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ABSTRACT 

Software metrics and thresholds provide means to quantify several 

quality attributes of software systems. Indeed, they have been used 

in a wide variety of methods and tools for detecting different sorts 

of technical debts, such as code smells. Unfortunately, these 

methods and tools do not take into account characteristics of 

software domains, as the intrinsic complexity of geo-localization 

and scientific software systems or the simple protocols employed by 

messaging applications. Instead, they rely on generic thresholds that 

are derived from heterogeneous systems. Although derivation of 

reliable thresholds has long been a concern, we still lack empirical 

evidence about threshold variation across distinct software domains. 

To tackle this limitation, this paper investigates whether and how 

thresholds vary across domains by presenting a large-scale study on 

3,107 software systems from 15 domains. We analyzed the 

derivation and distribution of thresholds based on 8 well-known 

source code metrics. As a result, we observed that software domain 

and size are relevant factors to be considered when building 

benchmarks for threshold derivation. Moreover, we also observed 

that domain-specific metric thresholds are more appropriated than 

generic ones for code smell detection. 

CCS CONCEPTS 

• Software and its engineering → Software creation and 

management → Software post-development issues  

KEYWORDS 

Software metrics, thresholds, software domains 

 

 

 

 

TechDebt '18, May 27–28, 2018, Gothenburg, Sweden 

© 2018 Association for Computing Machinery. 

ACM ISBN 978-1-4503-5713-5/18/05…$15.00 

https://doi.org/10.1145/3194164.3194173 

1 INTRODUCTION 

Software metrics have been pragmatic means to detect technical 

debt and improve software products since the dawn of software 

engineering [1, 7]. Several studies have proposed and evaluated the 

usefulness of software metrics for practitioners [3, 15, 16, 18], for 

instance, to indicate technical debt in software systems [16]. As a 

result, developers may pay the debt by checking if there is something 

wrong in the system design or code and fixing anomalies to avoid 

future maintenance issues. 

Nevertheless, the effective measurement of software systems is 

directly dependent on the definition of appropriate thresholds [1, 

33]. Software metric thresholds allow us to objectively characterize 

or classify each entity (i.e., class or method) according to one of the 

software metrics. Different strategies and methods to derive 

thresholds have been proposed and, over the years, they have 

become more straightforward and systematic [33]. The current 

practice for deriving thresholds is to use a set of similar systems, 

named benchmarks, and follow a well-defined method [1]. The idea 

behind the use of benchmarks is to use information from similar 

systems (e.g., same programming language) to help deriving 

meaningful metric thresholds. 

Unfortunately, existing methods and tools to derive thresholds 

either do not consider the intrinsic characteristics of software 

systems in each domain [1, 33] or provide a superficial analysis on 

thresholds for software domains [10]. That is, they ignore the fact 

that systems from different domains may have different degrees of 

complexity and size, for instance. As a result, even when a robust 

and pragmatic method is used, the derived thresholds can be 

inappropriate or meaningless. 

This paper presents a large-scale empirical study to investigate 

whether and how thresholds vary among systems of different 

domains. We argue that the definition of appropriate metric 

thresholds needs to be tailored by each software domain. For 

instance, business systems require different thresholds of health 

systems, or the detection of technical debts might be imprecise. 
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Therefore, we defend the idea of domain-specific thresholds, given 

that systems from different domains may have distinct 

characteristics (e.g., localization systems can be more coupled than 

education systems) and, it may impair the derived metric thresholds.  

This study relies on fifteen software domains composed of 

object-oriented Java systems. We apply to each system a set of eight 

well-known source code metrics [3, 16, 18]. After applying the 

measurements, we derived 90% and 95% thresholds for each metric 

per domain, compared, and analyzed them in different ways. For 

instance, we compared the thresholds among domains and analyzed 

the effectiveness of code smell detection between domain-specific 

and generic thresholds. Generic thresholds are derived from 

heterogeneous systems from several domains. 

Our results confirm our intuition that metric thresholds vary 

across domains and most domain-specific thresholds differ from 

generic thresholds. However, we also found some similarities 

among thresholds from different domains. For instance, the 

thresholds from Business and Accounting domains are very similar, 

especially for size metrics. Furthermore, we saw that the size of the 

systems that compose each benchmark also affects the thresholds. In 

particular, we verified that all metrics have higher thresholds when 

larger systems are used to compose the benchmark. Finally, our 

analysis indicates that domain-specific thresholds are better than 

generic thresholds to detect code anomalies. 

Overall, our contributions are: 

 A large-size empirical study with more than 3 K systems to 

explore threshold derivation with the corresponding 

measurements for eight well-known software metrics [30]. 

 Empirical evidence that the domain and size are factors to 

consider when building benchmarks for threshold derivation. 

 An observation that some domains have characteristics in 

common and, in essence, these domains can be grouped to 

promote more reliable benchmarks, or thresholds can be 

reused across similar domains. 

 A reference list of code smells for 43 systems in 15 different 

domains [30]. 

 An empirical comprehension that domain-specific thresholds 

are better than generic thresholds for code smell detection. 

2  BACKGROUND AND RELATED WORK 

This section presents important concepts to understand this study, as 

well as, related work that explores software metrics, metric 

thresholds, and software domains.  

Software metrics. One of the oldest cliché phrases in business is 

“You cannot manage what you cannot measure” [7]. It might not be 

always true, but measurements surely support project managers 

improving their products or processes [7]. In software engineering, 

researchers and practitioners are always looking for better ways to 

predict the number of faults, errors, and the effort to complete a task 

[15]. In this sense, many metrics have been proposed to measure 

technical debts in software products aiming at better controlling, 

assessing, and improving their quality. Examples of well-known 

metrics [15] to measure software products are Lines of Code [18], 

McCabe Cyclomatic Complexity [21], Coupling between Objects 

[3], and Depth of Inheritance Tree [3]. 

Metric thresholds. Despite the importance of software metrics, just 

their use is not enough because we need to know when a target 

metric starts to become an outlier or a problem in the software design 

or code. To overcome this problem, software engineers define or 

derive thresholds for their software metrics. Thresholds allow us to 

characterize objectively or to classify each component according to 

one of the quality metrics [33]. 

There are several methods and strategies to derive metric 

thresholds [1, 3, 5, 6, 13, 21, 23, 26, 28, 34]. In the past, thresholds 

were calculated based on experience of software engineers or using 

a single system as a reference [3, 21]. Nowadays, thresholds have 

been derived from benchmarks and calculated based on well-defined 

methods. For instance, Alves et al. [1] proposed a method that 

weight software metrics by lines of code. The method aims at 

labeling each entity of a system based on thresholds. Each label is 

based on a fix and predetermined percentage of entities. Similarly, 

Ferreira et al. [10] presented a simple method for calculating 

thresholds. The method consists in grouping the extracted metrics in 

a file and gets three groups, with high, medium, and low frequency. 

Oliveira et al. [23] propose a method based on the concept of relative 

thresholds. Their method consists in the formula called Compliance 

Rate and this formula considers the median of each system in the 

benchmark to derive thresholds. Vale et al. [34] derive thresholds 

based on lessons learned from a comparison of Alves’, Ferreira’s 

and Oliveira’s methods and provide upper and lower-bound 

thresholds in four different labels. Unlike Alves’ method, Vale’s 

method does not correlate metrics for deriving thresholds [33]. 

Software domains. Some studies [17, 22, 27] have grouped 

software systems based on domains because somehow, they believe 

these systems share similar characteristics and differ from systems 

of other domains. For instance, Ray et al. [27] grouped systems in 7 

different domains to check if language defect proneness depends on 

the software domain. Linares-Vásquez et al. [17] grouped systems 

in 13 domains to investigate the relationships between the presence 

of smells and quality-related metrics. Murphy-Hill et al. [22] 

compare the development of game (domain) with the development 

of other software systems (from other domains). These three studies 

have found that software domains matter in their analysis. For 

instance, Linares-Vásquez et al. observed that anti-patterns have 

different frequency in the different application domains and 

Murphy-Hill et al. [22] observed that the development of games 

differs from other software systems in several ways, such as the type 

of requirements, software design, and software quality. Like these 

studies, we share the idea that systems from the same software 

domain have similar characteristics. Unlike them, we use systems 

from similar domains to analyze metric thresholds. 

Benchmark and threshold analysis. There are also studies 

analyzing benchmarks and thresholds, as we do in this work. The 

benchmark of previous studies [1, 10, 23, 33, 34] varies from 14 to 

106 systems. For instance, Vale et al. [33] investigate three small 

benchmarks with 14, 22, and 33 configurable software systems. 

Instead, we used a larger benchmark in this work which is composed 

by more than 3K systems. Alves et al. [1] rely on a benchmark 
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composed by two programming languages (Java and C#) while 

Ferreira et al. [10] performed an analysis regarding domains, types, 

and size in their benchmark. Unlike these studies, we analyzed a 

larger number of systems (3K against 40), metrics (8 against 5) and 

domains (15 against 11). 

3  STUDY SETTINGS 

This section describes our research questions and experimental 

steps. We explain how we built our dataset and how we perform the 

measurement and threshold derivation. 

3.1  Research Questions and Experimental Steps 

This study aims to investigate (i) whether metric thresholds vary 

across systems of different software domains, (ii) if metric 

thresholds vary across systems of different sizes, and (ii) if domain-

specific thresholds are better than generic thresholds for detecting 

code smells. We assume that some characteristics of each domain 

affect the systems and measures, so it may impair the derived 

thresholds. Given this assumption, we defined four research 

questions (RQs) as follows. 

RQ1. Do thresholds for the same metric vary among different 

software domains? 

RQ2. Are there metrics with the same thresholds regardless of 

the software domain? 

RQ3. Does the system size impact on the derived thresholds? 

RQ4. Are domain-specific thresholds better than general 

thresholds for detecting the God Class code smell? 

We expect our findings to provide evidence that software 

domains and the system size should be considered when building 

benchmarks, for instance, to identify technical debts. For example, 

inaccurate thresholds may influence negatively the derived metric 

thresholds by providing meaningless values about singular software 

domain. Regarding the empirical steps, Fig. 1 presents an overview 

of this study described below.  

 

Figure 1: Experimental steps for the analysis of thresholds. 

First, we built our dataset by mining open-source systems from 

GitHub (Step 1). We then measured the source code of each system 

using CK Tool [4] (Step 2). Once measured all systems, we derived 

metrics thresholds using TDTool [34] (Step 3). Finally, we analyzed 

the results and evaluated the effectiveness of domain-specific 

thresholds to detect code smells compared to generic thresholds 

(Step 4). The first three steps are described in the following sub-

sections and the data analysis is described in Sections 4 to 6. 

3.2  Selected Systems and Domain Classification 

Table 1 presents and describes the 15 domains explored in this 

study with the number of systems per domain (last column). We 

choose these domains for the following reasons. First, they are well-

defined in terms of requirements and, most of these domains have 

been used in previous studies [10, 17, 22], therewith, we believe that 

they are representative. Second, they encompass several types of 

systems (e.g., frameworks and tools. Third, there is a significant 

number of systems in these domains publicly available in GitHub. 

Table 1: Description of Domains in Our Dataset 

Domain Description # 

Accounting (Acc) Systems that record and process accounting 

transactions, such as accounts payable and 

receivable, payroll, and trial balance. 

216 

Business (Bus) Systems that implement validation, calculation, 

and law regulations of business requirements, such 

as pricing, and inventory management. 

368 

Communication 

(Com) 

Systems that manage connections between server 

and clients, using protocols to share information. 

266 

Development 

(Dev) 

Software tools that support developers to 

implement projects in general. 

528 

Dictionaries (Dic) Software tools used to translate a variety of 

languages. 

130 

E-commerce (EC) Systems in charge of supporting the transactions of 

products buying and selling, as well as providing 
services to consumers. 

34 

Education (Edu) Systems used by students to manage their study life 

and by managers to administrate their schools. 

165 

Free Time (FT) Entertain systems or applications which provide 

information for joy, such as travel information.  

28 

Games (Gam) Entertainment games that can be played alone or in 

collaboration. 

452 

Health (Hea) Systems that offer health-related services to people 

in general. 

279 

Home (Hom) Systems that control basic many home devices and 

services. 

160 

Localization (Loc) Show local information normally based on GPS. 

Some of them display maps and location sensitive 

data for users. 

70 

Messaging (Mes) Systems that allow the users to send messages from 

one client to another. 

66 

Restaurant (Res) Systems that provide different services for both 

managers and users of food houses. 

326 

Science & 
Engineering (ScE) 

Systems designed to aid users in several fields of 
science and engineering, such as 3D visualization 

and data analysis. 

19 

 

Mining and Classification. We mined systems from GitHub to 

compose our dataset in October 2017. For each domain, we collected 

up to 1,000 by automatically searching the project name and 

description for keywords that match the domain name. For instance, 

we collected 34 e-commerce systems by searching for “e-

commerce” or “ecommerce”. Whenever more systems have been 

returned by the GitHub search, we selected the first 1,000 systems 

in the descending order of stars. In GitHub, stars are a meaningful 

measure for repository popularity. We developed and iteratively 

tested a script that automatically searches relevant systems and 

applies a set of criteria. For instance, we excluded systems with less 

than 1,000 lines of code because we considered them toy examples 

or incipient software projects. In addition, we focus in Web and 
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Desktop-based Java systems and, therefore, we removed other 

projects (e.g., mobile apps) because they tend to have a different 

architectural design. Finally, we manually validated the collected 

systems by checking the project name and readme file and excluded 

the wrongly classified systems. As a result, the dataset used in this 

study includes 3,107 software systems in the 15 domains, with at 

least 19 systems per domain. 

Table 2 summarizes the descriptive statistics of our dataset 

focusing on the source lines of code per domain (excluding code of 

test cases). The software systems diverge largely in lines of code, 

while the smallest software system in every domain has about 1,000 

LOC (due to the criteria described above), the largest system by 

domain vary from about 26,633 LOC in the E-Commerce domain to 

over 7 MLOC in the Business domain. We can also observe a 

considerable variance (i.e., standard deviation) and that data do not 

follow a normal distribution. In fact, all domains follow a right 

skewed distribution for lines of code. This considerable difference 

among domains corroborates with our assumption that systems in 

one domain might be more complex than systems in other domains, 

for instance. Therefore, metric thresholds should be tailored to each 

specific domain. 

Table 2: Lines of Code per System Domain 

Domain Min Max Mean Median SD 

Acc 1,003 1,938,805 83,358.40 4,984.00 308.704,89 

Bus 1,011 7,822,498 130,576.84 6,402.50 775.923,96 

Com 1,006 1,351,323 37,604.28 5,042.00 125.570,70 

Dev 1,153 1,498,869 69,427.47 16,931.50 161.547,59 

Dic 1,016 472,642 14,307.52 3,556.00 47.758,51 

EC 1,104 26,633 6,298.76 3,133.50 7.340,34 

Edu 1,025 1,170,720 26,440.87 5,204.00 102.033,91 

FT 1,047 284,220 45,509.96 4,511.00 84.510,30 

Gam 1,009 546,748 17,989.02 4,877.50 49.593,35 

Hea 1,025 1,446,807 27,161.00 4,790.00 109.778,74 

Hom 1,022 299,898 29,538.95 9,119.50 53.988,07 

Loc 1,054 859,393 40,062.38 12,015.50 110.306,52 

Mes  1,000 160,297 14,648.90 3,891.00 29.911,82 

Res 1,063 151,814 7,639.50 2,951.50 18.216,42 

ScE 1,028 439,747 36,939.84 8,649.00 100.667,62 

Table 3: Number of Classes per System Domain 

Domain Min Max Mean Median SD 

Acc 3 10,125 349.07 50.00 1061.97 

Bus 1 12,470 471.92 65.50 1624.18 

Com 3 8,379 249.99 49.00 753.12 

Dev 3 8,735 472.20 167.50 962.62 

Dic 4 2,296 87.76 30.00 234.74 

EC 7 301 80.52 46.00 83.86 

Edu 2 5,641 225.33 66.00 586.22 

FT 10 2,128 296.67 42.00 564.69 

Gam 1 2,439 116.40 45.00 221.61 

Hea 3 5,322 186.50 51.00 592.33 

Hom 4 2,798 238.14 83.50 426.75 

Loc 4 4,041 222.97 57.50 540.42 

Mes  1 980 100.00 44.50 192.06 

Rest 4 1,263 62.31 35.00 114.14 

ScE 12 1,528 184.42 78.00 358.14 

 

Similar to Table 2, Table 3 shows descriptive statistics for the 

number of classes and interfaces in systems of each domain. In 

general, we can observe a considerable difference among systems 

inside a domain. For instance, while the median is 167.50 classes in 

the Development domain, the largest system in this domain has more 

than 8K classes. Considering the median per domain, Development 

has the largest systems in terms of classes and Dictionary has the 

smallest ones. On the other hand, the largest system, in terms of 

number of classes, belongs to the Business domain, containing more 

than 12K classes. Based on these observations, it is also expected 

that the variation among domains reflects in software metrics and, 

in their thresholds. 

3.3 Measurement and Threshold Derivation 

This study investigates domain-specific thresholds for eight 

metrics. We used a measurement tool, CK Tool [4], to compute the 

source code metrics. CK tool measures Java programs by means of 

static analysis and it supports all metrics used in this study. Table 4 

presents the target metrics, showing their names and a brief 

description. We choose these metrics because: (i) they capture 

different attributes of software systems, such as size, complexity; (ii) 

they are well-known object-oriented software metrics [15]; and (iii) 

they have been often used by researchers and practitioners to 

measure several technical debts and quality attributes [3, 15]. 

Table 4: Software Metrics for Technical Debt Detection 

Metric Description 

S
iz

e 

Lines of Code 

(LOC) [18] 

Measures the number of lines of code per class. It 

counts neither comment lines nor blank lines. 

Number of 

Attributes (NOA) 

[18] 

Quantifies the number of fields and constants in 

a class. 

Number of Methods 

(NOM) [18] 

Quantifies the number of methods and 

constructors in a class. 

C
o
m

p
le

x
it

y
 

Weighted Method 

per Class (WMC) 

[3] 

Counts the number of methods in a class 

weighting each method by its cyclomatic 

complexity [21]. 

Lack of Cohesion in 
Methods (LCOM) 

[3] 

Divides (i) the pairs of methods in a class that do 
not access any attribute by (ii) the pairs of 

methods in a class that do access attributes in 

common. 

Coupling Between 

Objects (CBO) [3] 

Counts the number of classes that are coupled to 

a class, by calling methods or accessing attributes 

of the other classes. 

In
h

er
it

a
n

ce
 Depth of Inheritance 

Tree (DIT) [3] 

Counts the number of levels that a subclass 

inherits methods and attributes from a superclass 

in the inheritance tree. 

Number of Children 

(NOC) [3] 

Counts the number of direct subclasses of a given 

class. This metric indicates software reuse by 

means of inheritance. 

 

We present now the method and tool used in this paper to derive 

metric thresholds. The selected method, supported by TDTool [34], 

proposes the threshold derivation in five steps. First, metrics are 

extracted from each benchmark of software systems presented in 

Table 2. After the measurement, we computed the weight percentage 

for each entity within the total number of entities (2nd step). We then 

sorted the metric values in ascending order and used the maximum 

metric values to represent 1%, 2%, up to 100%, of the weight (3rd 

step). In the 4th step, we aggregated all entities per metric value. 

Finally, we selected thresholds in the 5th step to represent the labels 

high (90%) and very high (95%). In this paper, we focus on these 

two top-threshold values (i.e., 90% and 95%) because the 
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differences are higher for these labels making the analysis more 

applicable. We choose this method because it is supported by a 

software tool, making the threshold derivation process easier. In 

addition, the method was proposed based on lessons learned from a 

comparison of other methods [33]. 

4 RESULTS 

This section presents the derived thresholds for each domain on 

the dataset presented in Section 3.2. Table 5 shows the threshold 

values for 90% and 95% for each software metric and domain 

analyzed. We classify domains with similar characteristics into four 

categories to make our discussions more direct and to support us 

answering RQ1 and RQ2 in Section 5. The following topics describe 

the four categories.   

All High thresholds. As the name suggests, this category present 

high thresholds for all analyzed metrics when comparing the derived 

thresholds of all domains studied. Columns 3 to 5 of Table 5 present 

the thresholds for the three domains (Accounting, Business and 

Science & Engineering) that composes this category. These data 

show that the 5% largest classes (i.e., 95% threshold) in Accounting 

systems have 981 or more lines of code. Interestingly, the 95% 

threshold for Business is very similar to Accounting; that is, 928 

lines of code. We speculate that the similarity of Accounting and 

Business systems might be because these domains involve 

heterogeneous systems in broader trade fields. In addition, systems 

in this category tend to be large and complex. For instance, 10% 

classes in Accounting systems with the highest lack of cohesion (i.e., 

90% threshold) present LCOM equals or higher than 317. This value 

is the highest 90% threshold for LCOM among all domains. The 

reason for this lack of cohesion in Account systems might be due to 

the several unrelated functionalities controlled by this kind of 

systems. For instance, Account systems deal with several changes 

of tax and rules. We believe that these types of functionalities are 

loosely coupled, which might result in low cohesive systems. 

In the Science & Engineering domain, thresholds are not the 

highest ones for any metric, compared to the other domains of this 

category. However, these values are still high for LOC, NOM and 

WMC compared to domains in other categories (see Table 5). In 

fact, Science & Engineering systems usually involves complex or 

extensive computations increasing lines of code and complexity. 

Therefore, these systems naturally belong to this category. 

High size thresholds. This topic discusses thresholds derived for 

domains with large classes (i.e., many Lines of Code and Number of 

Methods), but low complexity (i.e., few Weighted Method per Class 

and Coupling Between Objects) when compared to the systems of 

our dataset. This category includes four domains: Games, Health, 

Messaging, and Restaurant. Table 5 also shows the threshold values 

for these four domains in columns labeled High Size Thresholds. 

Comparing thresholds of the previous category with the ones in this 

category, we observe that thresholds do not vary much for the size 

metrics (LOC, NOA, and NOM). For instance, all eight domains in 

these categories have 18 attributes or more for the 95% NOA metric 

threshold; the exception is Health systems with a 16-attribute cut for 

95% threshold. In general, systems in these categories also have 

more lines of code than systems in the other two categories (see next 

topics). For instance, apart from Restaurant, the systems from this 

category show more than 382 LOC for the top-5% largest classes. 

Classes in Restaurant systems are not much large in terms of LOC, 

but they have high threshold values for the other size metrics (i.e., 

NOA and NOM). Hence, we decide to classify this domain in this 

category instead of the last one with low thresholds. 

Systems in this category are not highly complex in terms of 

coupling (CBO), cohesion (LCOM), and weighted methods by 

cyclomatic complexity (WMC) when compared to the first category. 

For instance, while the 95% thresholds of LCOM are above 600 for 

three out of four domains in the previous category, they are below 

400 for four domains in this category. These results can be explained 

by the fact that systems in this category usually involve simple, yet 

large, functionalities. In addition, some of these domains, such as 

Messaging and Restaurant, usually involve a clear set of simple 

requirements; i.e., message and media exchange for messaging 

systems or order registration and inventory management for 

restaurant systems. 

Health and Games systems have some particularities because 

they present high coupling and high cyclomatic complexity, 

respectively, compared to the other domains in this category. We 

speculate that Health systems present higher CBO thresholds 

because they might involve several cases (e.g., many symptoms) to 

reach a conclusion (e.g., a disease). Therefore, these systems seem 

highly coupled to other classes, such as domain-specific API classes, 

using an initial code to provide the basic structure and requirements. 

In the Games domain case, the result is expected since games usually 

are computationally extensive involving long if-then-else statements 

(or worst, long switch-case statements) [22]. In fact, we verified that 

methods in games are commonly large and complex, although each 

class has few methods. Therefore, this common practice for gaming 

development contributes to higher WMC values, but lower values 

for LCOM and NOM. 

High Complexity. The current category includes domains with 

small classes, yet high complexity. Four domains fall into this 

category: Development, Free Time, Dictionary, and Localization. 

Columns labeled High Complexity in Table 5 present the thresholds 

derived for systems of this category. Software systems in this 

category usually have classes with high thresholds for complexity 

metrics, although thresholds are not very high for size metrics. For 

instance, the 5% largest classes in systems of this and the previous 

category have about 450 or more lines of code. Hence, they have 

similar size in terms of LOC. On the other hand, systems in this 

category are more complex than systems of the previous category at 

least in CBO metrics. If we observe the 95% thresholds for CBO, 

for instance, we see that these values are always higher than 21 in 

this category and lower than 21 in the previous category. 

It is interesting to observe, however, that the Dictionary and 

Localization domains have some commonalities since they present 

similar variation of thresholds for all metrics in general. For 

example, the 10% and 5% classes with the highest complexity in 

Dictionary domain present WMC very similar to the ones in 

Localization domain; that is, around 63 and 111, respectively. In 

contrast, despite being in the same category, Development systems 

often have lower thresholds than Dictionary and Localization 

systems for all metrics. We decided to classify Development in the 
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current category, instead of the last one, because systems in this 

domain seem more complex than systems in the last category for at 

least two out of three complexity metrics (WMC and CBO). 

All Low Thresholds. This category consists of domains with low 

thresholds for most of the eight metrics compared to the other 

domains/categories. It is composed by four domains 

(Communication, E-Commerce, Education, and Home) presented in 

the last four columns of Table 5. In particular, size metrics have 

lower thresholds with respect to the first and second categories, 

while complexity metrics have lower thresholds compared to the 

first and third categories. Communication and Home domains have 

larger systems in terms of LOC than E-Commerce and Education, 

the other two domains in this category. For instance, the first two 

domains have more than 403 LOC defined for the 95% threshold, 

while the last two have 232 LOC and 378 LOC, respectively. This 

observation suggests that E-Commerce and Education share the 

common characteristics of holding the smallest classes in terms of 

LOC considering all 15 analyzed domains. 

Although not as small and simple as E-Commerce and 

Education, the Communication and Home domains also have small 

and simple classes. Classes in these domains have a particularly 

small number of methods and attributes, when compared to other 

domains. For instance, focusing on the 90% thresholds in Table 5, 

we observed that Communication and Home domains have classes 

with up to 18 and 17 methods (NOM), respectively. Their 90% 

threshold values are 10 and 8 attributes (NOA), respectively. These 

two domains also have simple classes in terms of WMC and LCOM. 

With respect to coupling, these domains are in the middle; i.e., 

neither the lowest nor the highest thresholds for CBO. This result is 

somehow expected for Communication because systems in this 

domain manage relationship about different sub-systems, such as in 

a Client-Server architecture [2]. 

5  DISCUSSIONS 

This section discusses the first three research questions. 

5.1 RQ1: Threshold Variation across Domains 

First, we investigate if thresholds for the same metrics vary on 

different software domains. If so, it supports our assumption that 

software domains should be considered when building benchmarks 

for metrics-based quality assessment. To support our discussion, we 

compare the highest to the lowest thresholds of each metric. Table 6 

presents for each metric the lowest to the highest thresholds among 

the 15 domains. It also shows, between parentheses, how many times 

the highest threshold is greater than the lowest threshold. For 

instance, the lowest 95% threshold for the LOC metric is 232 (see 

E-Commerce in Table 5), while the highest 95% threshold for the 

LOC metric is 981 (see Accounting in Table 5). The difference is 

that the Accounting threshold is 4.2 times higher than the E-

Commerce threshold in this case. 

The results in Table 6 show that the investigated thresholds 

largely vary for all metrics; except Number of Children (NOC), 

which we discuss in Section 5.2. Apart from NOC, all metrics have 

a significant variation in the 90% and 95% thresholds. The metrics 

with higher threshold variations are LCOM, WMC, and LOC. The 

rate between the highest and the lowest thresholds in a domain is 

about 3.4 times or higher for these 3 metrics. This large difference 

between the highest and lowest thresholds suggests that LCOM, 

WMC, and LOC are highly sensitive to the software domain. 

Therefore, developers should be aware of this variation when using 

thresholds for these metrics in software quality evaluation. 

Table 6: Difference between Highest and Lowest Thresholds 

% LOC NOA NOM WMC LCOM CBO DIT NOC 

90 
160-541 

(3.4) 

8-14 

(1.7) 

17-34 

(2.0) 

30-123 

(4.1) 

85-317 

(3.7) 

12-16 

(1.3) 

2-6  

(3.0) 

0-0  

(n/a) 

95 
232-981 

(4.2) 

11-21 

(1.9) 

24-53 

(2.2) 

49-236 

(4.8) 

218-742 

(3.4) 

15-23 

(1.5) 

2-6  

(3.0) 

0-1  

(n/a) 

* Numbers between parentheses mean how many times the 
highest value is greater than the lowest value 

The rate between the highest and the lowest thresholds for NOA, 

NOM, and CBO is about 2 times. This difference suggests that these 

metrics are not as sensitive to the software domain as LCOM, WMC, 

Table 5: Metric Threshold per Domain Group 

 All High Thresholds High Size Thresholds High Complexity Thresholds All Low Thresholds 

Metric % Acc Bus ScE Gam Hea Mes Rest Dev FT Dic Loc Com EC Edu Hom 

LOC 
90 541 527 456 310 289 296 255 287 314 337 345 303 160 238 248 

95 981 928 718 491 442 447 382 450 464 575 589 467 232 378 403 

NOA 
90 14 12 11 11 10 11 12 8 9 11 10 10 8 9 8 

95 21 21 19 18 16 18 19 13 14 17 17 16 11 14 13 

NOM 
90 34 30 23 20 19 18 18 19 19 21 21 18 17 19 17 

95 46 53 36 31 29 27 25 29 29 33 31 26 24 29 27 

WMC 
90 123 98 88 59 43 52 41 51 49 63 75 52 30 43 44 
95 236 232 148 100 73 81 62 86 80 111 132 92 49 73 76 

LCOM 
90 317 253 148 120 136 126 134 117 104 136 159 85 91 120 91 

95 741 742 392 330 351 344 256 302 276 405 378 219 218 311 248 

CBO 
90 15 16 16 13 15 12 11 15 16 15 15 14 13 14 13 

95 23 23 23 18 20 18 15 22 21 22 21 20 17 20 19 

DIT 
90 3 4 4 4 3 5 6 4 4 5 4 4 2 3 3 

95 5 5 5 5 5 6 6 5 5 6 5 4 2 4 4 

NOC 
90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

95 0 0 1 1 0 0 0 1 1 1 1 0 0 0 0 
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and LOC. Yet, a difference of twice can be considered large, 

depending on the evaluation goal. The DIT metric is an interesting 

case. The threshold of DIT did not present large variation among 

domains. For instance, the 95% thresholds of DIT varied between 3 

and 6 (2 times) for 14 out of 15 domains. The only exception was E-

commerce with both 90% and 95% thresholds of 2 for DIT (see 

Table 5). Therefore, we consider the variation of DIT moderate. 

Answer to RQ1: Thresholds for the same metric may vary from 

1.3x (CBO) to 4.1x (WMC) for the 90% cut, and from 1.5x 

(CBO) to 4.8x (WMC) for the 95% cut. We have not observed 

high variation of thresholds only for Number of Children (NOC). 

Therefore, we conclude that the metric thresholds are typically 

sensitive to the software domain. 

5.2  RQ2: Similar Thresholds across Domains 

We analyze similar thresholds across different domains for each 

metric. The main reason for this analysis is to identify whether and 

which domains can be grouped to promote more reliable 

benchmarks. In addition, if different domains have similar 

thresholds for the same metric, it means that some metric thresholds 

can be reused across domains. 

For this analysis, we cluster thresholds for each metric into three 

levels according to how high these values are. Table 7 uses grey 

scale to indicate domains (rows) with low, medium, and high 

thresholds for each metric (columns). In Table 7, light grey boxes 

mean lower thresholds, grey boxes mean medium thresholds, and 

dark grey boxes mean high thresholds. Based on Table 5, we jointly 

analyzed both the 90% and 95% thresholds to determine if the metric 

threshold is low, medium, or high for a domain. For instance, 

Accounting domain has high thresholds for 6 metrics (LOC, NOA, 

NOM, WMC, LCOM and CBO), medium thresholds for DIT, and 

low thresholds only for NOC. 

It is interesting to observe that Accounting and Business domains 

have the same levels of thresholds for all eight metrics (i.e., same 

colors in corresponding boxes). This result means that these two 

domains are very similar in terms of measurement. Therefore, if 

someone derives thresholds for a set of Accounting systems, these 

thresholds are expected to be reliable to be used for detecting 

technical debts in Business systems, for instance. As discussed 

before, one reason for this similarity is because both domains 

involve broader trade fields. In addition, they are usually large and 

complex systems as indicated by high threshold for most metrics. 

Other pairs of similar domains in terms of metric thresholds are: 

Education and Home, Free Time and Development, Dictionary and 

Science & Engineering, and Dictionary and Localization. The 

explanation for similar thresholds vary in a case by case basis. For 

instance, Education and Home in our dataset have some of the 

smallest and simplest systems. Therefore, these domains share low 

thresholds for most metrics. On the other hand, Free Time and 

Development tend to be heterogeneous, but both are used in many 

situations. For instance, Free Time is often used for entertainment 

and leisure purposes, while development must support a variety of 

scenarios for completing development projects. An interesting 

similarity is between Dictionary and Localization systems, although 

these domains deal with completely different requirements, we 

observed that they share some similar coding styles. For instance, 

Dictionary and Localization systems have large methods coupled to 

several API classes. This characteristic makes them similar in terms 

of metrics and thresholds. This explanation can also be given to the 

similarity between Dictionary and Science & Engineering. 

Table 7: Low, Medium and High Levels for each Metric 

 LOC NOA NOM WMC LCOM CBO DIT NOC 

Acc                 

Bus                 

ScE                 

Gam                 

Hea                 

Mes                 

Rest                 

Dev                 

FT                 

Dic                 

Loc                 

Com                 

EC                 

Edu                 

Hom                 

 

Number of Children (NOC) has similar – and low – thresholds 

for all domains. In fact, the 90% thresholds are always 0 for all 

domains while the 95% threshold is either 0 or 1. We observed in 

the distribution of NOC that its values only vary largely if we select 

the 3% to 1% classes with more children (i.e., the 97% to 99% 

thresholds). This result means that only 1% to 3% of classes in a 

system usually have more than one subclass. Therefore, when 

defining threshold for NOC, someone needs to consider this 

particularity of this specific metric. 

Answer to RQ2: Some domains have similar thresholds for the 

same metrics. This result implies that these domains can be 

grouped to promote more reliable benchmark-based threshold 

derivation. Accounting and Business are examples of domains 

with similar thresholds for all metrics.  

5.3  RQ3: Impact of System Size on Thresholds 

This section discusses if the size of the systems which compose 

a benchmark affects the metric thresholds. It so, in addition to 

domains, the system size should be considered when building 

benchmarks for quality assessment. For instance, metrics-based 

code smell detection tools should consider the size of the systems in 

this case. Otherwise, they might use overly high thresholds for small 

systems, and vice versa. 

To investigate RQ3, we build four balanced benchmarks with 

different system sizes and compare the derived thresholds. The first 

one is Qualitas Corpus [32] which is a benchmark composed of 111 

large Java systems, such as Eclipse, Netbeans, and Ant. The second 

one is the AllSystems benchmark which includes all 3,107 

heterogeneous systems of this study that we mined from GitHub. 

The third benchmark, named MediumSystems, is a subset of 

AllSystems comprising 20 systems per domain and, making 300 

systems in total. Our aim was to exclude outlier (too large or too 

small) systems in this benchmark of medium-sized systems. 

Therefore, we only selected 10 systems immediately above and 10 
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systems immediately below the median of each domain in terms of 

LOC. The fourth benchmark, SmallSystems, is also a subset of 

AllSystems with 20 systems per domain (i.e., 300 systems in total). 

However, in this case we randomly selected systems below the 

median LOC for each domain. For instance, all 20 Health systems 

in SmallSystems have between 1,000 LOC (selection quality 

criterion) and 4,786 LOC. Since three domains (E-Commerce, Free 

Time, and Science & Engineering) have less than 40 systems and we 

have the criterion of 20 systems per domain, SmallSystems has 

exactly the 20 smallest systems for these three domains. 

Table 8 presents the results of the 95% thresholds for the four 

benchmarks described in the previous paragraph. This table focuses 

on 7 metrics because we have not observed difference for NOC; i.e., 

its 95% thresholds are either 0 (SmallSystems and MediumSystems) 

or 1 (Qualitas and AllSystems). The results in Table 8 shows that 

larger systems have higher thresholds for all metrics. For instance, 

in the case of LOC, the 95% thresholds are 602, 599, 315, and 286 

for Qualitas Corpus, AllSystems, MediumSystems, and 

SmallSystems, respectively. 

Table 8: Thresholds for Different Benchmarks 

 LOC NOA NOM WMC LCOM CBO DIT 

Qualitas 602 16 34 111 406 20 6 

AllSystems 599 18 37 125 475 22 5 

MediumSyst. 315 13 23 59 168 17 4 

SmallSystems 286 12 20 52 129 15 4 

 

In fact, we already expected that larger systems have higher 

thresholds for size metrics, such as LOC, NOA, and NOM. 

However, it is interesting to observe that the system size has also 

affected the thresholds of complexity and inheritance metrics. This 

result contradicts previous studies [10, 33] that claim metrics like 

CBO and DIT do not have a high correlation with LOC. In fact, we 

observe that larger systems have both more complex classes and 

denser use of inheritance relationships. In addition, we observed in 

Table 8 that Qualitas Corpus and AllSystems have similar 

thresholds, although they do not have any system in common. This 

observation suggests that if the benchmark is composed of a high 

enough number of heterogeneous systems (i.e., from different 

domains and sizes), the metrics thresholds tend to be comparable. 

Answer to RQ3: The size of the systems that compose the 

benchmark influences the metric thresholds. Benchmarks with 

larger systems yield higher thresholds for all metrics. 

Furthermore, benchmarks composed of many heterogeneous 

systems in terms of size and domains tend to have similar 

thresholds. 

6  CODE SMELL DETECTION EVALUATION 

Code smells describe a technical debt where there are hints that 

suggest a flaw in the source code [31]. For instance, one of the most 

well-known code smell, God Class, is defined as a class that knows 

or does too much in the software system [9, 12]. God Class is a 

strong indicator of technical debt because this component is 

aggregating functionality that should be distributed among several 

components. In fact, previous work has found that this code smell is 

related to maintenance problems, such as bugs [11], design flaws 

[24, 25], and instability [8].  

This section evaluates the God Class detection by comparing the 

thresholds derived from each domain with the thresholds derived 

from AllSystems benchmark. The first set we call domain-specific 

thresholds and the second set we call generic thresholds. The 

evaluation consists of comparing precision and recall of both sets in 

God Class detection. To perform this evaluation, we followed four 

steps. First, we randomly selected 43 systems from all 15 domains 

explored in this study and built an oracle of God Class instances for 

these systems (Section 6.1). Second, we used the metric-based 

strategy to identify God Classes and, then, to compute precision and 

recall (Section 6.2). Finally, we analyzed the effectiveness results 

for detecting code smells to answer RQ4 (Section 6.3). 

6.1 Dataset for Code Smell Analysis 

To build the Smell Dataset, we randomly selected 43 systems 

using two criteria: (i) at least two systems per domain; (ii) systems 

that compiles in Eclipse IDE. The first criterion is to have a sample 

that covers all domains and the second one is to address tool support 

limitations. This dataset is then composed by 3 systems per domain, 

except two domains (E-Commerce and Free Time) which we only 

found 2 systems that match the second criterion. 

Oracle Creation. For each system of our Smell Dataset, we built an 

oracle of true positive instances. The oracle can be understood as the 

reference list of the actual smells found in a system. This oracle is 

the basis for determining whether the derived thresholds are 

effective in the identification of God Classes. In order to provide a 

reliable oracle, we run three well-known code smell detection tools 

(JDeodorant [20], JSpirit [35], and PMD [11]) for all target systems 

and build a list with possible anomalies pointed by these tools. Then, 

at least a pair of authors analyzed each class pointed as God Class to 

validate our oracle. This manual validation consisted of the answer 

of four questions (Does the class have more than one responsibility? 

Does the class have functionality that would fit better into other 

classes? Do you have problems summarizing the class responsibility 

in one sentence? Would splitting up the class improve the overall 

design?) with a confidence rate varying from 1 to 5. These four 

questions were based on questions of a previous study [29]. In the 

cases we had a disagreement between the two evaluators or an 

average confidence score small than 3, a third evaluator checked the 

class and the three evaluators discussed to reach a consensus. The 

oracle validation questions and the complete reference list can be 

found in our support website [30]. 

6.2 Metric-based Detection Strategy and 

Measurement of Effectiveness 

Metrics are often too fine-grained to comprehensively quantify 

technical debt [16]. To overcome this limitation, metric-based 

detection strategies have been proposed [19]. This work selected and 

adapted a detection strategy from the literature to identify God Class 

[24], presented in Fig. 2. There are two main reasons to use such 

strategy. First, it has been evaluated in other studies and presented 

good results for the detection of God Class [24]. Second, this 

detection strategy defines a straightforward way for identifying 
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instances of God Class by combining four different metrics. In fact, 

we adapted its original definition based on the metrics we investigate 

in this paper, but the adapted detection strategy captures the same 

quality characteristics from the original work [16, 19].  

 

 

Figure 2: God Class Detection Strategy. 

We use precision and recall as a proxy for effectiveness in code 

smell detection. Recall measures the fraction of relevant classes 

listed by the detection strategy using a set of thresholds. Relevant 

classes are classes that appear in the oracle. Precision measures the 

ratio of correctly detected code smells by the total classes listed. To 

compute precision and recall we need to know the values of true 

positives (TP), false positives (FP), and false negatives (FN). TP and 

FP quantify the number of correctly and wrongly identified code 

smells by the detection strategy compared to the oracle. FN, on the 

other hand, quantifies the number of code smells the detection 

strategy missed out from the oracle. The computation of recall and 

precision is: Recall = TP / (TP + FN) and Precision = TP / (TP + 

FP). Recall and precision vary from 0 to 1 and higher values are 

related to better effectiveness. 

6.3 RQ4: Effectiveness of Thresholds for Code 

Smell Detection 

In this section, we answer and discuss RQ4 (Are domain-specific 

thresholds better than general thresholds for code smell detection?). 

To do that, we computed precision and recall as just described. 

Analyzing the results presented in Table 9, domain-specific 

thresholds did not always get the best results in such evaluation. In 

terms of precision, domain-specific thresholds were better in 3 

cases, and technically equal in other 5 cases. We considered 

technically equal, cases that the difference is smaller than 5%. In 

terms of recall, the results are more exciting since domain-specific 

thresholds are better in 8 cases and technically equal in other 5 cases. 

We use bold to show which is better in the pairwise comparison. 

High precision means that the detection strategy indicated more 

relevant than irrelevant code smells. High recall, on the other hand, 

means that the detection strategy was able to identify most code 

smells in the system. Hence, a large number of false positives (high 

recall) are preferred over a large number of false negatives (high 

precision) by software engineers, because manual inspection, which 

is inevitable, tends to uncover false positives. Therefore, considering 

that recall is higher for domain-specific thresholds in 8 domains, we 

conclude that domain-specific thresholds fared better in detecting 

code smells than generic thresholds. 

Still talking about Table 9 and considering the four categories 

presented in Section 4, higher thresholds got higher precision and 

lower recall than generic thresholds. Exactly, the opposite result for 

low thresholds category. For the intermediate categories is harder to 

conclude something, but it tends to follow low thresholds category 

where generic thresholds achieved higher precision and domain-

specific higher recall. Therefore, the classification of domains 

presented in Section 4 should be considered for selecting the most 

appropriate thresholds for software quality evaluation. 

Table 9: Precision and Recall using Domain-Specific and 

Generic Thresholds 

  Precision Recall 

Cat. Dom. DS G DS G 

All 

High 

Acc 1.00 0.75 0.20 0.60 

Bus 0.00 0.00 0.00 0.00 

ScEng 0.88 0.82 0.58 0.75 

      

High 

Size  

Gam 0.05 0.09 0.67 0.67 

Hea 0.50 0.75 0.36 0.27 

Mes 0.40 1.00 0.40 0.20 

Res 0.25 0.00 0.25 0.00 

      

High 

Compl

extiy  

Dev 0.67 0.76 0.94 0.94 

FT 0.43 0.75 0.50 0.50 

Dic 0.00 0.00 0.00 0.00 

Loc 0.64 0.67 0.69 0.46 

      

All 

Low 

Com 0.58 0.68 0.83 0.72 

EC 0.03 0.00 0.50 0.00 

Edu 0.54 0.80 0.54 0.31 

Hom 0.79 0.89 0.85 0.62 

 

Answer to RQ4: In terms of recall, domain-specific thresholds 

are usually better than generic thresholds for most domains. 

7  THREATS TO VALIDITY 

Our empirical study, like others, has some potential threats to 

validity. Hence, we discuss the main actions we have taken to 

mitigate their impact on the research results. 

Internal and Conclusion Validities. There are two main threats to 

internal validity: the selected domains and measurements. 

Regarding the first threat, we might have not selected the best or 

more representative software domains. We selected these domains 

because they are consolidated and we expect to get high quality and 

frequently used systems. In addition, we have also filtered systems 

with more than 1,000 lines of code. For measurements threat, we 

may get false or wrong measures for the target software systems. We 

quantify eight metrics for all systems that compose this study and 

we also derive thresholds for these metrics. Aiming to make these 

measurement processes easier, we used a specific tool presented in 

another study [34]. In addition, we also made some tests to check if 

the results of this tool were as expected. 

External and Construction Validities. There are four external 

threats to validity of our study. First, it is not possible to ensure that 

the select systems reflect the best samples of the recurrent practices. 

To reduce this risk, we filter the total amount of systems by number 

of stars and lines of code. Second, the systems that compose our 

dataset are developed in Java. However, for other programming 

languages or technologies similar results can be found. Third, our 
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results are restricted for the set of metrics we selected, but we believe 

that similar results can be also found for metrics that quantify similar 

quality attributes or characteristics. Finally, even though we have 

presented a large-size study, additional replications are necessary to 

determine if our findings can be generalized to other domains and 

dataset of systems. We described the main actions to minimize 

possible threats regarding the oracle creation, detection strategies, 

and how we built our benchmarks in Sections 6.1 and 6.2. 

8  CONCLUSIONS AND FUTURE WORK 

This paper presented an empirical study on domain-specific 

thresholds. We conducted the study by selecting and measuring 

3,107 software systems from 15 software domains. Once we have 

the measurements, we derived 90% and 95% thresholds for each 

metric per domain and analyzed them in different ways. For 

instance, we compared the thresholds among domains and 

investigated the effectiveness of code smell detection between 

domain-specific and generic thresholds. The results indicate that 

metric thresholds are sensitive to software domain. For example, 

some metrics may vary across domains from 1.5x to 4.8x for the 

95%. Moreover, we observed that not only the domains, but also the 

size of the systems that compose the benchmark is a factor that affect 

the metric thresholds. That is, the results corroborate with the claim 

that benchmarks composed of heterogeneous systems tend to have 

similar thresholds. Finally, in terms of recall, we collect evidence 

indicating that domain-specific thresholds are better than generic 

thresholds on average for code smell detection. 

For future work, we plan further investigation with additional 

technical debts and additional replications of this study to determine 

whether our findings can be generalized to other domains and 

systems. In addition, we are also considering commercial software 

systems to confirm whether and how thresholds vary across domains 

and their impact on technical debts. 
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