. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems (Hamburg, Germany) (CHI ’23). Association for Computing
Machinery, Article 437, 21 pages.

[44] Xuchao Zhang, Fanglan Chen, Chang-Tien Lu, and Naren Ramakrishnan. 2019.
Mitigating Uncertainty in Document Classification. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Jill
Burstein, Christy Doran, and Thamar Solorio (Eds.). Association for Computa-
tional Linguistics, 3126–3136.

[45] Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. 2021. Calibrate
Before Use: Improving Few-shot Performance of Language Models. In Proceedings
of the 38th International Conference on Machine Learning (Proceedings of Machine
Learning Research, Vol. 139), Marina Meila and Tong Zhang (Eds.). PMLR, 12697–
12706.

[46] Ming Zhong, Yang Liu, Da Yin, Yuning Mao, Yizhu Jiao, Pengfei Liu, Chenguang
Zhu, Heng Ji, and Jiawei Han. 2022. Towards a Unified Multi-Dimensional
Evaluator for Text Generation. In Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, Yoav Goldberg, Zornitsa Kozareva, and
Yue Zhang (Eds.). Association for Computational Linguistics, 2023–2038.

https://claude.ai/
https://arxiv.org/abs/2307.09009
https://kaggle.com/competitions/jigsaw-unintended-bias-in-toxicity-classification
https://kaggle.com/competitions/jigsaw-unintended-bias-in-toxicity-classification
https://doi.org/10.1109/ICSME.2019.00051
https://bard.google.com/chat
https://www.perspectiveapi.com/
https://www.perspectiveapi.com/
https://api.semanticscholar.org/CorpusID:261076308
https://doi.org/10.1145/3510003.3510111
https://aws.amazon.com/rekognition/
https://aws.amazon.com/rekognition/
https://chat.openai.com/
https://platform.openai.com/docs/deprecations
https://platform.openai.com/docs/deprecations
https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5
https://community.openai.com/t/experiencing-decreased-performance-with-chatgpt-4/234269
https://community.openai.com/t/experiencing-decreased-performance-with-chatgpt-4/234269
https://towardsdatascience.com/testing-large-language-models-like-we-test-software-92745d28a359
https://towardsdatascience.com/testing-large-language-models-like-we-test-software-92745d28a359
http://arxiv.org/abs/2310.09668
http://arxiv.org/abs/2310.09668

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Evolving AI APIs
	2.2 The Rise of Prompting LLMs
	2.3 ML Model Testing

	3 Case Study: Toxicity Detection
	3.1 Experiment Setup
	3.2 Observations

	4 Towards Regression Testing for Prompting LLMs
	4.1 Identifying Data Slices as Regression Test Suites
	4.2 Tracking Prompts for Regression Testing
	4.3 Tackling Non-determinism in LLM Regression Testing

	Acknowledgments
	References

