
Reducing the Complexity of AspectJ Mechanisms for
Recurring Extensions

Martin Kuhlemann
School of Computer Science,

University of Magdeburg, Germany
kuhlemann@iti.cs.uni-magdeburg.de

Christian Kästner
School of Computer Science,

University of Magdeburg, Germany
kaestner@iti.cs.uni-magdeburg.de

ABSTRACT
Aspect-Oriented Programming (AOP) aims at modularizing cross-
cutting concerns. AspectJ is a popular AOP language extension for
Java that includes numerous sophisticated mechanisms for imple-
menting crosscutting concerns modularly in one aspect. The lan-
guage allows to express complex extensions, but at the same time
the complexity of some of those mechanisms hamper the writing
of simple and recurring extensions, as they are often needed espe-
cially in software product lines. In this paper we propose an As-
pectJ extension that introduces a simplified syntax for simple and
recurring extensions. We show that our syntax proposal improves
evolvability and modularity in AspectJ programs by avoiding those
mechanisms that may harm evolution and modularity if misused.
We show that the syntax is applicable for up to 74 % of all pointcut
and advice mechanisms by analysing three AspectJ case studies.

1. INTRODUCTION
Aspect-Oriented Programming (AOP)[22] gains momentum in
current research and practice [33]. AOP aims at reducing com-
plexity by modularizing crosscutting concerns. AspectJ is a pop-
ular AOP language extension for Java [26, 21]. AspectJ includes
over different 40 keywords for very different extensions, from static
inter-type declarations, over possibilities to modify the inheritance
hierachy, over dynamic extensions of the control flow and many
more. Even though the language is already fairly complex and al-
lows sophisticated extensions, ongoing research still proposes ad-
ditional AspectJ mechanisms and keywords to further improve sep-
aration of concerns, e.g., [1, 16, 24, 11].

AspectJ was frequently suggested for implementingsoftware
product lines (SPL)[13, 10, 39, 27, 19, 37, 9], that aim at creat-
ing tailored programs distinguished by features. In a previous case
study we decomposed the embedded database engine Berkeley DB
and implemented it as a SPL with AspectJ [20]. However, during
implementation we noticed that the sophisticated AspectJ mecha-
nisms are used rarely (22-31 %) [20]. Such observations were also
confirmed in case studies by others [4, 3, 25]. Most AspectJ mech-
anisms used in practice implement simple extensions (68-78 %),
however those simple extensions are still implemented with the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Workshop AOPLE ’07Oct. 4, 2007 Salzburg, Austria
Copyright 2007 ACM ...$5.00.

complex syntax of AspectJ although they don’t need the advanced
capabilities. Especiallypointcut and advice (PCA)mechanisms are
written in an overly complex syntax

To support implementation of simple extensions, as they are es-
pecially needed for SPLs, we suggest an AspectJ extension with a
simplified syntax. We focus on PCA mechanisms because we ob-
served that they are most affected by unnecessary overhead. We
observed that developers often ‘misuse’ AspectJ mechanisms to
abbreviate the AspectJ syntax and thus cause problems of modu-
larity and evolution [36, 14, 38, 20]. To overcome problems re-
sulting from complex syntax we propose to add a simplified syntax
for existing mechanisms to AspectJ. We propose to use our simpli-
fied syntax for implementing ‘simple’ method extensions while the
common AspectJ syntax should be used for remaining AOP tasks.
By only adding to existing mechanisms, we do not neglect the need
for sophisticated AspectJ mechanisms.

We show that our syntax reduces the allurement of misusing
mechanisms and thus improve evolvability and modularity. We
show that our syntax covers a wide range of implementation prob-
lems by analyzing three AspectJ case studies among them two SPL
and one general purpose AspectJ software.

2. BACKGROUND
AspectJ includes numerous mechanisms; among them PCA and in-
troductions [26, 21]. Apointcutselects events during the execution
of the program (join points) that should be extended withadvice.

The set of join points to advise is described in pointcuts using so
calledpointcut designatorswhere each designator defines a prop-
erty of advised join points, e.g., the designatorwithin matches
only join points located inside one specific class but not inside its
subclasses [26], while thecflow designator defines that matched
join points must be in the control flow of some other join points.
Pointcut designators can also expose context information of the
join point [26, 21]. For example, the pointcut designatorargs al-
lows advice to access method arguments and the designatorsthis
andtarget provide context information on which object the join
point occurred. Pointcut designators can be composed logically and
equipped with wildcards. Both possibilities enable toquantifyover
multiple join points with a single pointcut. If a pointcut quantifies
over different join points, the implemented crosscutting concern is
homogeneous, otherwise it isheterogeneous[6]. If the join points
a pointcut matches can be determined statically, the PCA is called
basic, all PCAs that are based on runtime conditions, need dynamic
reasoning, e.g., when using thecflow or if designators, are called
advanced[4].

Figure 1 shows a classLabel and an aspectTriggerLabel-
Event. The aspect contains basic advice (Lines 20–22 and 26–28)
that extends the class at different points to invoke the method

1 pub l i c c l a s s Label{
2 String _text;
3 Observer _observer;
4 pub l i c vo id setText(String newText){
5 t h i s._text = newText;
6 }
7
8 pub l i c vo id updateObservers(String message){
9 t h i s._observer.notify()

10 }
11
12 pub l i c s t a t i c vo id main(String[] args) {
13 Label l= new Label();
14 l.setText(args[0]);
15 }
16 }

17 pub l i c aspec t TriggerLabelEvent {
18 po in t cu t LabelChangeExec(Label l, String newText):

execu t i on(vo idaLabel.setText(String))
&&awi th in (Label)a&&a t h i s(l)a&& args(newText);

19
20 be fo re(Label l, String newText):

LabelChangeExec(l,anewText){
21 l.updateObservers(newText);
22 }
23
24 po in t cu t LabelChangeCall(Label l, String newText):

c a l l(vo idaLabel.setText(String)) &&a t a r g e t(l)
&&aargs(newText);

25
26 be fo re(Label l, String newText):

LabelChangeCall(l,anewText){
27 l.updateObservers(newText);
28 }
29 }

Figure 1: Pointcut and advice in AspectJ.

updateObservers (Lines 21 and 27). The advice associated to
theexecution pointcut (Lines 20–22) extends classLabel and
is invoked before the execution of the methodsetText in class
Label (Lines 4–6). The advice associated to thecall pointcut
(Lines 26–28) is performed before the methodsetText is called
(e.g., Line 14). Note that both PCA effect the same observable
behavior at runtime [25].

In Figure 2 we logically compose pointcut designators to pass
parameters to a method using theWormhole Pattern[26]. We inter-
cept the execution of each method of classButton (Line 1) and
define theButton object as a parameter for the methodsetText
of the classLabel (Line 5). In associated advice (Lines 7–9) we
use the passedButton object to manipulate thesetText com-
putation process, i.e., theButton object is used by the method
extension as a parameter (Line 8). The depicted PCA frequently
occur in combination to pass parameters to methods in AOP.

3. WHY IS ASPECTJ DIFFICULT?
In this section we review difficulties when implementing simple
extensions with AspectJ that we tackle in this paper. We observed
these problems in several AspectJ programs and SPLs and some
are well known in current research.

Misused Quantification.
Quantification allows to match multiple join points with a sin-

gle pointcut, e.g., using wildcards. Quantification is often consid-
ered as a fundamental concept of AOP and often used to mod-
ularize previously scattered code [12]. However, we observed
that wildcards are frequently misused to abbreviate the syntax

1 po in t cu t parameterProvider(Button b) :
execu t i on(*aButton.*(..)) && t h i s(b) &&awi th in (Button);

2
3 po in t cu t operationToExtend(Label l, String newText):

execu t i on(vo id Label.setText(String)) && t h i s(l)
&&aargs(newText) && wi th in (Label);

4
5 po in t cu t wormhole(Button b, Label l, String newText) :

operationToExtend(l, newText)
&&ac f low(parameterProvider(b));

6
7 a f t e r (Button b, Label l, String newText) re tu rn ing :

wormhole(b, l, newText) {
8 l.print("Button"+b+" set my text to: "+newText);
9 }

Figure 2: Passing parameters using the AOP wormhole pat-
tern.

1 pub l i c c l a s s SpecialLabel ex tends Label {
2 pub l i c vo id setText(String newText){
3 super.setText(newText);
4 updateObservers(newText);
5 }
6 }

Figure 3: Method extension in OOP.

of AspectJ without wanting to match multiple join points, e.g.,
when implementing single method extensions with pointcuts like
execution(* setText(..)) [20, 2].

Another extension that can be regarded as misuse is related
to call pointcuts. While method extensions are usually imple-
mented usingexecution advice,call advice that quantifies all
calls to the method and does not reference the calling object has an
equivalent effect [25].

Using quantification unneeded due to syntax abbreviation ham-
pers subsequent evolution of the software and may result in in-
correct advice application, e.g., the developer is not warned by
the compiler if an incorrect set of join points gets advised. This
and similar problems are calledarranged pattern problem, fragile
pointcut problem, or evolution paradox[14, 36, 34, 31, 38].

Broken Encapsulation.
Encapsulation of modules hides implementation details of classes

behind an interface. This allows to reason about a class in isola-
tion while the implementations of other classes remain hidden [23,
35]. If the developer uses AspectJ’scall pointcut designator, the
developer needs to know all method implementations of classes.
Since method implementations are hidden from interfaces, As-
pectJ’scall advice can break encapsulation of extended classes.
This raises complexity because broken encapsulation does not al-
low to reason about modules in isolation [23, 18].Execution
advice is performed before, after, or instead whole methods. If
extended methods are declared inside the interface of a class,
execution advice does not break encapsulation and thus does
not raise complexity [18]. Hence, we reason that it is beneficial
to integrateexecution advice into our simplified syntax but not
call advice.

Verbose Syntax.
In AspectJ, programmers need to compose several pointcut des-

ignators to access join point parameters [20], e.g., to implement
a simple method extension that accesses arguments of the advised
method, these arguments have to be defined in the pointcut desig-

1 (before|after|around)a(
<returntypeaofamethod>a<class>.<method>

2 (a(<typeaofaparameter>a<name of parameter>)*a)
3 [throwsa<type of exception>]){
4 <statement>*
5 }

Figure 4: Grammar of simplified PCA syntax.

natorsexecution andargs and once more in the advice decla-
ration. We found designators to be verbose and to repeat informa-
tions. Parameters get further repeated if named and abstract point-
cuts are used (cf. Fig. 1). These repetitions entrap the developer
to misuse mechanisms like wildcards to abbreviate the code (e.g.,
in [15]). This causes the evolution paradox of AOP and pointcuts
that are hard to read.

In Figure 1 we extend the methodsetText of classLabel
using the aspectTriggerLabelEvent in two alternative ways
(Lines 18-22 and Lines 24-28). The syntax for both simple
method extensions is verbose compared to the syntax of equiv-
alent method extensions in other languages like Java [8]. For
a simple method extension we need four pointcut designators:
execution, within1, args, andthis. In Figure 3 we extend
the methodsetText equivalently using the less verbose syntax of
Java inheritance.

In a prior case study of an aspect-oriented product line [20] we
experienced that we needed 3.45 designators per pointcut on aver-
age (many of them introducing a repetitive syntax of parameters)
although we mainly implemented simple method extensions.

Third Person Perspective.
Another difficulty in implementing extensions is caused by what

we call thethird person perspective (3PP). The 3PP means that
advice is written from an outside perspective where the extended
object is passed as a parameter. The language keywordthis does
not refer to the extended object as programmers familiar with
OOP might expect but to the aspect itself. The 3PP is neces-
sary to be able to specify homogeneous extensions that quantify
over several classes. It allows different kinds of pointcuts (call
andexecution pointcuts; basic and advanced AspectJ mecha-
nisms) to look similar. However, it hampers the writing of sim-
ple mechanisms. The 3PP may cause problems for Java program-
mers that want to extend methods using AspectJ, because they must
switch between different representations constantly to implement
Java base code, inter-type declarations (both written in first person
perspective) and advice (written in 3PP) [20]. We also experienced
that references to the extended object were by far more frequent
than references to the aspect, again increasing the verbosity of the
code because the developer has to include thethis or target
designator in most pointcuts.

4. IMPROVING THE ASPECTJ SYNTAX
To tackle the difficulties discussed in Section 3 we propose to add
a simplified syntax for basic heterogeneousexecution PCA and
equivalentcall PCA to AspectJ. That is, we introduce and addi-
tional syntax for simple method extensions. In Figure 5 we exem-
plify the aspect from Figure 1 with our syntax. After thebefore,
after or aroundkeyword we directly specify the method signature
1Although surprising to new developers, the execution pointcut
matches the execution of the specified method in the specified class
and all subclasses. To prevent advising subclasses we have to in-
clude the additional within designator.

1 pub l i c aspec t ExtendedTriggerLabelEvent {
2 be fo re(vo id Label.setText(String newText)){
3 updateObservers();
4 }
5
6 be fo re(vo id Label.setText(String newText)){
7 updateObservers();
8 }
9 }

Figure 5: Simplified syntax of pointcut and advice.

of the method to extend. This signature can be copied almost di-
rectly from the extended method. There is no further need to cap-
ture context information withargs or this designators, in fact it
is not possible to use any designators at all. Furthermore, we do
not support the use of wildcards or the extension of private meth-
ods. Our syntax hides pointcut designators completely. To simplify
the AspectJ syntax for these extensions further we use a first per-
son perspective, i.e., we define the self-reference (this in Java)
to reference the extended object (e.g.,Label in Fig. 1) instead of
the containing aspect. Methods of the containing aspect can still
be referenced using the existing aspect methodaspectOf. We
present the grammar of this syntax in Figure 4 where italic tokens
represent identifiers and blue and underlined tokens are keywords.
Overall, the syntax integrates tokens familiar from AspectJ with a
syntax familiar from overriding methods in Java. The new syntax
is much briefer than the original AspectJ syntax.

Note, that we deliberately can only express heterogeneous and
basic extensions. We made these restrictions because they signifi-
cantly reduce complexity and because the majority of all extensions
is heterogeneous and basic anyway [4], especially in SPLs [20].

The language extension can be implemented in the AspectJ com-
piler or even as an preprocessor that expands the new simplified
syntax to an expression in the existing AspectJ syntax.

The new simplified syntax makes three contributions. First, by
making PCA mechanisms less verbose simplifies their use and thus
eliminates the allurement of dangerous syntax abbreviations that
may lead to the pointcut fragility problem and related problems.
Second, we encourage the use of those mechanisms that maintain
encapsulation of classes and avoid complexity [18]. And third, the
simplified syntax eliminates 3PP for simple extensions and simpli-
fies the usage of AspectJ because OOP developers do not have to
switch perspective. Although, we still need the 3PP for homoge-
neous and advanced crosscuts, we do not need it for major parts
of aspect-oriented software development since researchers showed
that 89–93 % of crosscutting extensions are heterogeneous [4, 20,
25, 30, 2] and 78 % are basic [4]. Beyond, we observed that remain-
ing homogeneouscall PCA oftentimes is equivalent to heteroge-
neousexecution PCA [25] becausecall advice often does not
reference the calling object (e.g., using designatorthis).

5. CASE STUDIES
We evaluate our syntax using three case studies. We pick the men-
tioned SPL implementation of Berkeley DB and two case studies
by others to analyze what portion of extensions can be simplified
in current AOP practice. The selected case studies of others are
FACET2 [19] and AJHOTDRAW3. In our own AspectJ SPL case
study of Berkeley DB we observed that 74 % (358 of 482) of the
used PCA mechanisms can be implemented in our simplified syn-

2http://www.cs.wustl.edu/ doc/RandD/PCES/facet/
3http://sourceforge.net/projects/ajhotdraw/

1 pub l i c aspec t EnableCorbaAspect {
2 ConsumerAdmin around (Object poa, ConsumerAdminBase impl) throws Throwable: execu t i on (ConsumerAdmin

EventChannelImpl.CorbaGetConsumerAdminRef (Object, ConsumerAdminBase)) && args (poa, impl) {
3 POA Poa = (POA) poa;
4 org.omg.CORBA.Object obj = Poa.servant_to_reference (impl);
5 re turn ConsumerAdminHelper.narrow (obj);
6 }
7 }

(a)

1 pub l i c aspec t EnableCorbaAspect {
2 around (ConsumerAdmin EventChannelImpl.CorbaGetConsumerAdminRef (Object poa, ConsumerAdminBase impl)) throws

Throwable {
3 POA Poa = (POA) poa;
4 org.omg.CORBA.Object obj = Poa.servant_to_reference (impl);
5 re turn ConsumerAdminHelper.narrow (obj);
6 }
7 }

(b)

Figure 6: FACET aspect (excerpt) and its simplified appearance.

1 pub l i c aspec t GroupCommandUndo {
2 a f t e r (Figure figure) : c a l l(vo id DrawingView.addToSelection(Figure)) && wi th incode(vo id GroupCommand.groupFigures()) &&

args(figure) {
3 gFigure = figure;
4 }
5 }

Figure 7: Excerpt of AJH OTDRAW aspect.

tax. FACET is an aspect-oriented SPL with 34 features that imple-
ments a CORBA event chanel. It includes 124 aspects that in sum
include 49 PCA. We observed that 67 % (33 of 49) of these PCA
can be implemented using our simplified syntax. On the other hand
the AJHOTDRAW case study includes 31 aspects and 48 PCA. It
was not designed as an SPL but still we observed that 46 % (22
of 48) of PCA can be implemented using our simplified syntax.

We observed that not all PCA could be transformed into our
simplified syntax due to quantification and advanced PCA mech-
anisms. Figure 6 shows the aspectEnableCorbaAspect
of FACET (Fig. 6-a) and its transformed code using our syn-
tax (Fig. 6-b); we eliminate the designatorsexecution and
args and repeated declarations. Figure 7 excerpts PCA of the
AJHOTDRAW aspectGroupCommandUndo which can not be
converted because the PCA includes advanced pointcut mecha-
nisms (withincode, Line 2) that refer to the method-calling
object. If advice can not be transformed into basicexecution
advice – as in Figure 7 – we propose to use the verbose AspectJ
syntax and 3PP. That way the developer gets alerted when he uses
sophisticated AspectJ mechanisms which may harm the software if
misused.

Our results that up to 74 % of all extensions could be replaced
by simpler mechanisms is not surprising. Earlier research by Apel
et al. has already indicated that crosscutting concerns largely can
be implemented using simple method extensions instead of com-
plex PCA mechanisms of AspectJ. In line with them we argue that
complex AspectJ mechanisms should not be used for tasks they are
not suitable for, but instead should be replaced with mechanisms
implementing method extensions differently to current PCA syntax
of AspectJ.

6. RELATED WORK
Several researchers observed that AOP has difficulties implement-
ing heterogeneous crosscuts and simple method extension and pro-
pose to combine AOP with different paradigms, e.g., collabora-
tions [7, 32, 17], component-based programming [7, 28, 29], and
feature-oriented programming [5].

In contrast we propose to simplify the AspectJ syntax itself to
improve the implementation of heterogeneous crosscutswithin As-
pectJ. We showed that – equivalently to the referenced approaches –
our simplified AspectJ syntax helps to reduce the impact of known
AOP limitations, like fragile pointcuts or evolution paradox, as
well as AspectJ limitations we experienced. In line with these re-
searchers we observed the need to simplify frequently used AspectJ
mechanisms. In contrast to them we argue that one AspectJ syntax
(although slightly modified) is easier to use and understand than
combinations of different paradigms each having its own charac-
teristics, keywords, and constraints.

7. CONCLUSIONS
In this paper we proposed to add a simplified syntax for frequently
used AOP mechanisms to AspectJ. We argue that for a high per-
centage of all extensions very simple language mechanisms are
sufficient, while the existing AspectJ language introduces to much
overhead. We just add a new simplified syntax while keeping the
existing language constructs to keep expressiveness. However, the
sophisticated mechanisms should only be used when needed.

We showed that our syntax leads to reduced impact of AspectJ
difficulties, e.g., our syntax facilitates to use mechanisms consid-
ered beneficial for evolution and complexity, reduces verbosity of
AspectJ implementations, and sets AspectJ mechanisms in line to
equivalent mechanisms of other well known paradigms like collab-
orations. We argue that our syntax eliminates the allurement of
misusing AspectJ mechanisms which causes problems; instead the

developer is alerted of using mechanisms that may harm modularity
or evolvability of his software due to special syntax. By analyzing
existing AspectJ case studies we could confirm that our approach is
sufficient for a high percentage of extensions and we could improve
major parts of those case studies.

8. REFERENCES
[1] C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren,

S. Kuzins, O. Lhotak, O. de Moor, D. Sereni,
G. Sittampalam, and J. Tibble. Adding Trace Matching with
Free Variables to AspectJ. InProceedings of the
International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), pages
345–364, 2005.

[2] S. Apel.The Role of Features and Aspects in Software
Development. PhD thesis, School of Computer Science,
University of Magdeburg, 2007.

[3] S. Apel and D. Batory. When to Use Features and Aspects?:
A Case Study. InProceedings of the International
Conference on Generative Programming and Component
Engineering (GPCE), pages 59–68, 2006.

[4] S. Apel, D. Batory, and M. Rosenm̈uller. On the Structure of
Crosscutting Concerns: Using Aspects or Collaborations? In
Workshop on Aspect-Oriented Product Line Engineering,
2006.

[5] S. Apel, T. Leich, and G. Saake. Aspect Refinement and
Bounding Quantification in Incremental Designs. In
Proceedings of the Asia-Pacific Software Engineering
Conference (APSEC), pages 796–804, 2005.

[6] S. Apel, T. Leich, and G. Saake. Aspectual Mixin Layers:
Aspects and Features in Concert. InProceedings of the
International Conference on Software Engineering (ICSE),
pages 122–131, 2006.

[7] I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann. An
Overview of CaesarJ.LNCS Transactions on
Aspect-Oriented Software Development I, 3880:135–173,
2006.

[8] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling
Step-Wise Refinement.IEEE Transactions on Software
Engineering (TSE), 30(6):355–371, 2004.

[9] Y. Coady and G. Kiczales. Back to the Future: A Retroactive
Study of Aspect Evolution in Operating System Code. In
Proceedings of the International Conference on
Aspect-Oriented Software Development (AOSD), pages
50–59, 2003.

[10] A. Colyer, A. Rashid, and G. Blair. On the Separation of
Concerns in Program Families. Technical Report
COMP-001-2004, Computing Department, Lancaster
University, Lancaster, UK, Jan. 2004.

[11] M. Eichberg. The Proxy Inter-Type Declaration. InWorkshop
on Aspects, Components, and Patterns for Infrastructure
Software, 2004.

[12] R. E. Filman and D. P. Friedman. Aspect-Oriented
Programming Is Quantification and Obliviousness. In
Aspect-Oriented Software Development, pages 21–35. 2005.

[13] M. L. Griss. Implementing product-line features by
composing aspects. InProceedings of the International
Software Product Line Conference (SPLC), pages 271–288,
Norwell, MA, USA, 2000. Kluwer Academic Publishers.

[14] K. Gybels and J. Brichau. Arranging Language Features for
More Robust Pattern-Based Crosscuts. InProceedings of the

International Conference on Aspect-Oriented Software
Development (AOSD), pages 60–69, 2003.

[15] J. Hannemann and G. Kiczales. Design Pattern
Implementation in Java and AspectJ. InProceedings of the
International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), pages
161–173, 2002.

[16] B. Harbulot and J. R. Gurd. A Join Point for Loops in
AspectJ. InProceedings of the International Conference on
Aspect-Oriented Software Development (AOSD), pages
63–74, 2006.

[17] S. Herrmann. Object Teams: Improving Modularity for
Crosscutting Collaborations. InProceedings of the
International Net.ObjectDays Conference, pages 248–264,
2002.

[18] M. Horie and S. Chiba. An Aspect-Aware Outline Viewer. In
Workshop on Reflection, AOP and Meta-Data for Software
Evolution (RAM-SE), pages 71–75, 2006.

[19] F. Hunleth and R. Cytron. Footprint and Feature
Management Using Aspect-Oriented Programming
Techniques. InProceedings of Joint Conference on
Languages, Compilers, and Tools for Embedded Systems &
Software and Compilers for Embedded Systems
(LCTES/SCOPES), pages 38–45, 2002.

[20] C. Kaestner, S. Apel, and D. Batory. A Case Study
Implementing Features Using AspectJ. InProceedings of the
International Software Product Line Conference (SPLC),
2007.

[21] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An Overview of AspectJ. In
Proceedings of the European Conference on Object-Oriented
Programming (ECOOP), pages 327–353, 2001.

[22] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin. Aspect-Oriented
Programming. InProceedings of the European Conference
on Object-Oriented Programming (ECOOP), pages
220–242, 1997.

[23] G. Kiczales and M. Mezini. Aspect-oriented programming
and modular reasoning. InProceedings of the International
Conference on Software Engineering (ICSE), pages 49–58,
2005.

[24] G. Kniesel and T. Rho. A Definition, Overview and
Taxonomy of Generic Aspect Languages.L’Objet,
11(3):9–39, 2006.

[25] M. Kuhlemann, M. Rosenm̈uller, S. Apel, and T. Leich. On
the Duality of Aspect-Oriented and Feature-Oriented Design
Patterns. InWorkshop on Aspects, Components, and Patterns
for Infrastructure Software, 2007.

[26] R. Laddad.AspectJ in Action: Practical Aspect-Oriented
Programming. Manning Publications Co., 2003.

[27] K. Lee, K. C. Kang, M. Kim, and S. Park. Combining
Feature-Oriented Analysis and Aspect-Oriented
Programming for Product Line Asset Development. In
Proceedings of the International Software Product Line
Conference (SPLC), pages 103–112, Washington, DC, USA,
2006. IEEE Computer Society.

[28] K. Lieberherr, D. Lorenz, and M. Mezini. Programming with
Aspectual Components. Technical Report NU-CCS-99-01,
College of Computer Science, Northeastern University, 1999.

[29] K. J. Lieberherr, D. Lorenz, and J. Ovlinger. Aspectual
collaborations – combining modules and aspects.The
Computer Journal, 46:542–565, 2003.

[30] R. Lopez-Herrejon and D. Batory. From Crosscutting
Concerns to Product Lines: A Function Composition
Approach. Technical Report TR-06-24, Department of
Computer Sciences, The University of Texas at Austin, 2006.

[31] R. Lopez-Herrejon, D. Batory, and C. Lengauer. A
Disciplined Approach to Aspect Composition. In
Proceedings of the International Symposium on Partial
Evaluation and Semantics-Based Program Manipulation
(PEPM), pages 68–77, 2006.

[32] M. Mezini and K. Lieberherr. Adaptive Plug-and-Play
Components for Evolutionary Software Development. In
Proceedings of the International Conference on
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pages 97–116, 1998.

[33] D. Sabbah. Aspects: from promise to reality. InProceedings
of the International Conference on Aspect-Oriented Software
Development (AOSD), pages 1–2, 2004.

[34] F. Steimann. The Paradoxical Success of Aspect-Oriented
Programming. InCompanion of the International Conference
on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pages 481–497, 2006.

[35] W. P. Stevens, G. J. Myers, and L. L. Constantine. Structured
Design.IBM Systems Journal, 13(2):115–139, 1974.

[36] M. Stoerzer and J. Graf. Using Pointcut Delta Analysis to
Support Evolution of Aspect-Oriented Software.
Proceedings of the IEEE International Conference on
Software Maintenance (ICSM), 00:653–656, 2005.

[37] A. Tesanovic, K. Sheng, and J. Hansson.
Application-Tailored Database Systems: A Case of Aspects
in an Embedded Database. InProc. International Database
Engineering and Applications Symposium, pages 291–301,
Washington, DC, USA, 2004. IEEE Computer Society.

[38] T. Tourwé, J. Brichau, and K. Gybels. On the Existence of
the AOSD-Evolution Paradox. InWorkshop on
Software-Engineering Properties of Languages for Aspect
Technologies, 2003.

[39] C. Zhang and H.-A. Jacobsen. Quantifying Aspects in
Middleware Platforms. InProceedings of the International
Conference on Aspect-Oriented Software Development
(AOSD), pages 130–139, New York, NY, USA, 2003. ACM
Press.

