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Abstract—Data scientists reportedly spend a significant amount
of their time in their daily routines on data wrangling, i.e.
cleaning data and extracting features. However, data wrangling
code is often repetitive and error-prone to write. Moreover, it is
easy to introduce subtle bugs when reusing and adopting existing
code, which results in reduced model quality. To support data
scientists with data wrangling, we present a technique to generate
documentation for data wrangling code. We use (1) program
synthesis techniques to automatically summarize data transfor-
mations and (2) test case selection techniques to purposefully
select representative examples from the data based on execution
information collected with tailored dynamic program analysis.
We demonstrate that a JupyterLab extension with our technique
can provide on-demand documentation for many cells in popular
notebooks and find in a user study that users with our plugin
are faster and more effective at finding realistic bugs in data
wrangling code.

Index Terms—computational notebook, data wrangling, code
comprehension, code summarization

I. INTRODUCTION

It has been reported that data scientists spend a significant
amount of time and effort on data cleaning and feature
engineering [1], the early stages in data science pipelines,
collectively called data wrangling [2] in the literature. Typical
data wrangling steps include removing irrelevant columns,
converting types, filling missing values, and extracting and
normalizing important features from raw data. Data wrangling
code is often dense, repetitive, error-prone, and generally not
well-supported in the commonly used computational-notebook
environments.

Importantly, data wrangling code often contains subtle prob-
lems that may not be exposed until later stages, if at all. In
our evaluation, we found dozens of instances of suspicious
behavior, such as computations that use the wrong source, that
are not persisted, or that inconsistently transform part of the
data. Although they do not crash the program, they clearly vio-
late the code’s apparent intention (often specified in comments
and markdown cells), thus we consider them as bugs. Unfor-
tunately, as tests are very rare in data science code in note-
books [3], these bugs remain undetected even for many highly
“upvoted” notebooks on popular data science sites like Kaggle.

In this work, we propose to automatically generate concise
summaries for the data wrangling code and purposefully
select representative examples to help users understand the
impact of the code on their data. This form of automated
documentation is useful for multiple scenarios that require
code understanding:

• Debugging: Data wrangling code is often concise, se-
quencing multiple nontrivial data transformations, as
in our example in Fig. 1a, but also usually not well
tested [3]. Data scientists currently mostly rely on code
reading and inserting print statements to look for potential
problems.

• Reuse: Data scientists heavily reuse code through copy-
ing and editing code snippets, often within a notebook,
from other notebooks, from tutorials, or from StackOver-
flow [4]. At the same time reusing data wrangling code
can be challenging and error-prone [5], especially if the
reused code needs to be adapted for the data scientist’s
own data.

• Maintenance: Data science code in notebooks is often
not well-documented [3], [6], [7], yet data science code
needs to be maintained and evolve with changes in
data and models, especially when adopted in production
settings [8]. To avoid mistakes in maintenance tasks
and degrading model quality over time, understanding
existing data wrangling code and assumptions it makes
is essential.

Our work is inspired by past work on code summarization to
automatically create summaries of code fragments that could
serve as documentation for various tasks. However, while
existing code summarization work [9] tries to characterize
what a code fragment does generally (for all possible inputs),
our approach summarizes what effect code has on specific
input data in the form of a dataframe, highlighting represen-
tative changes to rows and columns of tabular data. Given
the data-centric nature of data wrangling code, understanding
the effect that data wrangling code has on the data often is
the immediate concern for data scientists. To the best of our
knowledge, this is a novel view on summarization, tailored for
debugging, reuse, and maintenance tasks of data scientists.

Moreover, our approach generates the documentation on
demand for the code and data at hand to help with program
comprehension. This is achieved by instrumenting data science
code to collect runtime data and select data-access paths
and branches executed at runtime, using program synthesis
techniques to generate short descriptive summaries, and using
techniques inspired by test-suite minimization to select and
organize examples. We integrate our tool, WRANGLEDOC, in
JupyterLab, a commonly used notebook environment.

We evaluated our approach and tool in two ways. First, we
conducted a case study with 100 Kaggle notebooks to evaluate



1 data = pd.read_csv(’./data.csv’)
2 # x = load some other data that’s not relevant for the

next cell

3 # first change ’Varies with device’ to nan
4 def to_nan(item):
5 if item == ’Varies with device’:
6 return np.nan
7 else:
8 return item
9
10 data[’Size’] = data[’Size’].map(to_nan)
11
12 # convert Size
13 num = data.Size.replace(r’[kM]+$’, ’’, regex=True).

astype(float)
14 factor = data.Size.str.extract(r’[\d\.]+([KM]+)’, expand

=False)
15 factor = factor.replace([’k’,’M’], [10**3, 10**6]).

fillna(1)
16 data[’Size’] = num*factor.astype(int)
17
18 # fill nan
19 data[’Size’].fillna(data[’Size’].mean(), inplace = True)

20 # some training code reading combined
21 targets = data[’Target’]
22 data.drop(’Target’, inplace=True, axis=1)
23
24 clf = RandomForestClassifier(n_estimators=50,

max_features=’sqrt’)
25 clf = clf.fit(data, targets)

(a) Three notebook cells, loading tabular data, transforming the ‘Size’
column (converting k and M to numbers and replacing ‘varies with
device’ by mean value), and learning a model from the data. While
this code is fairly linear and relies heavily on common APIs, it
encodes nontrivial transformations compactly, that are not always
easy to understand.

(b) WRANGLEDOC Interface: documentation of the second
cell; À: data flow into or out of the cell, Á: concise sum-
mary of changes, Â: highlighting changed columns, Ã: meta
information (type, unique, range) for columns, Ä: selected
examples.

Fig. 1: Excerpt of real data wrangling code from a Kaggle competition and corresponding generated documentation with
WRANGLEDOC. Due to case sensitivity in regular expressions, values with a ‘k’ are not transformed correctly, as easily visible
in the generated summary.

correctness and runtime overhead and additionally explore
the kind of documentation we can generate for common
notebooks. Second, we conducted a human-subject study to
evaluate whether WRANGLEDOC improves data scientists’ ef-
ficiency in tasks to debug notebooks. Through the two studies,
we provide evidence that our approach is both practical and
effective for common data wrangling code.

Overall, we make the following contributions:
• An approach to summarize data transformations for data

wrangling code, based on program synthesis.
• An approach to purposefully select rows to illustrate

changes in data wrangling code, inspired by test suite
minimization techniques.

• A prototype implementation as a JupyterLab plugin.
• Empirical evidence showing that our approach can accu-

rately generate summaries for nontrivial, real-world data
science code with acceptable overhead.

• A user study finding that our approach improves data sci-
entists’ efficiency when debugging data wrangling code.

We share the tool and our supplementary material on GitHub.1

1https://github.com/malusamayo/notebooks-analysis

II. DESIGN MOTIVATIONS

Many prior studies explored practices of data scientists in
notebooks and challenges that they face. With the surging
interest in machine learning, notebooks are a very popular
tool for learning data science and for production data science
projects [6], [7], [10], [11], used by data scientists with
widely varying programming skills and software engineering
background. Data science work is highly exploratory and iter-
ative [11]–[13] with heavy use of copy-and-paste from other
notebooks and online examples [14]. While researchers found
wide range of challenges, including reproducibility [3], [15],
[16], collaborative editing [17], [18], and reliability [5], we
focus on challenges regarding comprehension and debugging.

Data wrangling code can be challenging to understand:
Although it is typically linear and structured in short cells,
data wrangling code can be dense and make nontrivial trans-
formations with powerful APIs, as in our example (Fig. 1).

To better capture how data scientists approach understand-
ing data wrangling code, we conducted a small informal ex-
periment, in which we gave four volunteers with data science
experience a notebook and two tasks that required program
comprehension. Specifically, we asked them to modify the

https://github.com/malusamayo/notebooks-analysis


notebook to accommodate changes to the input dataframe and
to look for possible improvements of model performance, all
while thinking aloud [19].

We observed two main strategies that our participants used
to understand data wrangling code. On the one hand, they
frequently reasoned statically about the code, inspecting the
code line by line without running it. In this process, they
often left the notebook to look up the API documentation
and code examples as needed for the numerous functions in
the used data science libraries, such as extract and replace
and their various arguments in our example. On the other
hand, they also reasoned dynamically by observing executions.
Our participants frequently injected print statements at the
beginning and the end of cells, or in a new cell, to inspect data
samples (typically the first few rows) and manually compare
them before and after the data wrangling steps. We saw
that dynamic reasoning quickly became overwhelming and
tedious with large amounts of data, especially if data triggering
problematic behavior is not part of the first few rows. In
our example (Fig. 1a), the first five rows of the 9360 rows
contained sizes ending with the letter ‘M’ and containing the
value of ‘Varied with device’, but not sizes ending in ‘k’,
which makes the incorrect transformations of ‘k’ ending rows
difficult to spot.

Existing tools are limited: Notebook environments are
evolving and various new tools are proposed by practitioners
and researchers [20]. For example, more recent notebook
environments now provide code completion features and can
show API documentation in tooltips; the IDE PyCharm and
JupyterLab extensions integrate a traditional debugger—all
standard features in IDEs. Several extensions, like pandas
profiling [21], help inspect data stored in variables.

Yet tool support for understanding data wrangling code
is still limited and does not well support the activities we
observed. Classic tools like debuggers, if available at all,
do not provide a good match for data-centric, linear, and
often exploratory notebook code, where a single line can
apply transformations to thousands of rows at once and actual
computations are performed deep in libraries (often in native
code). Tools for exploring data in variables are useful for
understanding data at one point in time, but do not help in
understanding complex transformations within a cell.

Data wrangling code is frequently buggy: Several re-
searchers have pointed out code quality problems in note-
books [11], [22], [23]. Notebooks almost never include any
testing code [3] and practitioners report testing as a common
pain point [5]. The commonly used data wrangling APIs
are large and can be easily misunderstood [24]. Due to the
dynamic and error-forgiving nature of Python and the Pandas
library design, buggy code often does not crash with an
exception but continues to execute with wrong values, which
could subsequently reduce model accuracy.

It is generally easy to introduce mistakes in data wrangling
code, which became very obvious when we inspected exam-
ples of documentation generated with our tool on popular
notebooks (some among the most upvoted notebooks on

API misuse

1 # attempting to remove na values from column, not table
2 df[’Join_year’] = df.Joined.dropna().map(lambda x: x.

split(’,’)[1].split(’ ’)[1])
3
4 # loc[] called twice, resulting in assignment
5 # to temporary column only
6 df.loc[idx_nan_age,’Age’].loc[idx_nan_age] = df[’Title’

].loc[idx_nan_age].map(map_means)
7
8 # astype() is not an in-place operation
9 df["Weight"].astype(str).astype(int)

Typos

10 # reading from wrong table (should be df2)
11 df2[’Reviews_count’] = df1[’Reviews’].apply(int)

Data modelling problems

12 # converting money to numbers, e.g., ’10k’ -> 10000.0
13 # ignoring decimals, thus converting ’3.4k’ to 3.4000
14 df["Release Clause"]= df["Release Clause"].replace(regex

=[’k’], value=’000’)
15 df["Release Clause"]= df["Release Clause"].astype(str).

astype(float)

Fig. 2: Examples of subtle bugs in data wrangling code,
ranging from data cleaning stage (e.g., normalizing the col-
umn ‘Reviews’ to integers) to feature engineering stage (e.g.,
extracting new feature ‘Join year’ from the ‘Joined’ column).

Kaggle). Without actively looking for bugs (it is not always
clear what the code intends to do), we found many examples
with subtle problems in data wrangling code.

For example, there is a subtle bug in our example in
Fig. 1a where the code tries to convert ‘k’ to 1000 and ‘M’
to 1,000,000 in download counts: A capitalized ‘K’ in Line
14 results in converting ‘k’ to 1 instead of 1000. The code
executes without exception, but produces wrong results, e.g.,
670.0 for ‘670.0k’ rather than the intended 670000.0. The
problem could have been found easily if one could observe
example transformations with ‘k’.

In Fig. 2, we illustrate three kinds of problems in data
wrangling code that we found repeatedly across 100 popular
notebooks in our evaluation (described later in Section V-A):

• API misuse is common where a function call looks
plausible, but does not have the intended effect on the
input data (e.g., dropna does not remove the entire row
of a table if applied to a single column). This commonly
results in computations that are not persisted and have no
effect on the data used later.

• Simple typos in variable names, column names, and reg-
ular expressions are the source of many other problems,
often leading to wrong computations.

• Finally, multiple problems relate to incorrect modeling
of data, often stemming from wrong assumptions about
the different kinds of data in the dataset, thus missing
rare cases.

All the above problems can be difficult to locate without a
clear and thorough understanding of the API specifications,
how they are used in the data wrangling code, and the impact



on the specific instances from the input dataset.

III. SOLUTION OVERVIEW

Before we describe the technical details of how we generate
documentation, let us illustrate the kind of documentation
we generate with WRANGLEDOC from a notebook user’s
perspective. In a nutshell, we summarize the changes a code
fragment (typically a notebook cell) performs on dataframes
and show them in a side panel through a JupyterLab extension,
as illustrated in Fig. 1b for our running example. Our
documentation includes the following pieces of information:

À: We identify the dataframes (tabular variables) that flow
in and out of the code fragment to identify which important
variables are read and written in the code fragment. To avoid
information overload, we deliberately include only variables
that are later used in the notebook again, but not temporary
variables. In our running example, the dataframe data is
changed for subsequent cells, whereas we omit temporary
variables num and factor from our documentation.

Á: We provide a concise summary of the transformations
for each changed dataframe using a domain specific language
(DSL) we designed. The summary describes which columns
of the dataframe were added, removed, or changed, how
columns were changed, and whether rows were removed. The
summary intentionally uses somewhat generic function names
like str transform to indicate that strings were manipulated
without describing the details of that transformation, which
can be found in the code. These summaries provide a quick
overview of what the code does, helping to ensure that
the (static) understanding of APIs aligns with the observed
execution. It is particularly effective at highlighting “data not
written” bugs, where the summary would clearly indicate that
no data was changed. For example, data scientists can easily
spot all API misuse bugs in Fig. 2 when they encounter the
unexpected summary of “no changes” for their transformation
code. Similarly, the typos bug in Fig. 2 can also be surfaced as
the summary “Review count = int(merge(Reviews))” would
show that different items are merged, whereas the code intends
to convert strings to integers without merging.

Â–Ã: We show sample data from the modified dataframes,
specifically comparing a dataframe’s values before and
after the cell: The summary highlights which columns have
been modified (Â), highlights changes to column data and
metadata, including types, cardinality, and range of values
(Ã). This direct before-after comparison highlights the
changes that would usually require manual comparison of two
dataframes, hence reducing the manual efforts of comparing
the output of print statements in dynamic debugging.

Ä: Finally, where classic print statements would simply
show the first few rows of long dataframes, our documentation
purposefully groups rows that take the same path at branching
decisions in transformation code, showing one example each
and highlighting the number of other rows that take the
same path. Grouping rows by transformation decisions draws
attention to paths that may not occur in the first few rows,
making it easier to spot potential problems. For example, this
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Fig. 3: Approach overview.

makes the bug in Fig. 1 that does not transform ‘k’ to 1000
obvious, even though it occurs only in 3 percent of all rows and
not in any early ones. Our approach enables the data scientists
to examine those rare examples and corner cases effectively.

As we will show, the above forms of documentation support
effective static and dynamic reasoning, which is the foundation
of various debugging, reuse, and maintenance tasks, and they
help surface subtle bugs in data wrangling code.

IV. WRANGLEDOC: SYNTHESIZING SUMMARIES AND
SELECTING EXAMPLES

WRANGLEDOC generates documentation on demand with
two components: Summary Synthesizer and Example Selector.
Both collect information by analyzing and instrumenting a
notebook’s code and observing it during its execution—see
Fig. 3 for an overview. The Summary Synthesizer gathers
static and run-time information about access to dataframes
and columns and runtime values of dataframes before and
after a cell to synthesize summary patterns (Fig. 1b, À–Ã).
The Example Selector traces branching decisions during data
transformations to cluster rows in a dataframe that share the
same execution paths (Fig. 1b, Ä).

A. Summary synthesis

The goal of synthesizing summaries is to derive a concise
description of how data is transformed by a fragment of data
wrangling code, typically a notebook cell. To avoid distracting
users with implementation details, which may use nontrivial
API sequences, external libraries, and custom code, we syn-
thesize summaries that describe the relationship between data
before and after the code fragment. Through instrumentation,
we collect data of all variables (with emphasis on tabular data
in dataframes) before and after the target code, from which
we synthesize summaries that explain the differences, such as
added columns, removed rows, or changed values.

a) Synthesis approach: As in all summary generation,
there is an obvious tradeoff between providing concise sum-
maries (e.g., ‘dataframe X was changed’) and detailed sum-
maries (e.g., “column Y was added with values computed by
removing all dashes from column Z, replacing ‘K’ at the end
of the string by 1000, and then converting the result into a
number”). Summaries at either extreme are rarely useful: Too



<df> := createCol(<df>, COL, <col>)0

| modifyCol(<df>, COL, <col>)0 // modify column
| removeCol(<df>, COL)0

| removeDuplicateRows(<df>, ROW+, COL*)0

| removeNullRows(<df>, ROW+, COL*)0

| removeRows(<df>, ROW+, COL*)1 // remove some rows
| rearrangeCols(<df>, COL*, COL*)0 // change col. order
| rearrangeRows(<df>, ROW*, ROW*)0 // change row order
| concatRows(<df>, <df>)0 // concat dataframes by rows
| DATAFRAME0

| compute()15 // unspecified dataframe computation

<col> := fillna(<col>)2 // fill null values
| merge(<col>)2 // merge items to reduce cardinality
| category(<col>)2 // convert columns to category type
| float(<col>)2 | str(<col>)2 | int(<col>)2

| bool(<col>)2 | datetime64(<col>)2 // type conversion
| encode(<col>)2 // encode columns in consecutive ints
| one_hot_encoding(<col>)2 // encode columns in 0/1 ints
| type_convert(<col>)3 // other type conversion
| str_transform(<col>)3 // unspecified string transf.
| num_transform(<col>)3 // unspecified numerical transf.
| compute(<col_ref>*)15 // unspecified col. computation
| <col_ref>*0

<col_ref> := DATAFRAME.COL0

Fig. 4: The DSL for data transformation. Cost per expression
is indicated as subscript.

concise summaries do not convey much information, whereas
too detailed summaries might just paraphrase the code and
provide little benefit over reading the code directly.

Our summary synthesis aims to find a balance by describing
data wrangling code as expressions formed from an extensible
grammar of transformation patterns, which describe the im-
pact of the transformations concisely and unambiguously. For
example, pattern fillna describes that null values are filled, but
not any details about how the new values are computed; pattern
str transform describes that a column with string values has
been manipulated, but not how; pattern one hot encoding
describes that a binary column was created for distinct values
in a source column. We include generic catch-all summaries
for transformations we cannot further explain, such as com-
pute for generating data from unknown processes. While
the pattern language is easily extensible, we start with the
most used patterns shown in Fig. 4, which we derived by
manually summarizing and grouping common transformation
patterns in dozens of sampled notebooks from GitHub. Our
DSL supports abstracting multiple transformation patterns in
one combined expression. The operation of applying float to
the ‘Size’ column in data after str transform in the running
exampling in Fig. 1a will be synthesized as “modifyCol(data,
Size, float(str transform(data.Size)))” (cf. Fig. 1b, Á).

During the summary synthesis, the synthesis engine
searches for the expressions in the pattern language that match
the input-output examples created by the target code. Because
there could exist multiple matches for the same input-output
pair, we design a cost function to select the best matched ex-
pression. Concretely, we assign a higher cost to more generic
patterns (see Fig. 4) and consider the cost of an expression as
the sum of the cost of all patterns used in that expression. This
way, our synthesis engine favors concise but concrete patterns.

1 .decl apply(depth:number, pattern:Pattern)
2 .decl var(depth:number, type:ColType, nafilled:boolean,

carddrop:boolean, onehot:boolean, encode:boolean)
3
4 var(depth + 1, type, true, carddrop, any, any) :-
5 apply(depth, "fillna"),
6 var(depth, type, false, carddrop, _, _)

Fig. 5: We describe propagation of knowledge about rules in
terms of Datalog relations and illustrate the propagation rule
for “fillna”. In line 1-2, there are two Datalog facts: apply and
var. We use var to track a column’s attributes (e.g., whether
its missing values are filled), and we use apply to represent
application of a pattern. The rule in line 4-6 propagates var
through a pattern “fillna”. The attribute ‘nafilled’ is set to true,
while ‘onehot’ and ‘encode’ are set to any, because any prior
information about these is lost in the possible transformations.

While this kind of search is standard for program synthesis, the
novelty of our approach is in encoding summary generation
as a synthesis problem, not in the synthesis algorithm itself.

b) Synthesis implementation: For the synthesis, we fol-
low a standard top-down enumerative search to explore ex-
pressions of a given grammar, as shown in Algorithm 1.
The synthesis engine incrementally enumerates expressions
allowed by the grammar by substituting non-terminals with
new expressions in order of increasing costs; the synthesis
prunes the search space for partial expressions (i.e., contain
holes for some nonterminals) that cannot explain the input-
output difference; it returns the expression that explains the
input-output difference with the lowest cost as all expressions
are maintained in a priority queue. The synthesis problem can
be encoded in standard synthesis engines like Rosette [25],
but for simplicity, we implemented our own.

To validate whether a (partial) expression can explain the
input-output pair, we compute and check the result of an
expression against the output. Aside from parts that can be
easily checked concretely, such as the removal of columns
and rows, many patterns express generic computations that
can match many input-output examples (e.g., fillna). Here,
we reject infeasible expressions similar to how static analyses
identify problematic computations [26]: We track abstract
facts across patterns and each pattern has a transfer function
that can generate or kill facts. Throughout these patterns, we
track each column’s type (if known), whether it has missing
values, its length, its cardinality, and whether it looks like a
common encoding pattern. This way we can check that fillna
actually filled missing values without having to know concrete
filled values or having to worry about interactions with other
patterns. In Fig. 5, we show an example rule for propagating
facts when applying “fillna”. Details of the other validation
rules can be found in the supplementary material.

c) Data gathering and optimization: To collect the val-
ues of all variables before and after the target data wrangling
code, we instrument the user’s code to store values into files at
runtime. To target the instrumentation, we use a simple static



Algorithm 1 Enumeration-based synthesis algorithm
Input:

e . Input-Output example pair
C . Cost function for transformation patterns
s . A set of accessed columns

1: function SYNTHESIS(e, C, s)
2: q ← [〈df〉] . Priority queue of patterns, ordered by C
3: top ← “compute()”
4: while q is not empty do
5: cur ← q.dequeue()
6: if C(cur) > C(top) then
7: break . Prune because elements left have higher cost
8: if cur is fully resolved then
9: if validate(e, cur) then

10: top ← cur

11: else
12: new patterns ← extend(cur, s)
13: for p in new patterns do
14: if is feasible(e, p) then
15: q.add(p)

16: return top

def-use analysis (adopted from prior work [23]) to record only
values of variables that flow into or out of the target code.

In addition, we collect the sequence of access paths for read
and write access to columns of dataframes by dynamically
intercepting such access, to limit the columns over which to
search as part of the synthesized expressions. Furthermore,
when synthesizing column expressions, we consider only
source columns for which we observed read access before
write access to the target column.

In our current implementation, we consider each cell as
a separate segment for which we gather data and synthesize
summaries, but it is also possible to consider each line as
a segment if more granular documentation is desired. For
example, users could interactively indicate what to consider
as a segment, or a tool could automatically cluster lines or
cells [27]–[29].

d) Presenting results: In the user interface, we present
transformations for all changed dataframes. As exemplified
in Fig. 1b, we translate the synthesized expressions into a
structured format Á, separated by affected column. In addition,
we highlight parts of the transformation patterns in a table
of example data, showing but crossing out removed columns,
highlighting changed columns Â, and a few patterns, such as
type conversions, as part of the table metadata Ã.

B. Example selection

As discussed, data scientists often inspect the data before
and after a cell with temporary print statements, but they may
miss issues that are not visible in the first few rows. Our insight
is to group rows that are affected by the same transformation
paths, highlighting examples from each path to reveal data that
fit unusual processing conditions, which may be of particular
interest in understanding and debugging tasks.

Inspired by test-suite minimization techniques that select a
small number of test cases from a larger pool to trigger differ-
ent execution paths [30], [31], we group rows in a dataframe by
the branching decisions taken in the data wrangling code, thus

identifying a minimum number of rows that trigger different
execution paths. Conceptually, our strategy can be considered
as inspecting path coverage within data wrangling code where
each row is treated as a test input to the code.

If a function is applied to every row separately, we can treat
each row as separate test input and track branching decisions
within the supplied function. However, most transformations
in data science code are applied to entire tables or vectors at
once, through functions like replace, fillna, and map, possibly
parallelized. Also many decisions in common functions like
split and replace happen deep in libraries or native code. For
simplicity and manageable overhead, we instrument common
library functions on tables and vectors, each producing a vector
of decision outcomes for every instrumented function that
has internal branching decisions. For example, for replace we
record whether the search term has been replaced and for split
we record the number of splits. Only for user-defined functions
supplied to map or apply functions we collect branching
decisions with a tracer as a traditional test coverage tool does.

Using the vector that represents the branching decision of
every decision point for each row, we group all rows that
took the same path through all decisions. For our motivating
example, we have branching decisions corresponding to the if
statement in the function supplied to map and in the calls to
replace, extract, and fillna. In this case, the input data takes
three distinct paths, shown in Fig. 1b Ä.

Presenting results: When displaying the examples for the
target data wrangling code, we show only the first row from
each group, while indicating how many additional rows there
are in each group, and provide a button to show more examples
(Fig. 1b, Ä). In a tooltip, we also show the branching decisions
taken in each group. This presentation highlights the most
common transformations and also directs the user’s attention
to uncommon transformations, where the subtle bugs often
occur in data science code.

C. Implementation

We implemented our synthesis and example selection engine
as an extension to the popular JupyterLab environment, called
WRANGLEDOC. The goal of this prototype implementation
is to demonstrate feasibility and allow experimentation with
a best-effort approach, though a fully-featured industry-ready
implementation would likely need to extend this.

Specifically, our DSL patterns are derived transformations
observed in a convenience sample of notebooks on GitHub.
While all transformations can be explained with the generic
“compute” pattern, we are likely missing more specific pat-
terns that may be useful in some settings. For example
selection, we instrumented 24 common library functions that
we observed in the same sample, including str.replace, pan-
das.Series.fillna, and pandas.DataFrame.apply. We also in-
strumented if expression that may lead to different branches
with the same line number. We do not claim that instrumen-
tation is exhaustive in our prototype, but the implementation
can be easily extended with support for more functions.



TABLE I: Characteristics of our subject notebooks, 25 per
dataset, reporting averages for code length, number of code
and text cells, and number of named and lambda functions.

Dataset LoC code cells text cells funct. lambda

Titanic 516 54 49 5.2 2.2
Google Play 195 42 24 1.5 5.2
FIFA19 328 44 25 4.0 1.0
Airbnb 267 47 33 0.9 0.4

All 327 47 33 2.9 2.2

V. EMPIRICAL STUDY OF POPULAR NOTEBOOKS

We evaluate our approach both regarding technical capabili-
ties on popular notebooks (this section) and how it helps users
debug notebooks in action (next section).

We start by exploring to what degree WRANGLEDOC can
generate documentation in data wrangling cells of a set of
notebooks and how accurate that documentation is: How often
are the synthesized summaries correct for data wrangling
cells? (RQ1)

Next, we report statistics about patterns and branching char-
acteristics observed to capture to what degree data wrangling
code performs nontrivial transformations for which documen-
tation is likely useful: What are typical characteristics of
explanations for data wrangling code? (RQ2)

Finally, we measure the overhead introduced by our instru-
mentation and the computational effort required to synthesize
the documentation to capture to what degree WRANGLEDOC
can be used in an interactive setting: How much overhead does
WRANGLEDOC introduce? (RQ3)

A. Notebook selection

To answer the research questions, we apply our approach
to a set of notebooks that were not used during our tool’s
development. There are several challenges with assembling a
corpus for our study: First, while millions of public notebooks
are shared on sites like GitHub, they are often from class
projects, of low quality, and challenging to reproduce, e.g., due
to missing data or library dependencies [3]. In addition, many
notebooks start with an already cleaned dataset and focus more
on modeling than data cleaning and feature engineering. Hence
we decided to curate a small but diverse corpus of reproducible
popular notebooks with significant data wrangling code.

We decided to sample high-quality notebooks from popular
Kaggle competitions that provide tabular data in a raw format.
Kaggle is the largest social platform for data science com-
petitions, where users can upload datasets and corresponding
challenges and others can submit and rate solutions in the
form of notebooks. Popular challenges often have thousands of
submitted solutions. We select multiple solutions per competi-
tion, as they share the same setup. Specifically, we select four
popular competitions: Titanic, Google Play Store, FIFA 19 and
Airbnb [32]–[35]. From each competition, we choose the top
25 notebooks based on “most votes” after filtering non-Python
notebooks, task-irrelevant notebooks (not solving the modeling
task, typically tutorials for Python libraries), and notebooks we

could not reproduce due to missing or outdated dependencies.
We sampled each competition with careful consideration: the
Titanic dataset is usually used for educational purposes; many
solutions are written as educational notebooks for data science
learners. Google Play and FIFA 19 are selected based on their
popularity, representative of trending notebooks on Kaggle.
Finally, we selected Airbnb as a challenge that uses multiple
larger datasets, which provides a better approximation of
production setting.

Notebooks in our corpus have many characteristics that are
similar to those found in other large scale studies of publicly
available notebooks [3], [6]: As shown in Tab. I, they are
typically long and split into many cells, rarely abstract code
into functions or lambda expressions, though they contain
more text cells than most public notebooks.

B. Summary correctness (RQ1)

First, we analyze correctness of the synthesized summaries
for the sampled notebooks. We are not aware of an automated
procedure that could test correctness, other than how we
validate patterns during the synthesis process in the first place,
hence we manually judge whether the summary corresponds
to the actual transformation in the cell. To gain confidence in
the manual judgement, multiple authors independently analyze
a subset of cells to establish inter-rater reliability.

Research design: We proceed in four steps. First, we
identified all cells from the 100 sampled notebooks that create
or modify any dataframes, by monitoring state changes of
script execution. We found 1401 such cells writing to 1998
dataframes. Second, we synthesized documentation for all
the 1401 cells and prepared a user interface to show that
documentation, including tool tips explaining each involved
pattern. Third, to establish a reliable judgement process, we
created a rubric on how to evaluate correctness of the syn-
thesized summary (shared in supplementary material). Using
the rubric, four authors independently judged the correctness
of 20 randomly selected dataframes and their evaluation
achieved excellent inter-rater agreement (0.88 according to
free-marginal kappa [36]). Finally, having established relia-
bility of judgement, another 80 randomly sampled dataframes
were judged by a single author. Analyzing 100 out of 1998
dataframes gives us a margin of error of less than 10 percent
at a 95 % confidence level.

Results: WRANGLEDOC created correct summaries for
92 of the 100 inspected dataframes that were created or
changed in sample code. In six out of the eight incorrect
cases, WRANGLEDOC did not create a summary even though
data was changed due to limitations of our current def-use
analysis — it can not catch modifications to a dataframe
through indirect references. The remaining two cases are
operations not currently covered by our patterns, involving
reindexing rows and performing a join operation, for which
WRANGLEDOC synthesized a wrong pattern expression. The
results provide confidence that WRANGLEDOC’s summaries
are indeed mostly correct.
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Fig. 6: Top 12 patterns observed in our dataset.

C. Wrangling characteristics (RQ2)

After establishing the accuracy of our generated summaries,
we collect statistics on the summaries and examples generated
for all 1998 modified or created dataframes in the cells of the
100 sampled notebooks, demonstrating that WRANGLEDOC
provides summaries for nontrivial transformations.

Summary characteristics: Among the 1998 dataframes
that are created or modified in cells, WRANGLEDOC does not
create documentation for 971 dataframes, almost always be-
cause those variables are not used outside the cell (temporary
variables, such as num, factor in Fig. 1a) and in a few cases be-
cause of limitations of the static analysis (see RQ1). For the re-
maining 1027 created or changed dataframes, WRANGLEDOC
creates summaries: 39% of them involve modifying columns,
26% adding columns, 34% removing columns, 25% removing
rows, and 14% rearranging columns or rows. None of them
are summarized with a generic dataframe-level compute.

As part of these summaries, WRANGLEDOC generated
expressions for 3754 created or modified columns. Of
those column-level expressions, 79.5% consist of a sin-
gle pattern and 19.1% are expressions with 2–3 patterns;
only for 1.4% of columns we cannot provide a more de-
scriptive pattern than a generic compute. The most com-
mon patterns in column-level summaries are fillna, merge,
one hot encoding, num transform, and encode (see Fig. 6
for details), which matches typical intuition about data wran-
gling code: Handling missing values is a common and im-
portant cleaning task, reducing variability in data by merging
or grouping data is common for feature engineering, as are
various (often numerical or binary) encodings.

Although the studied notebooks differ considerably in size,
most of those notebooks contain a substantial amount of
data wrangling code that uses many different patterns across
different cells. More than half of the notebooks use over 5
patterns throughout their explanations.

The summaries expressed through our patterns are naturally
very concise and often not immediately obvious from the
notebook’s code. For example, when inspecting 10 cells with
encode pattern, we found that they follow radically different
strategies to implement similar encodings, as exemplified in
Fig. 7. Such level of diversity challenges simple template-
based code summarization strategies, while our synthesis
approach can identify more general patterns.

1 data[’Initial’].replace([’Mr’,’Mrs’,’Miss’,’Master’,’
Other’],[0,1,2,3,4],inplace=True)

2 title_mapping = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master":
4, "Rare": 5}

3 dataset[’Title’] = dataset[’Title’].map(title_mapping)

4 combine["Deck"] = combine["Deck"].astype("category")
5 combine["Deck"].cat.categories = [0,1,2,3,4,5,6,7,8]
6 combine["Deck"] = combine["Deck"].astype("int")

7 le = preprocessing.LabelEncoder()
8 le = le.fit(df_combined[feature])
9 df_train[feature] = le.transform(df_train[feature])

Fig. 7: Widely different implementations can be summarized
as encode.

Example selection: Our example selection technique is
also used in the explanations of many cells. Out of the 1027
dataframes for which WRANGLEDOC generates documenta-
tion, 54% have at least one branching decision in their com-
putation, resulting in grouping rows into at least two groups.
We observed a total of 1240 executions of statements that
introduce branching decisions, of which 96.3% are common
API functions applied to entire columns (most commonly
fillna, replace, and loc), and only 3.7% are from if expressions
within user-defined functions. This confirms our observation
that, instead of writing their own functions, data scientists
heavily rely on common APIs for data wrangling code.

We also found a few cells with large numbers of branching
decisions, resulting in identifying more than 20 groups, though
most outliers represent long cells that contain multiple data
wrangling steps (likely from copied code) that could reason-
ably be split into smaller more focused steps. For a few cases,
the large number results from a large number of new one-hot-
encoding columns, each of which executes a different path.

D. Analysis Overhead (RQ3)

To analyze the overhead of WRANGLEDOC, we measured
wallclock time for executing the sampled notebooks with
and without our tool and the time for static analysis and
synthesizing summaries on a Linux machine with a 4-core
Intel(R) Xeon(R) CPU (E5-2686 v4) and 16GB memory. The
static def-use analysis is near instantaneous, and the synthesis
is also usually very fast, on average 2 seconds per target
dataframe, but the instrumentation does slow down execution
by 309 percent on average (see Tab. II). In a typical usage
scenario where one analyzes one cell at a time, most cells
execute fairly quickly and the imposed overhead would add
only a few seconds, which is acceptable for interactive use.

E. Threats to validity

Regarding external validity, while we carefully selected a
sample of notebooks, readers should be careful in general-
izing the results to other notebooks, such as lower-quality
notebooks, educational notebooks, production notebooks, or
notebooks using different libraries or datasets (e.g., images).



TABLE II: Tool overhead: all metrics are average of all
notebooks in the dataset. Execution time refers to the time
to run the entire notebook (wallclock time) without and with
our tool’s instrumentation.

Dataset Original/Instr. Exec. Time (s) Slowdown (%)

Titanic 33.1/60.5 182.7%
Google Play 25.3/59.1 233.5%
FIFA19 35.9/121.8 339.1%
Airbnb 90.3/328.3 363.5%

All 46.3/143.2 309.3%

Regarding internal validity, results must be interpreted
within the limitations of the used research design. First, despite
careful evaluation of inter-rater reliability we cannot entirely
exclude bias and subjectivity that may arise from human
judgment in our evaluation. Second, we analyze only the cor-
rectness of transformations, but not their quality: While every
transformation can be expressed, worst case, with pattern com-
pute, the synthesized pattern may not be the most specific and
informative ones that could be expressed with our language or
with patterns not in our language. We chose to evaluate cor-
rectness and completeness instead of quality because it is un-
clear how to define and measure quality reliably. Third, we do
not evaluate whether we miss execution paths during example
selection due to the difficulty of establishing firm ground truth.

VI. CONTROLLED EXPERIMENT ON DEBUGGING
NOTEBOOKS

In addition to the technical evaluation in Section V, we
conducted a human-subject controlled experiment to evaluate
to what degree our JupyterLab extension actually supports
data scientists in their work, asking: How well does WRAN-
GLEDOC improve data scientists’ efficiency at finding data
wrangling bugs? (RQ4)

Specifically, we asked participants to find four bugs in
notebooks, with and without WRANGLEDOC. Our approach
is designed for program comprehension, which is the essential
activity in bug finding. By studying the users performing
these tasks, we can understand how our approach can support
program comprehension both qualitatively and quantitatively.

A. Experiment design

We design our user study as a conventional within-subject
controlled experiment, in which each participant solves four
tasks, two with our tool and two without. We use a Latin-
square design [37] with four groups, varying (1) which tasks
are conducted using our tool and (2) task order (see Fig. 8).
Compared to a between-subject design, our design gives us
more statistical power for the same number of participants, is
less influenced by individual differences between participants,
and controls learning effects.

Tasks: We prepare two notebooks with two data wran-
gling bugs each (shared in our supplementary material). Both
notebooks are modified versions of notebooks analyzed in
Sec. V, and all bugs are based on real bugs we found. Tasks

Fig. 8: Latin square design varying treatment and task order.

1 and 2 in the first notebook correspond to incorrect data
modelling (missing cases) and API misuse; Tasks 3 and 4 in
the second notebook correspond to a typo in a regular expres-
sion and API misuse. Tasks 1 and 3 have similar symptoms
(incorrect transformations for a subset of the data) and roughly
have the same level of difficulty. Similarly, Tasks 2 and 4
have similar symptoms (code does not have a persistent effect)
and roughly have the same level of difficulty. Participants are
instructed to look for a bug in a specific subset of cells (distinct
for each task) and report the location of the bug or show
an example of incorrect data wrangling results. Participants
can modify and run notebooks code to obtain any dynamic
information and are free to search for information online.

We tested the difficulty of the tasks and the clarity of
instructions in a pilot study with five participants, replacing
one bug where participants questioned intended behavior and
refining the wording of our instructions.

Participants: For our study, we recruited 20 participants.
We estimated the number of needed participants conservatively
based on the expected large effect size from pilot experiments.

We recruited students with data-science experience, who are
common target users for notebook environments and likely
share traits with early-career data scientists. We recruited
through university-wide social media by advertising for a one-
hour study for students with data-science experience at Peking
University, compensating participants for their time.

The 20 participants (15 male, 5 female; 18-24 years old)
all have Python programming experience (from half a year to
seven years; 18 with more than 2 years of experience). Over
half of participants self-rated their familiarity with Jupyter
notebook as ‘familiar’ or ‘very familiar’. Most participants
have a computer science background or study data science,
while four learn or use data science for their domains (infor-
mation systems, economics, geography, and physics). We ran-
domly assigned participants to the four experimental groups.
The four groups are comparable in terms of Python experience
and Jupyter familiarity.

Procedure: After participants filled out a background sur-
vey to gather demographic information, we invited participants
for a one-hour experiment session in the lab, one participant
at a time. We provided a laptop with the notebooks prepared
in a Chrome web browser.

We started the session by introducing the WRANGLEDOC
extension with a tutorial. Through a dedicated notebook, we
described the tool’s features in text cells between code cells
on which they could directly try it for about 10 minutes. After



0 5 10 15 20 25 30 35 40
# Experiments

With Tool

Without Tool

3

16 Failure
Success

(a) Number of bugs found and not found.

Task1 Task2 Task3 Task4
0

3

6

9

12

Ti
m

e 
(m

in
)

With Tool
Without Tool

(b) Average completion time and standard variance per task.

Fig. 9: User study results.

the tutorial, we gave them a warm-up bug hunting task, to
make sure they understand how to use WRANGLEDOC.

We then asked participants to work on the four tasks.
Depending on their assigned experimental group, participants
started either with tasks 1 and 2 or tasks 3 and 4 and either
used WRANGLEDOC for the first two or the last two tasks. We
enforced a time limit of 12 minutes per bug. When participants
suggested an incorrect solution, we rejected it and asked them
to continue searching until they either identified the bug or
exhausted the time limit. Participants only continued to the
next task once they finished or timed out on the previous one.

After completing all four tasks, we conducted an optional
interview, where we asked participants about their experience
with understanding data wrangling code and using our tool.

Analysis: We analyze both whether participants find the
bugs within the time limit and how long it takes them if they
do. We analyze completion times with an ANOVA analysis,
testing to what degree our tool, the tasks, the order (tool first or
tool last), and the participants’ self-reported experience explain
variance in completion times. We use the McFadden’s pseudo-
R2 measure to evaluate the goodness-of-fit of our model.
In Tab. 9, we report the exponentiated coefficient, standard
error, p-value, and effect size (see column “LR Chisq” for the
absolute amounts of deviance explained).

For tasks where participants did not find the bug within the
time limit, we report the maximum time of 12 minutes, but our
results are also robust to analyzing competition time variance
only among tasks that were finished within the time limit.

B. Results

Overall, our experiment demonstrates that WRANGLEDOC
could significantly improve participants’ performance, as
it helps the understanding process in general as well as
expose unusual cases in a clear form. First, we find that
participants are much more likely to find the bugs if they use
our tool (37 out of 40) than if not (24 out of 40), as shown
in Fig. 9b. Second, we find that participants complete the

TABLE III: User study result model (R2 = 33%).

Coeffs (Errors) LR Chisq

(Intercept) 37013.17 (1.55)∗∗∗

Interv.: Used WRANGLEDOC? 0.02 (0.68)∗∗∗ 34.53∗∗∗

Order: Tool in first notebook? 1.47 (0.68) 0.32
Years of Python experience 1.07 (0.25) 0.07
Jupyter experience (1–5) 0.83 (0.34) 0.32
Task number 0.69 (0.30) 1.48
∗∗∗p < 0.001 N = 80

tasks on average 44% faster when using our tool (stat. sign.,
p < 0.001), as shown in Fig. 9b and Tab. III. Lastly, we find
that all other factors (task order, Python experience, notebook
familiarity) have little effect on how fast participants complete
the tasks (see Tab. III).

Beyond the quantitative results, we observed that partici-
pants use similar strategies to understand notebook when they
do the tasks without WRANGLEDOC as observed in Sec. II.
We found that participants learned WRANGLEDOC quickly.
In our post-experiment interviews, participants universally
expressed that the tool was helpful, but differed in how
WRANGLEDOC helped them: Some commented that synthe-
sized summary helps their overall code understanding, e.g.
“Summary is very straightforward. Before I read the code, I
just looked at the summary to get a rough idea of what the code
does,” but others emphasized the usefulness of table visualiza-
tion and examples, e.g., “Example rows are the most helpful
part. It saves me lots of time of manually checking all possible
cases for the data,” and “Visualization helps a lot. Everything
I need to know (for a given cell) is placed on the left and in
bold, and data changes are shown directly in one table. [...]
When I was doing tasks without the tool, I have to scroll and
compare data before and after, and this is really annoying.”

C. Threats to validity

Readers should be careful when generalizing our results
beyond the studied participant population and tasks. The par-
ticipants in our user study are not professional data scientists,
but their background is comparable with early-carrier data
scientists. While the tasks mirror many practical debugging
and reuse settings that require understanding existing code, the
bug finding experience for the participants in our study might
be different from practical settings where data scientists are
working with their own code, with different data, and without
the artificial, time constrained setting of an experiment.

VII. RELATED WORK

Studies on computational notebooks: Researchers have
conducted empirical studies to understand the practices and
challenges of using computational notebook [3], [5]–[7], [11],
[15], [16], [38]. For example, Pimentel et al. [3] studied the
reproducibility issues of over one million notebooks and found
that only 24% of the notebooks could be executed without
exceptions, and only 4% produced the same results. Koenzen
et al. [14] found that code duplication is common in notebooks
and presented the needs for supporting code reuse in notebook



interfaces. Chattopadhyay et al. [5] studied the pain points
for data scientists when working with notebooks, including
large challenges due to poor tool support and scalability
challenges. Wang et al. [17], [18] studied the challenges for
collaborative editing using computational notebooks.

While some praise notebooks as a literate programming
environment that provides opportunities for integrating doc-
umentation with code to publish code with a narrative and
rationale [10], [39]–[42], large-scale empirical studies of
notebooks have found that most public notebooks contain
rather sparse documentation [3], [6], [7]. Such studies also
highlight how most notebooks use only a small set of common
libraries [3], [6], which makes analysis strategies like ours
feasible that require static or dynamic analyses for commonly
used functions.

Tooling support for computational notebooks: A large
number of tools has been proposed and developed to help
data scientists on various tasks, including fine-grained ver-
sion control [11], [43], code cleaning through slicing [23],
tracking provenance information [44]–[46], synthesizing data
wrangling code from examples [47], facilitating collaborative
exploratory programming using notebooks [18], and assuring
reproducibility [48], among many others. Lau et al. [20]
summarized the design space of notebooks covering different
stages of a computational workflow and provided an excellent
overview of tools for notebooks in academia and practice.

With regard to finding bugs, researchers have proposed the
use of static analysis tools on data science code [22], [49]
to look for certain patterns of mistakes. For several kinds of
bugs we found, e.g., API misuse and not persisted changes,
specialized analyzers could likely be developed.

Regarding documentation, JupyterLab can show API docu-
mentation in a tooltip on demand. Closest to our work, Wang
et al. [50] developed three strategies for documentation gen-
eration in notebooks: neural-network-based automated code
summarization, linking to external API documentation based
on keywords in a cell, and prompting users to manually write
documentation. Their work is intended to support users in
writing markdown cells when sharing the notebook, rather than
providing on-demand summaries of data transformations for
program comprehension as in our approach; they do not rely
on runtime information and do not consider the data processed.

Other related fields: Gulzar et al. [51]–[53] explored
strategies to test and debug big data applications in Apache
Sparks, which often have a similar flavor to the data wrangling
code in notebooks. They analyze the executions of the running
analysis, using row-based provenance tracking and symbolic
execution to identify and generate inputs that crash the data
wrangling code or violate user-provided test cases. In contrast,
our summaries help surface wrong behavior with existing data
that did not result in crashes or fail tests.

Outside of notebooks, various code summarization
techniques have been developed to provide short summaries
of code fragments automatically [9], for example for
generating descriptive summaries for methods and classes,
commit messages, or even “extreme summarization” as

method names; they use various forms of information
retrieval [54]–[56], code structure analysis [57], machine
learning [50], [58]–[61], and natural language processing [62].
They usually either consider the code as individual tokens,
a sequence of tokens, or use static analysis of the code to
provide more effective inference of code properties. Since they
do not analyze concrete executions dynamically, none of these
methods can summarize the code’s impact on specific data.
We, on the other hand, specifically use code synthesis and test
suite minimization techniques based on runtime information.
Our tool can generate abstract patterns and examples derived
from observing executions which is more accurate and relevant
to the data wrangling task, but specific to a given dataset.

Program synthesis is a well-established field to generate
programs from input-output samples [63], which has also
been suggested to synthesize data science code from provided
before-and-after samples of dataframes [47]. In our work,
we use synthesis in an unusual way: We execute code to
dynamically collect before and after values and then apply
synthesis to those values but synthesize only general patterns
for documentation rather than concrete code. Similarly, we
apply test suite minimization, which has been broadly studied
for removing redundancy from large test suites [30], [31], in
an unusual way to select input rows for data science code.
In both cases, we build on existing techniques but use them
in novel contexts. We are not aware of other work that uses
synthesis or test suite minimization in a similar context.

VIII. CONCLUSION

We propose to adapt program synthesis to generate sum-
maries for data transformations performed in notebooks and
use test suite minimization techniques to group rows by
shared execution paths through data wrangling code. Both
forms of documentation are based on observing a notebook’s
execution at runtime with concrete data, implemented in a
JupyterLab extension WRANGLEDOC. Our evaluation found
that our approach can generate correct documentation with
acceptable runtime overhead and that the documentation helps
data scientists find subtle bugs in data wrangling code.
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