Reducing the Complexity of

AspectJ Mechanisms for

Recurring Extensions

Martin Kuhlemann
School of Computer Science,
University of Magdeburg, Germany
kuhlemann@iti.cs.uni-magdeburg.de

ABSTRACT

Aspect-Oriented Programming (AOP) aims at modularizing cross-

cutting concerns. AspectJ is a popular AOP language extension for
Java that includes numerous sophisticated mechanisms for imple-

menting crosscutting concerns modularly in one aspect. The lan-

Christian Kastner
School of Computer Science,
University of Magdeburg, Germany
kaestner@iti.cs.uni-magdeburg.de

complex syntax of AspectJ although they don’t need the advanced
capabilities. Especiallgointcut and advice (PCAhechanisms are
written in an overly complex syntax

To support implementation of simple extensions, as they are es-
pecially needed for SPLs, we suggest an AspectJ extension with a

guage allows to express complex extensions, but at the same time>MPlified syntax. We focus on PCA mechanisms because we ob-

the complexity of some of those mechanisms hamper the writing

of simple and recurring extensions, as they are often needed espe

cially in software product lines. In this paper we propose an As-
pectJ extension that introduces a simplified syntax for simple and
recurring extensions. We show that our syntax proposal improves
evolvability and modularity in AspectJ programs by avoiding those
mechanisms that may harm evolution and modularity if misused.
We show that the syntax is applicable for up to 74 % of all pointcut
and advice mechanisms by analysing three AspectJ case studies.

1. INTRODUCTION

Aspect-Oriented Programming (AOF22] gains momentum in
current research and practice [33]. AOP aims at reducing com-
plexity by modularizing crosscutting concerns. AspectJ is a pop-
ular AOP language extension for Java [26, 21]. AspectJ includes
over different 40 keywords for very different extensions, fraatis
inter-type declarations, over possibilities to modify the inheritance
hierachy, over dynamic extensions of the control flow and many
more. Even though the language is already fairly complex and al-

served that they are most affected by unnecessary overhead. We
observed that developers often ‘misuse’ Aspect mechanisms to
abbreviate the AspectJ syntax and thus cause problems of modu-
larity and evolution [36, 14, 38, 20]. To overcome problems re-
sulting from complex syntax we propose to add a simplified syntax
for existing mechanisms to AspectJ. We propose to use our simpli-
fied syntax for implementing ‘simple’ method extensions while the
common AspectJ syntax should be used for remaining AOP tasks.
By only adding to existing mechanisms, we do not neglect the need
for sophisticated Aspect] mechanisms.

We show that our syntax reduces the allurement of misusing
mechanisms and thus improve evolvability and modularity. We
show that our syntax covers a wide range of implementation prob-
lems by analyzing three AspectJ case studies among them two SPL
and one general purpose AspectJ software.

2. BACKGROUND

AspectJ includes numerous mechanisms; among them PCA and in-
troductions [26, 21]. Apointcutselects events during the execution

lows sophisticated extensions, ongoing research still proposes ad-°f the programjin pointg that should be extended wittdvice

ditional Aspectd mechanisms and keywords to further improve sep-
aration of concerns, e.g., [1, 16, 24, 11].

Aspect] was frequently suggested for implementoftware
product lines (SPL]13, 10, 39, 27, 19, 37, 9], that aim at creat-

The set of join points to advise is described in pointcuts using so
called pointcut designatorsvhere each designator defines a prop-
erty of advised join points, e.g., the designatort hi n matches
only join points located inside one specific class but not inside its

ing tailored programs distinguished by features. In a previous caseSUPclasses [26], while thef | ow designator defines that matched
study we decomposed the embedded database engine Berkeley DEPIN points must be in the control flow of some other join points.

and implemented it as a SPL with AspectJ [20]. However, during

implementation we noticed that the sophisticated AspectJ mecha-

Pointcut designators can also expose context information of the
join point [26, 21]. For example, the pointcut designatogs al-

nisms are used rarely (22-31 %) [20]. Such observations were alsolOWS advice to access method arguments and the desigtétoss

confirmed in case studies by others [4, 3, 25]. Most AspectJ mech-
anisms used in practice implement simple extensions (68-78 %),
however those simple extensions are still implemented with the

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

Workshop AOPLE '0Dct. 4, 2007 Salzburg, Austria

Copyright 2007 ACM .$5.00.

andt ar get provide context information on which object the join
point occurred. Pointcut designators can be composed logically and
equipped with wildcards. Both possibilities enablejt@ntifyover
multiple join points with a single pointcut. If a pointcut quantifies
over different join points, the implemented crosscutting concern is
homogeneoystherwise it isheterogeneoufs]. If the join points
a pointcut matches can be determined statically, the PCA is called
basig all PCAs that are based on runtime conditions, need dynamic
reasoning, e.g., when using tb#ow or if designators, are called
advanced4].

Figure 1 shows a clagsabel and an aspedir i gger Label -
Event . The aspect contains basic advice (Lines 20-22 and 26-28)
that extends the class at different points to invoke the method

©CO~NDOUTDWNE

19
20

21
22
23
24

25
26

27
28
29

public class Label{ 1
String _text;
Observer _observer; 2
public void setText(String newText){ 3
this. _text = newlext;
4
public void updateObservers(String nessage) { 5

this. _observer. notify()

}

6

public static void main(String[] args) { 7
Label | = new Label ();

| .setText (args[0]); 8

} 9

pointcut paraneterProvider(Button b) :
execution(* Button.*(..)) && this(b) && within (Button);

pointcut operati onToExtend(Label |, String newText):
execution(void Label .set Text(String)) && this(l)
&& args(newText) && within (Label);

pointcut wormhol e(Button b, Label 1,
operati onToExtend(l, newText)
&& cflow(paranet er Provi der (b)) ;

String newText) :

after(Button b, Label |, String newText) returning
wor mhol e(b, |, newText) {
I print("Button"+b+" set nmy text to: "+newText);

}

}

public aspect TriggerLabel Event {
pointcut Label ChangeExec(Label |, String newText):
execution(void Label . set Text (String))

Figure 2: Passing parameters using the AOP wormhole pat-
tern.

&& within (Label) && this(l) && args(newText);

before(Label |, String newText):
Label ChangeExec(l, newText){
| . updat eCbser ver s(newText) ;

DU WN

public class Speci al Label extends Label {
public void setText(String newText){
super. set Text (newText) ;
updat eCbser ver s(newText) ;

}

}

pointcut Label ChangeCal |l (Label |, String newText):
call(void Label .setText(String)) && target(l)
&& args(newText);

before(Label |, String newText):
Label ChangeCal | (I, newText){
| . updat eCbser ver s(newText) ;

}

}

Figure 1: Pointcut and advice in AspectJ.

updat eCbser ver s (Lines 21 and 27). The advice associated to
theexecut i on pointcut (Lines 20—22) extends cldsabel and

is invoked before the execution of the methoelt Text in class
Label (Lines 4-6). The advice associated to tred | pointcut
(Lines 26-28) is performed before the metlsmt Text is called
(e.g., Line 14). Note that both PCA effect the same observable
behavior at runtime [25].

In Figure 2 we logically compose pointcut designators to pass
parameters to a method using iMermhole Patterfi26]. We inter-
cept the execution of each method of cl&s& t on (Line 1) and
define theBut t on object as a parameter for the methsmt Text
of the clasd_abel (Line 5). In associated advice (Lines 7-9) we
use the passeBut t on object to manipulate theet Text com-
putation process, i.e., thBut t on object is used by the method

Figure 3: Method extension in OOP.

of AspectJ without wanting to match multiple join points, e.g.,
when implementing single method extensions with pointcuts like
execution(* setText(..)) [20,2].

Another extension that can be regarded as misuse is related
to cal | pointcuts. While method extensions are usually imple-
mented using@xecut i on advice,cal | advice that quantifies all
calls to the method and does not reference the calling object has an
equivalent effect [25].

Using quantification unneeded due to syntax abbreviation ham-
pers subsequent evolution of the software and may result in in-
correct advice application, e.g., the developer is not warned by
the compiler if an incorrect set of join points gets advised. This
and similar problems are calledranged pattern problepfragile
pointcut problemor evolution paradox14, 36, 34, 31, 38].

Broken Encapsulation.

Encapsulation of modules hides implementation details of classes
behind an interface. This allows to reason about a class in isola-
tion while the implementations of other classes remain hidden [23,
35]. If the developer uses Aspectdal | pointcut designator, the
developer needs to know all method implementations of classes.

extension as a parameter (Line 8). The depicted PCA frequently Since method implementations are hidden from interfaces, As-

occur in combination to pass parameters to methods in AOP.

3. WHY IS ASPECTJ DIFFICULT?

pectJ'scal | advice can break encapsulation of extended classes.
This raises complexity because broken encapsulation does not al-
low to reason about modules in isolation [23, 1&xecuti on
advice is performed before, after, or instead whole methods. |If

In this section we review difficulties when implementing simple extended methods are declared inside the interface of a class,
extensions with AspectJ that we tackle in this paper. We observedexecut i on advice does not break encapsulation and thus does
these problems in several AspectJ programs and SPLs and someot raise complexity [18]. Hence, we reason that it is beneficial
are well known in current research. to integrateexecut i on advice into our simplified syntax but not
cal | advice.

Misused Quantification.

Quantification allows to match multiple join points with a sin- Verbose Syntax.
gle pointcut, e.g., using wildcards. Quantification is often consid- In AspectJ, programmers need to compose several pointcut des-
ered as a fundamental concept of AOP and often used to mod-ignators to access join point parameters [20], e.g., to implement
ularize previously scattered code [12]. However, we observed a simple method extension that accesses arguments of the advised
that wildcards are frequently misused to abbreviate the syntax method, these arguments have to be defined in the pointcut desig-

[N

a s wN
-~

(before|after|around) (

<returntype of nethod> <cl ass>. <net hod>
((<type of paraneter> <nane of parameter>)*)
[throws <type of exception>]){

<st at ement >*

public aspect Ext endedTri gger Label Event {
before(void Label .set Text(String newText)){
updat eCbservers();

}

before(void Label .setText(String newText)){

updat eCbservers();
}

©CoO~NOUDWNE

}

Figure 4: Grammar of simplified PCA syntax.

. . . Figure 5: Simplified syntax of pointcut and advice.
natorsexecut i on andar gs and once more in the advice decla- 9 P y P

ration. We found designators to be verbose and to repeat informa-
tions. Parameters ggt further repeated if_ _named and abstract point-of the method to extend. This signature can be copied almost di-
cuts are used (cf. Fig. 1). These repetitions entrap the developen gy from the extended method. There is no further need to cap-
to misuse mechanisms like wildcards to abbreviate the code (e.g.

.) ; X 'ture context information withargs or this designators, in fact it
in [15]). This causes the evolution paradox of AOP and pointcuts g ot possible to use any designators at all. Furthermore, we do
that are hard to read.

) not support the use of wildcards or the extension of private meth-
In Figure 1 we extend the methabt Text of classLabel ods. Our syntax hides pointcut designators completely. To simplify
using the aspedir i gger Label Event in two alternative ways — yho agpectJ syntax for these extensions further we use a first per-
(Lines 18-22 and Lines 24-28). The syntax for both simple

;) ~ son perspective, i.e., we define the self-referendg ¢ in Java)
method extensions is verbose compared to the syntax of equiv-;y raference the extended object (elgabel in Fig. 1) instead of

aler_1t method extensions_ in other languages I_ike Java [.8]' FOr the containing aspect. Methods of the containing aspect can still
a simple method extension we need four pointcut designators: . raferenced using the existing aspect metasgect Of . We

X A . ! .
ehxecutk: on,w thin’,ar gls, almdt hi shlnl Figure 3 we extend . present the grammar of this syntax in Figure 4 where italic tokens
the methodset Text equivalently using the less verbose syntax of o resent identifiers and blue and underlined tokens are keywords.
Java inheritance. Overall, the syntax integrates tokens familiar from AspectJ with a

In a prior case study of an aspect-o_riented product_ line [20] we syntax familiar from overriding methods in Java. The new syntax
experienced that we needed 3.45 designators per pointcut on averis much briefer than the original Aspect] syntax.

age (many of them introducing a repetitive syntax of parameters) \ote, that we deliberately can only express heterogeneous and
although we mainly implemented simple method extensions. basic extensions. We made these restrictions because they signifi-
. . cantly reduce complexity and because the majority of all extensions
Third Person Perspective. is heterogeneous and basic anyway [4], especially in SPLs [20].
Another dlﬁlculty in implementing eXtenSiOns iS Caused by What The |anguage extension can be imp|emented inthe AspectJ com-
we call thethird person perspective (3PPThe 3PP means that piler or even as an preprocessor that expands the new simplified
adVice iS Wl’itten fl’0m an Outside perspective Where the extended Syntax to an expression in the exis’[ing AspectJ Syntax_
object is passed as a parameter. The language keyisrdoes The new simplified syntax makes three contributions. First, by
not refer to the extended object as programmers familiar with making PCA mechanisms less verbose simplifies their use and thus
OOP might expect but to the aspect itself. The 3PP is neces- gliminates the allurement of dangerous syntax abbreviations that
sary to be able to specify homogeneous extensions that quantifymay |ead to the pointcut fragility problem and related problems.
over several classes. It allows different kinds of pointcatsl (Second, we encourage the use of those mechanisms that maintain
andexecut i on pointcuts; basic and advanced Aspect] mecha- encapsulation of classes and avoid complexity [18]. And third, the
nisms) to look similar. However, it hampers the writing of sim- simplified syntax eliminates 3PP for simple extensions and simpli-
ple mechanisms. The 3PP may cause problems for Java programfies the usage of AspectJ because OOP developers do not have to
mers that want to extend methods using AspectJ, because they mus§yyitch perspective. Although, we still need the 3PP for homoge-
switch between different representa’[ions Constantly to implement neous and advanced CrOSSCUtS, we do not need it for major parts
Java base code, inter-type declarations (both written in first personof aspect-oriented software development since researchersghowe
perspective) and advice (written in 3PP) [20]. We also experienced that 89-93 % of crosscutting extensions are heterogeneous [4, 20,
that references to the extended object were by far more frequents 30, 2] and 78 % are basic [4]. Beyond, we observed that remain-
than references to the aSpeCt, again ir‘ICI’eaSing the VerbOSity of thQng homogeneousa| | PCA Oftentimes is equiva|ent to heteroge_

code because the developer has to includet thies or t ar get neousexecut i on PCA [25] becauseal | advice often does not
designator in most pointcuts. reference the calling object (e.g., using designaturs).
4. IMPROVING THE ASPECTJ SYNTAX 5. CASE STUDIES

To tackle the difficulties discussed in Section 3 we propose to add
a simplified syntax for basic heterogeneexcut i on PCA and
equivalentcal | PCA to AspectJ. That is, we introduce and addi-
tional syntax for simple method extensions. In Figure 5 we exem-
plify the aspect from Figure 1 with our syntax. After thefore
after or aroundkeyword we directly specify the method signature

We evaluate our syntax using three case studies. We pick the men-
tioned SPL implementation of Berkeley DB and two case studies
by others to analyze what portion of extensions can be simplified
in current AOP practice. The selected case studies of others are
FaceT? [19] and AJHOTDRAWS. In our own Aspect] SPL case
study of Berkeley DB we observed that 74 % (358 of 482) of the
'Although surprising to new developers, the execution pointcut used PCA mechanisms can be implemented in our simplified syn-
matches the execution of the specified method in the specified cla_ss2
and all subclasses. To prevent advising subclasses we have to in-http://www.cs.wustl.edu/ doc/RandD/PCES/facet/
clude the additional within designator. 3http://sourceforge.net/projects/ajhotdraw/

N =

N ~N oo b w

~N o 0w

N =

a s w

public aspect Enabl eCor baAspect {
Consumer Adm n around (Object poa, Consuner Adm nBase inpl) throws Throwabl e: execution (Consumer Adm n
Event Channel | npl . Cor baGet Consuner Adm nRef (Obj ect, Consuner Admi nBase)) && args (poa, inpl) {
POA Poa = (PQA) poa;
or g. ong. CORBA. Obj ect obj = Poa.servant_to_reference (inpl);
return Consuner Admi nHel per. narrow (obj);
}
}

(@)

public aspect Enabl eCor baAspect {
around (Consurner Adm n Event Channel | npl . Cor baGet Consuner Adm nRef (Obj ect poa, Consuner Admi nBase inpl)) throws
Thr owabl e {
POA Poa = (POA) poa;
or g. ong. CORBA. Obj ect obj = Poa.servant_to_reference (inpl);
return Consuner Admi nHel per. narrow (obj);
}
}

(b)

Figure 6: FACET aspect (excerpt) and its simplified appearance.

public aspect GroupCommandUndo {
after(Figure figure) : call(void Draw ngVi ew. addToSel ection(Figure)) && withincode(void G oupComrand. gr oupFi gures()) &&
args(figure) {
gFigure = figure;

Figure 7: Excerpt of AJHOTDRAW aspect.

tax. FACET is an aspect-oriented SPL with 34 features that imple- 6. RELATED WORK

melntosl a CORBA eventbchaneé. E inclutges 124faspectfs ;[]hat IN SUM g\ 0ra) researchers observed that AOP has difficulties implement-
include 49 PCA. We observed that 67 % (33 of 49) of these PCA ing heterogeneous crosscuts and simple method extension and pro-

can be implemented using our simplified syntax. On the other hand pose to combine AOP with different paradigms, e.g., collabora-

the AJHOTDRAW case study includes 31 aspects and 48 PCA. It . ;
. ; tions [7, 32, 17], component-based programming [7, 28, 29], and
was not designed as an SPL but still we observed that 46 % (szeatur[e-orienteé progrgmming [5]. prog gl]

of 48) of PCA can be implemented using our simplified syntax. In contrast we propose to simplify the Aspect syntax itself to
~We observed that not all PCA could be transformed into our improve the implementation of heterogeneous crosseiten As-
simplified syntax due to quantification and advanced PCA mech- ¢ty we showed that — equivalently to the referenced approaches —
anisms. Figure 6 showg the aspdmabl eCor be}Aspect our simplified AspectJ syntax helps to reduce the impact of known
of FAC.ET (Fig. 6-a) _an_d Its transformed code using our Syn-- aAop |imitations, like fragile pointcuts or evolution paradox, as
tax (Fig. 6-b); we eliminate the designatoexecut i on and well as AspectJ limitations we experienced. In line with these re-
args and repeated declarations. Figure 7 e>_<cerpts PCA of the searchers we observed the need to simplify frequently used AspectJ
AJHOTDRAW aspect™ oupOommndUndo which can not be mechanisms. In contrast to them we argue that one AspectJ syntax
C(_)nverte_d b(_ecause the_ PCA includes advanced pointcut rT]ecr‘a'(although slightly modified) is easier to use and understand than
nisms @ t hi ncode, Line 2) that refer to the method-calling ¢compinations of different paradigms each having its own charac-
object. If advice can not be transformed into baskecut i on teristics, keywords, and constraints.
advice — as in Figure 7 — we propose to use the verbose AspectJ
syntax and 3PP. That way the developer gets alerted when he use
sophisticated AspectJ mechanisms which may harm the software ifsi' CONCLUSIONS
misused. In this paper we proposed to add a simplified syntax for frequently
Our results that up to 74 % of all extensions could be replaced used AOP mechanisms to Aspect]. We argue that for a high per-
by simpler mechanisms is not surprising. Earlier research by Apel centage of all extensions very simple language mechanisms are
et al. has already indicated that crosscutting concerns largely cansufficient, while the existing AspectJ language introduces to much
be implemented using simple method extensions instead of com-overhead. We just add a new simplified syntax while keeping the
plex PCA mechanisms of AspectJ. In line with them we argue that existing language constructs to keep expressiveness. However, the
complex Aspect] mechanisms should not be used for tasks they aresophisticated mechanisms should only be used when needed.
not suitable for, but instead should be replaced with mechanisms We showed that our syntax leads to reduced impact of Aspect]
implementing method extensions differently to current PCA syntax difficulties, e.g., our syntax facilitates to use mechanisms consid-
of AspectJ. ered beneficial for evolution and complexity, reduces verbosity of
Aspect] implementations, and sets AspectJ mechanisms in line to
equivalent mechanisms of other well known paradigms like collab-
orations. We argue that our syntax eliminates the allurement of
misusing AspectJ mechanisms which causes problems; instead the

developer is alerted of using mechanisms that may harm modularity

or evolvability of his software due to special syntax. By analyzing
existing AspectJ case studies we could confirm that our approach is[15]

sufficient for a high percentage of extensions and we could improve

major parts of those case studies.

8.
(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

REFERENCES

C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren,

S. Kuzins, O. Lhotak, O. de Moor, D. Sereni,

G. Sittampalam, and J. Tibble. Adding Trace Matching with
Free Variables to AspectJ. Proceedings of the

International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSh#ges
345-364, 2005.

S. Apel. The Role of Features and Aspects in Software
DevelopmentPhD thesis, School of Computer Science,
University of Magdeburg, 2007.

S. Apel and D. Batory. When to Use Features and Aspects?:
A Case Study. IfProceedings of the International
Conference on Generative Programming and Component
Engineering (GPCE)pages 59-68, 2006.

S. Apel, D. Batory, and M. Roseriitier. On the Structure of
Crosscutting Concerns: Using Aspects or Collaborations? In
Workshop on Aspect-Oriented Product Line Enginegring
2006.

S. Apel, T. Leich, and G. Saake. Aspect Refinement and
Bounding Quantification in Incremental Designs. In
Proceedings of the Asia-Pacific Software Engineering
Conference (APSECpages 796-804, 2005.

S. Apel, T. Leich, and G. Saake. Aspectual Mixin Layers:
Aspects and Features in ConcertProceedings of the
International Conference on Software Engineering (ICSE)
pages 122-131, 2006.

|. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann. An
Overview of CaesarLNCS Transactions on
Aspect-Oriented Software Developmerg880:135-173,
2006.

D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling
Step-Wise RefinemerntEEE Transactions on Software
Engineering (TSE)30(6):355-371, 2004.

Y. Coady and G. Kiczales. Back to the Future: A Retroactive
Study of Aspect Evolution in Operating System Code. In
Proceedings of the International Conference on
Aspect-Oriented Software Development (AQ$ayes

50-59, 2003.

A. Colyer, A. Rashid, and G. Blair. On the Separation of
Concerns in Program Families. Technical Report
COMP-001-2004, Computing Department, Lancaster
University, Lancaster, UK, Jan. 2004.

M. Eichberg. The Proxy Inter-Type Declaration.Workshop
on Aspects, Components, and Patterns for Infrastructure
Software 2004.

R. E. Filman and D. P. Friedman. Aspect-Oriented
Programming Is Quantification and Obliviousness. In
Aspect-Oriented Software Developmerages 21-35. 2005.
M. L. Griss. Implementing product-line features by
composing aspects. Proceedings of the International
Software Product Line Conference (SPlL.@ages 271-288,
Norwell, MA, USA, 2000. Kluwer Academic Publishers.

K. Gybels and J. Brichau. Arranging Language Features for
More Robust Pattern-Based Crosscuts?taceedings of the

[16]

[17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

International Conference on Aspect-Oriented Software
Development (AOSDpages 60-69, 2003.

J. Hannemann and G. Kiczales. Design Pattern
Implementation in Java and AspectJ Rroceedings of the
International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPShages
161-173, 2002.

B. Harbulot and J. R. Gurd. A Join Point for Loops in
AspectJ. InProceedings of the International Conference on
Aspect-Oriented Software Development (AQ$ayes
63—74, 2006.

S. Herrmann. Object Teams: Improving Modularity for
Crosscutting Collaborations. Proceedings of the
International Net.ObjectDays Conferengages 248-264,
2002.

M. Horie and S. Chiba. An Aspect-Aware Outline Viewer. In
Workshop on Reflection, AOP and Meta-Data for Software
Evolution (RAM-SE)pages 71-75, 2006.

F. Hunleth and R. Cytron. Footprint and Feature
Management Using Aspect-Oriented Programming
Techniques. IfProceedings of Joint Conference on
Languages, Compilers, and Tools for Embedded Systems &
Software and Compilers for Embedded Systems
(LCTES/SCOPESpages 38-45, 2002.

C. Kaestner, S. Apel, and D. Batory. A Case Study
Implementing Features Using AspectJFroceedings of the
International Software Product Line Conference (SPLC)
2007.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An Overview of AspectJ. In
Proceedings of the European Conference on Object-Oriented
Programming (ECOOR)pages 327-353, 2001.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin. Aspect-Oriented
Programming. IrfProceedings of the European Conference
on Object-Oriented Programming (ECOQRPRges
220-242,1997.

G. Kiczales and M. Mezini. Aspect-oriented programming
and modular reasoning. Proceedings of the International
Conference on Software Engineering (ICSEges 49-58,
2005.

G. Kniesel and T. Rho. A Definition, Overview and
Taxonomy of Generic Aspect Language®bjet,

11(3):9-39, 2006.

M. Kuhlemann, M. Roseniiller, S. Apel, and T. Leich. On
the Duality of Aspect-Oriented and Feature-Oriented Design
Patterns. InMorkshop on Aspects, Components, and Patterns
for Infrastructure Software2007.

R. LaddadAspectJ in Action: Practical Aspect-Oriented
Programming Manning Publications Co., 2003.

K. Lee, K. C. Kang, M. Kim, and S. Park. Combining
Feature-Oriented Analysis and Aspect-Oriented
Programming for Product Line Asset Development. In
Proceedings of the International Software Product Line
Conference (SPLCpages 103-112, Washington, DC, USA,
2006. IEEE Computer Society.

K. Lieberherr, D. Lorenz, and M. Mezini. Programming with
Aspectual Components. Technical Report NU-CCS-99-01,
College of Computer Science, Northeastern University, 1999.
K. J. Lieberherr, D. Lorenz, and J. Ovlinger. Aspectual
collaborations — combining modules and aspetie
Computer Journal46:542-565, 2003.

[30] R. Lopez-Herrejon and D. Batory. From Crosscutting
Concerns to Product Lines: A Function Composition
Approach. Technical Report TR-06-24, Department of
Computer Sciences, The University of Texas at Austin, 2006.

[31] R. Lopez-Herrejon, D. Batory, and C. Lengauer. A
Disciplined Approach to Aspect Composition. In
Proceedings of the International Symposium on Partial
Evaluation and Semantics-Based Program Manipulation
(PEPM), pages 68—77, 2006.

[32] M. Mezini and K. Lieberherr. Adaptive Plug-and-Play
Components for Evolutionary Software Development. In
Proceedings of the International Conference on
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA)pages 97-116, 1998.

[33] D. Sabbah. Aspects: from promise to reality Aroceedings
of the International Conference on Aspect-Oriented Software
Development (AOSDpages 1-2, 2004.

[34] F. Steimann. The Paradoxical Success of Aspect-Oriented
Programming. IlCompanion of the International Conference
on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA)pages 481-497, 2006.

[35] W. P. Stevens, G. J. Myers, and L. L. Constantine. Structured
Design.IBM Systems Journal3(2):115-139, 1974.

[36] M. Stoerzer and J. Graf. Using Pointcut Delta Analysis to
Support Evolution of Aspect-Oriented Software.
Proceedings of the IEEE International Conference on
Software Maintenance (ICSIM)0:653—-656, 2005.

[37] A. Tesanovic, K. Sheng, and J. Hansson.
Application-Tailored Database Systems: A Case of Aspects
in an Embedded Database.Rnoc. International Database
Engineering and Applications Symposiymages 291-301,
Washington, DC, USA, 2004. IEEE Computer Society.

[38] T. Tourwe, J. Brichau, and K. Gybels. On the Existence of
the AOSD-Evolution Paradox. Morkshop on
Software-Engineering Properties of Languages for Aspect
Technologies2003.

[39] C. Zhang and H.-A. Jacobsen. Quantifying Aspects in
Middleware Platforms. IfProceedings of the International
Conference on Aspect-Oriented Software Development
(AOSD) pages 130-139, New York, NY, USA, 2003. ACM
Press.

