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ABSTRACT

Software metrics and thresholds provide means to quantify several
quality attributes of software systems. Indeed, they have been used
in a wide variety of methods and tools for detecting different sorts
of technical debts, such as code smells. Unfortunately, these
methods and tools do not take into account characteristics of
software domains, as the intrinsic complexity of geo-localization
and scientific software systems or the simple protocols employed by
messaging applications. Instead, they rely on generic thresholds that
are derived from heterogeneous systems. Although derivation of
reliable thresholds has long been a concern, we still lack empirical
evidence about threshold variation across distinct software domains.
To tackle this limitation, this paper investigates whether and how
thresholds vary across domains by presenting a large-scale study on
3,107 software systems from 15 domains. We analyzed the
derivation and distribution of thresholds based on 8 well-known
source code metrics. As a result, we observed that software domain
and size are relevant factors to be considered when building
benchmarks for threshold derivation. Moreover, we also observed
that domain-specific metric thresholds are more appropriated than
generic ones for code smell detection.
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1 INTRODUCTION

Software metrics have been pragmatic means to detect technical
debt and improve software products since the dawn of software
engineering [1, 7]. Several studies have proposed and evaluated the
usefulness of software metrics for practitioners [3, 15, 16, 18], for
instance, to indicate technical debt in software systems [16]. As a
result, developers may pay the debt by checking if there is something
wrong in the system design or code and fixing anomalies to avoid
future maintenance issues.

Nevertheless, the effective measurement of software systems is
directly dependent on the definition of appropriate thresholds [1,
33]. Software metric thresholds allow us to objectively characterize
or classify each entity (i.e., class or method) according to one of the
software metrics. Different strategies and methods to derive
thresholds have been proposed and, over the years, they have
become more straightforward and systematic [33]. The current
practice for deriving thresholds is to use a set of similar systems,
named benchmarks, and follow a well-defined method [1]. The idea
behind the use of benchmarks is to use information from similar
systems (e.g., same programming language) to help deriving
meaningful metric thresholds.

Unfortunately, existing methods and tools to derive thresholds
either do not consider the intrinsic characteristics of software
systems in each domain [1, 33] or provide a superficial analysis on
thresholds for software domains [10]. That is, they ignore the fact
that systems from different domains may have different degrees of
complexity and size, for instance. As a result, even when a robust
and pragmatic method is used, the derived thresholds can be
inappropriate or meaningless.

This paper presents a large-scale empirical study to investigate
whether and how thresholds vary among systems of different
domains. We argue that the definition of appropriate metric
thresholds needs to be tailored by each software domain. For
instance, business systems require different thresholds of health
systems, or the detection of technical debts might be imprecise.
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Therefore, we defend the idea of domain-specific thresholds, given
that systems from different domains may have distinct
characteristics (e.g., localization systems can be more coupled than
education systems) and, it may impair the derived metric thresholds.

This study relies on fifteen software domains composed of
object-oriented Java systems. We apply to each system a set of eight
well-known source code metrics [3, 16, 18]. After applying the
measurements, we derived 90% and 95% thresholds for each metric
per domain, compared, and analyzed them in different ways. For
instance, we compared the thresholds among domains and analyzed
the effectiveness of code smell detection between domain-specific
and generic thresholds. Generic thresholds are derived from
heterogeneous systems from several domains.

Our results confirm our intuition that metric thresholds vary
across domains and most domain-specific thresholds differ from
generic thresholds. However, we also found some similarities
among thresholds from different domains. For instance, the
thresholds from Business and Accounting domains are very similar,
especially for size metrics. Furthermore, we saw that the size of the
systems that compose each benchmark also affects the thresholds. In
particular, we verified that all metrics have higher thresholds when
larger systems are used to compose the benchmark. Finally, our
analysis indicates that domain-specific thresholds are better than
generic thresholds to detect code anomalies.

Overall, our contributions are:

e A large-size empirical study with more than 3 K systems to
explore threshold derivation with the corresponding
measurements for eight well-known software metrics [30].

e  Empirical evidence that the domain and size are factors to
consider when building benchmarks for threshold derivation.

e An observation that some domains have characteristics in
common and, in essence, these domains can be grouped to
promote more reliable benchmarks, or thresholds can be
reused across similar domains.

e Areference list of code smells for 43 systems in 15 different
domains [30].

e An empirical comprehension that domain-specific thresholds
are better than generic thresholds for code smell detection.

2 BACKGROUND AND RELATED WORK

This section presents important concepts to understand this study, as
well as, related work that explores software metrics, metric
thresholds, and software domains.

Software metrics. One of the oldest cliché phrases in business is
“You cannot manage what you cannot measure” [7]. It might not be
always true, but measurements surely support project managers
improving their products or processes [7]. In software engineering,
researchers and practitioners are always looking for better ways to
predict the number of faults, errors, and the effort to complete a task
[15]. In this sense, many metrics have been proposed to measure
technical debts in software products aiming at better controlling,
assessing, and improving their quality. Examples of well-known
metrics [15] to measure software products are Lines of Code [18],
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McCabe Cyclomatic Complexity [21], Coupling between Objects
[3], and Depth of Inheritance Tree [3].

Metric thresholds. Despite the importance of software metrics, just
their use is not enough because we need to know when a target
metric starts to become an outlier or a problem in the software design
or code. To overcome this problem, software engineers define or
derive thresholds for their software metrics. Thresholds allow us to
characterize objectively or to classify each component according to
one of the quality metrics [33].

There are several methods and strategies to derive metric
thresholds [1, 3, 5, 6, 13, 21, 23, 26, 28, 34]. In the past, thresholds
were calculated based on experience of software engineers or using
a single system as a reference [3, 21]. Nowadays, thresholds have
been derived from benchmarks and calculated based on well-defined
methods. For instance, Alves et al. [1] proposed a method that
weight software metrics by lines of code. The method aims at
labeling each entity of a system based on thresholds. Each label is
based on a fix and predetermined percentage of entities. Similarly,
Ferreira et al. [10] presented a simple method for calculating
thresholds. The method consists in grouping the extracted metrics in
a file and gets three groups, with high, medium, and low frequency.
Oliveiraetal. [23] propose a method based on the concept of relative
thresholds. Their method consists in the formula called Compliance
Rate and this formula considers the median of each system in the
benchmark to derive thresholds. Vale et al. [34] derive thresholds
based on lessons learned from a comparison of Alves’, Ferreira’s
and Oliveira’s methods and provide upper and lower-bound
thresholds in four different labels. Unlike Alves’ method, Vale’s
method does not correlate metrics for deriving thresholds [33].

Software domains. Some studies [17, 22, 27] have grouped
software systems based on domains because somehow, they believe
these systems share similar characteristics and differ from systems
of other domains. For instance, Ray et al. [27] grouped systems in 7
different domains to check if language defect proneness depends on
the software domain. Linares-Vasquez et al. [17] grouped systems
in 13 domains to investigate the relationships between the presence
of smells and quality-related metrics. Murphy-Hill et al. [22]
compare the development of game (domain) with the development
of other software systems (from other domains). These three studies
have found that software domains matter in their analysis. For
instance, Linares-Vasquez et al. observed that anti-patterns have
different frequency in the different application domains and
Murphy-Hill et al. [22] observed that the development of games
differs from other software systems in several ways, such as the type
of requirements, software design, and software quality. Like these
studies, we share the idea that systems from the same software
domain have similar characteristics. Unlike them, we use systems
from similar domains to analyze metric thresholds.

Benchmark and threshold analysis. There are also studies
analyzing benchmarks and thresholds, as we do in this work. The
benchmark of previous studies [1, 10, 23, 33, 34] varies from 14 to
106 systems. For instance, Vale et al. [33] investigate three small
benchmarks with 14, 22, and 33 configurable software systems.
Instead, we used a larger benchmark in this work which is composed
by more than 3K systems. Alves et al. [1] rely on a benchmark
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composed by two programming languages (Java and C#) while
Ferreira et al. [10] performed an analysis regarding domains, types,
and size in their benchmark. Unlike these studies, we analyzed a
larger number of systems (3K against 40), metrics (8 against 5) and
domains (15 against 11).

3 STUDY SETTINGS

This section describes our research questions and experimental
steps. We explain how we built our dataset and how we perform the
measurement and threshold derivation.

3.1 Research Questions and Experimental Steps

This study aims to investigate (i) whether metric thresholds vary
across systems of different software domains, (ii) if metric
thresholds vary across systems of different sizes, and (ii) if domain-
specific thresholds are better than generic thresholds for detecting
code smells. We assume that some characteristics of each domain
affect the systems and measures, so it may impair the derived
thresholds. Given this assumption, we defined four research
questions (RQs) as follows.

RQL1. Do thresholds for the same metric vary among different
software domains?

RQ2. Are there metrics with the same thresholds regardless of
the software domain?

RQ3. Does the system size impact on the derived thresholds?

RQ4. Are domain-specific thresholds better than general
thresholds for detecting the God Class code smell?

We expect our findings to provide evidence that software
domains and the system size should be considered when building
benchmarks, for instance, to identify technical debts. For example,
inaccurate thresholds may influence negatively the derived metric
thresholds by providing meaningless values about singular software
domain. Regarding the empirical steps, Fig. 1 presents an overview

of this study described below.
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Figure 1: Experimental steps for the analysis of thresholds.

First, we built our dataset by mining open-source systems from
GitHub (Step 1). We then measured the source code of each system
using CK Tool [4] (Step 2). Once measured all systems, we derived
metrics thresholds using TDTool [34] (Step 3). Finally, we analyzed
the results and evaluated the effectiveness of domain-specific
thresholds to detect code smells compared to generic thresholds
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(Step 4). The first three steps are described in the following sub-
sections and the data analysis is described in Sections 4 to 6.

3.2 Selected Systems and Domain Classification

Table 1 presents and describes the 15 domains explored in this
study with the number of systems per domain (last column). We
choose these domains for the following reasons. First, they are well-
defined in terms of requirements and, most of these domains have
been used in previous studies [10, 17, 22], therewith, we believe that
they are representative. Second, they encompass several types of
systems (e.g., frameworks and tools. Third, there is a significant
number of systems in these domains publicly available in GitHub.

Table 1: Description of Domains in Our Dataset

Domain Description #

Accounting (Acc)  Systems that record and process accounting 216
transactions, such as accounts payable and

receivable, payroll, and trial balance.

Business (Bus) Systems that implement validation, calculation, 368
and law regulations of business requirements, such

as pricing, and inventory management.

Communication Systems that manage connections between server 266

(Com) and clients, using protocols to share information.

Development Software tools that support developers to 528

(Dev) implement projects in general.

Dictionaries (Dic) ~ Software tools used to translate a variety of 130
languages.

E-commerce (EC)  Systems in charge of supporting the transactions of 34
products buying and selling, as well as providing

services to consumers.

Education (Edu) Systems used by students to manage their study life 165

and by managers to administrate their schools.

Free Time (FT) Entertain systems or applications which provide 28

information for joy, such as travel information.

Games (Gam) Entertainment games that can be played alone orin 452

collaboration.

Health (Hea) Systems that offer health-related services to people 279

in general.

Home (Hom) Systems that control basic many home devicesand 160

services.

Localization (Loc) Show local information normally based on GPS. 70
Some of them display maps and location sensitive
data for users.

Messaging (Mes)  Systems that allow the users to send messages from 66

one client to another.

Restaurant (Res) Systems that provide different services for both 326

managers and users of food houses.

Science & Systems designed to aid users in several fields of 19
Engineering (ScE)  science and engineering, such as 3D visualization
and data analysis.

Mining and Classification. We mined systems from GitHub to
compose our dataset in October 2017. For each domain, we collected
up to 1,000 by automatically searching the project name and
description for keywords that match the domain name. For instance,
we collected 34 e-commerce systems by searching for “e-
commerce” or “ecommerce”. Whenever more systems have been
returned by the GitHub search, we selected the first 1,000 systems
in the descending order of stars. In GitHub, stars are a meaningful
measure for repository popularity. We developed and iteratively
tested a script that automatically searches relevant systems and
applies a set of criteria. For instance, we excluded systems with less
than 1,000 lines of code because we considered them toy examples
or incipient software projects. In addition, we focus in Web and

3
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Desktop-based Java systems and, therefore, we removed other
projects (e.g., mobile apps) because they tend to have a different
architectural design. Finally, we manually validated the collected
systems by checking the project name and readme file and excluded
the wrongly classified systems. As a result, the dataset used in this
study includes 3,107 software systems in the 15 domains, with at
least 19 systems per domain.

Table 2 summarizes the descriptive statistics of our dataset
focusing on the source lines of code per domain (excluding code of
test cases). The software systems diverge largely in lines of code,
while the smallest software system in every domain has about 1,000
LOC (due to the criteria described above), the largest system by
domain vary from about 26,633 LOC in the E-Commerce domain to
over 7 MLOC in the Business domain. We can also observe a
considerable variance (i.e., standard deviation) and that data do not
follow a normal distribution. In fact, all domains follow a right
skewed distribution for lines of code. This considerable difference
among domains corroborates with our assumption that systems in
one domain might be more complex than systems in other domains,
for instance. Therefore, metric thresholds should be tailored to each
specific domain.

Table 2: Lines of Code per System Domain

Domain Min Max Mean Median SD
Acc 1,003 1,938,805 83,358.40  4,984.00 308.704,89
Bus 1,011 7,822,498 130,576.84  6,402.50 775.923,96
Com 1,006 1,351,323  37,604.28  5,042.00 125.570,70
Dev 1,153 1,498,869  69,427.47 16,931.50 161.547,59
Dic 1,016 472,642  14,307.52  3,556.00 47.758,51
EC 1,104 26,633 6,298.76  3,133.50 7.340,34
Edu 1,025 1,170,720  26,440.87  5,204.00 102.033,91
FT 1,047 284,220  45509.96  4,511.00 84.510,30
Gam 1,009 546,748  17,989.02  4,877.50 49.593,35
Hea 1,025 1,446,807 27,161.00  4,790.00 109.778,74
Hom 1,022 299,898  29,538.95  9,119.50 53.988,07
Loc 1,054 859,393  40,062.38 12,015.50 110.306,52
Mes 1,000 160,297  14,648.90  3,891.00 29.911,82
Res 1,063 151,814 7,639.50  2,951.50 18.216,42
ScE 1,028 439,747  36,939.84  8,649.00 100.667,62

Table 3: Number of Classes per System Domain

Domain Min Max Mean Median SD
Acc 3 10,125 349.07 50.00 1061.97
Bus 1 12,470 471.92 65.50 1624.18
Com 3 8,379 249.99 49.00 753.12
Dev 3 8,735 472.20 167.50 962.62
Dic 4 2,296 87.76 30.00 234.74
EC 7 301 80.52 46.00 83.86
Edu 2 5,641 225.33 66.00 586.22
FT 10 2,128 296.67 42.00 564.69
Gam 1 2,439 116.40 45.00 221.61
Hea 3 5,322 186.50 51.00 592.33
Hom 4 2,798 238.14 83.50 426.75
Loc 4 4,041 222.97 57.50 540.42
Mes 1 980 100.00 44.50 192.06
Rest 4 1,263 62.31 35.00 114.14
ScE 12 1,528 184.42 78.00 358.14

Similar to Table 2, Table 3 shows descriptive statistics for the
number of classes and interfaces in systems of each domain. In
general, we can observe a considerable difference among systems
4
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inside a domain. For instance, while the median is 167.50 classes in
the Development domain, the largest system in this domain has more
than 8K classes. Considering the median per domain, Development
has the largest systems in terms of classes and Dictionary has the
smallest ones. On the other hand, the largest system, in terms of
number of classes, belongs to the Business domain, containing more
than 12K classes. Based on these observations, it is also expected
that the variation among domains reflects in software metrics and,
in their thresholds.

3.3 Measurement and Threshold Derivation

This study investigates domain-specific thresholds for eight
metrics. We used a measurement tool, CK Tool [4], to compute the
source code metrics. CK tool measures Java programs by means of
static analysis and it supports all metrics used in this study. Table 4
presents the target metrics, showing their names and a brief
description. We choose these metrics because: (i) they capture
different attributes of software systems, such as size, complexity; (ii)
they are well-known object-oriented software metrics [15]; and (iii)
they have been often used by researchers and practitioners to
measure several technical debts and quality attributes [3, 15].

Table 4: Software Metrics for Technical Debt Detection

Metric Description
Lines of Code Measures the number of lines of code per class. It

(LOC) [18] counts neither comment lines nor blank lines.

Number of - ] .
& Attributes (NOA) Quantifies the number of fields and constants in
%) a class.

[18]

Number of Methods ~ Quantifies the number of methods and

(NOM) [18] constructors in a class.

Weighted Method Counts the number of methods in a class

per Class (WMC) weighting each method by its cyclomatic

[3] complexity [21].

g Lack of Cohesion in  Divides (i) the pairs of methods in a class that do
& Methods (LCOM) not access any attribute by (ii) the pairs of
g' [3] methods in a class that do access attributes in
S8 common.

Coupling Between Counts the number of classes that are coupled to

Objects (CBO) [3] a class, by calling methods or accessing attributes

of the other classes.

Depth of Inheritance  Counts the number of levels that a subclass
§ Tree (DIT) [3] inherits methods and attributes from a superclass
8 in the inheritance tree.

E Number of Children  Counts the number of direct subclasses of a given
c

(NOC) [3] class. This metric indicates software reuse by

means of inheritance.

We present now the method and tool used in this paper to derive
metric thresholds. The selected method, supported by TDTool [34],
proposes the threshold derivation in five steps. First, metrics are
extracted from each benchmark of software systems presented in
Table 2. After the measurement, we computed the weight percentage
for each entity within the total number of entities (2nd step). We then
sorted the metric values in ascending order and used the maximum
metric values to represent 1%, 2%, up to 100%, of the weight (3rd
step). In the 4th step, we aggregated all entities per metric value.
Finally, we selected thresholds in the 5th step to represent the labels
high (90%) and very high (95%). In this paper, we focus on these
two top-threshold values (i.e., 90% and 95%) because the



Evaluating Domain-Specific Metric Thresholds

differences are higher for these labels making the analysis more
applicable. We choose this method because it is supported by a
software tool, making the threshold derivation process easier. In
addition, the method was proposed based on lessons learned from a
comparison of other methods [33].

4 RESULTS

This section presents the derived thresholds for each domain on
the dataset presented in Section 3.2. Table 5 shows the threshold
values for 90% and 95% for each software metric and domain
analyzed. We classify domains with similar characteristics into four
categories to make our discussions more direct and to support us
answering RQ1 and RQ2 in Section 5. The following topics describe
the four categories.

All High thresholds. As the name suggests, this category present
high thresholds for all analyzed metrics when comparing the derived
thresholds of all domains studied. Columns 3 to 5 of Table 5 present
the thresholds for the three domains (Accounting, Business and
Science & Engineering) that composes this category. These data
show that the 5% largest classes (i.e., 95% threshold) in Accounting
systems have 981 or more lines of code. Interestingly, the 95%
threshold for Business is very similar to Accounting; that is, 928
lines of code. We speculate that the similarity of Accounting and
Business systems might be because these domains involve
heterogeneous systems in broader trade fields. In addition, systems
in this category tend to be large and complex. For instance, 10%
classes in Accounting systems with the highest lack of cohesion (i.e.,
90% threshold) present LCOM equals or higher than 317. This value
is the highest 90% threshold for LCOM among all domains. The
reason for this lack of cohesion in Account systems might be due to
the several unrelated functionalities controlled by this kind of
systems. For instance, Account systems deal with several changes
of tax and rules. We believe that these types of functionalities are
loosely coupled, which might result in low cohesive systems.

In the Science & Engineering domain, thresholds are not the
highest ones for any metric, compared to the other domains of this
category. However, these values are still high for LOC, NOM and
WMC compared to domains in other categories (see Table 5). In
fact, Science & Engineering systems usually involves complex or
extensive computations increasing lines of code and complexity.
Therefore, these systems naturally belong to this category.

High size thresholds. This topic discusses thresholds derived for
domains with large classes (i.e., many Lines of Code and Number of
Methods), but low complexity (i.e., few Weighted Method per Class
and Coupling Between Objects) when compared to the systems of
our dataset. This category includes four domains: Games, Health,
Messaging, and Restaurant. Table 5 also shows the threshold values
for these four domains in columns labeled High Size Thresholds.
Comparing thresholds of the previous category with the ones in this
category, we observe that thresholds do not vary much for the size
metrics (LOC, NOA, and NOM). For instance, all eight domains in
these categories have 18 attributes or more for the 95% NOA metric
threshold; the exception is Health systems with a 16-attribute cut for
95% threshold. In general, systems in these categories also have
more lines of code than systems in the other two categories (see next
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topics). For instance, apart from Restaurant, the systems from this
category show more than 382 LOC for the top-5% largest classes.
Classes in Restaurant systems are not much large in terms of LOC,
but they have high threshold values for the other size metrics (i.e.,
NOA and NOM). Hence, we decide to classify this domain in this
category instead of the last one with low thresholds.

Systems in this category are not highly complex in terms of
coupling (CBO), cohesion (LCOM), and weighted methods by
cyclomatic complexity (WMC) when compared to the first category.
For instance, while the 95% thresholds of LCOM are above 600 for
three out of four domains in the previous category, they are below
400 for four domains in this category. These results can be explained
by the fact that systems in this category usually involve simple, yet
large, functionalities. In addition, some of these domains, such as
Messaging and Restaurant, usually involve a clear set of simple
requirements; i.e., message and media exchange for messaging
systems or order registration and inventory management for
restaurant systems.

Health and Games systems have some particularities because
they present high coupling and high cyclomatic complexity,
respectively, compared to the other domains in this category. We
speculate that Health systems present higher CBO thresholds
because they might involve several cases (e.g., many symptoms) to
reach a conclusion (e.g., a disease). Therefore, these systems seem
highly coupled to other classes, such as domain-specific API classes,
using an initial code to provide the basic structure and requirements.
In the Games domain case, the result is expected since games usually
are computationally extensive involving long if-then-else statements
(or worst, long switch-case statements) [22]. In fact, we verified that
methods in games are commonly large and complex, although each
class has few methods. Therefore, this common practice for gaming
development contributes to higher WMC values, but lower values
for LCOM and NOM.

High Complexity. The current category includes domains with
small classes, yet high complexity. Four domains fall into this
category: Development, Free Time, Dictionary, and Localization.
Columns labeled High Complexity in Table 5 present the thresholds
derived for systems of this category. Software systems in this
category usually have classes with high thresholds for complexity
metrics, although thresholds are not very high for size metrics. For
instance, the 5% largest classes in systems of this and the previous
category have about 450 or more lines of code. Hence, they have
similar size in terms of LOC. On the other hand, systems in this
category are more complex than systems of the previous category at
least in CBO metrics. If we observe the 95% thresholds for CBO,
for instance, we see that these values are always higher than 21 in
this category and lower than 21 in the previous category.

It is interesting to observe, however, that the Dictionary and
Localization domains have some commonalities since they present
similar variation of thresholds for all metrics in general. For
example, the 10% and 5% classes with the highest complexity in
Dictionary domain present WMC very similar to the ones in
Localization domain; that is, around 63 and 111, respectively. In
contrast, despite being in the same category, Development systems
often have lower thresholds than Dictionary and Localization
systems for all metrics. We decided to classify Development in the
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Table 5: Metric Threshold per Domain Group

All High Thresholds High Size Thresholds High Complexity Thresholds All Low Thresholds
Metric % Acc Bus ScE Gam Hea Mes Rest Dev FT Dic Loc Com EC Edu Hom
LOC 90 541 527 456 310 289 296 255| 287 314 337 345 303 160 238 248
95 981 928 718 491 442 447 382| 450 464 575 589 467 232 378 403
NOA 90 14 12 11 11 10 11 12 8 9 11 10 10 8 9 8
95 21 21 19 18 16 18 19 13 14 17 17 16 11 14 13
NOM 90 34 30 23 20 19 18 18 19 19 21 21 18 17 19 17
95 46 53 36 31 29 27 25 29 29 33 31 26 24 29 27
WMC 90 123 98 88 59 43 52 41 51 49 63 75 52 30 43 44
95 236 232 148 100 73 81 62 86 80 111 132 92 49 73 76
LCOM 90 317 253 148 120 136 126 134| 117 104 136 159 85 91 120 91
95 741 742 392 330 351 344 256 | 302 276 405 378 219 218 311 248
CBO 90 15 16 16 13 15 12 11 15 16 15 15 14 13 14 13
95 23 23 23 18 20 18 15 22 21 22 21 20 17 20 19
DIT 90 3 4 4 4 3 5 6 4 4 5 4 4 2 3 3
95 5 B 5 5 5 6 6 5 5 6 5 4 2 4 4
NOC 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
95 0 0 1 1 0 0 0 1 1 1 1 0 0 0 0
current category, instead of the last one, because systems in this
domain seem more complex than systems in the last category for at 5.1 RQ1: Threshold Variation across Domains

least two out of three complexity metrics (WMC and CBO).

All Low Thresholds. This category consists of domains with low
thresholds for most of the eight metrics compared to the other
domains/categories. It is composed by four domains
(Communication, E-Commerce, Education, and Home) presented in
the last four columns of Table 5. In particular, size metrics have
lower thresholds with respect to the first and second categories,
while complexity metrics have lower thresholds compared to the
first and third categories. Communication and Home domains have
larger systems in terms of LOC than E-Commerce and Education,
the other two domains in this category. For instance, the first two
domains have more than 403 LOC defined for the 95% threshold,
while the last two have 232 LOC and 378 LOC, respectively. This
observation suggests that E-Commerce and Education share the
common characteristics of holding the smallest classes in terms of
LOC considering all 15 analyzed domains.

Although not as small and simple as E-Commerce and
Education, the Communication and Home domains also have small
and simple classes. Classes in these domains have a particularly
small number of methods and attributes, when compared to other
domains. For instance, focusing on the 90% thresholds in Table 5,
we observed that Communication and Home domains have classes
with up to 18 and 17 methods (NOM), respectively. Their 90%
threshold values are 10 and 8 attributes (NOA), respectively. These
two domains also have simple classes in terms of WMC and LCOM.
With respect to coupling, these domains are in the middle; i.e.,
neither the lowest nor the highest thresholds for CBO. This result is
somehow expected for Communication because systems in this
domain manage relationship about different sub-systems, such as in
a Client-Server architecture [2].

5 DISCUSSIONS

This section discusses the first three research questions.

First, we investigate if thresholds for the same metrics vary on
different software domains. If so, it supports our assumption that
software domains should be considered when building benchmarks
for metrics-based quality assessment. To support our discussion, we
compare the highest to the lowest thresholds of each metric. Table 6
presents for each metric the lowest to the highest thresholds among
the 15 domains. It also shows, between parentheses, how many times
the highest threshold is greater than the lowest threshold. For
instance, the lowest 95% threshold for the LOC metric is 232 (see
E-Commerce in Table 5), while the highest 95% threshold for the
LOC metric is 981 (see Accounting in Table 5). The difference is
that the Accounting threshold is 4.2 times higher than the E-
Commerce threshold in this case.

The results in Table 6 show that the investigated thresholds
largely vary for all metrics; except Number of Children (NOC),
which we discuss in Section 5.2. Apart from NOC, all metrics have
a significant variation in the 90% and 95% thresholds. The metrics
with higher threshold variations are LCOM, WMC, and LOC. The
rate between the highest and the lowest thresholds in a domain is
about 3.4 times or higher for these 3 metrics. This large difference
between the highest and lowest thresholds suggests that LCOM,
WMC, and LOC are highly sensitive to the software domain.
Therefore, developers should be aware of this variation when using
thresholds for these metrics in software quality evaluation.

Table 6: Difference between Highest and Lowest Thresholds

% LOC NOA NOM WMC LCOM CBO DIT NOC
oo 160541 814 1734 30-123 85317 1216 26 00
(3.4) 17 (20 @1 @37 @3 (30 (v
g5 232981 1121 24-53 49236 218742 1523 26 01
“2) (19) (22) (48) (34 (15 (30) (na)

* Numbers between parentheses mean how many times the
highest value is greater than the lowest value

The rate between the highest and the lowest thresholds for NOA,
NOM, and CBO is about 2 times. This difference suggests that these
metrics are not as sensitive to the software domain as LCOM, WMC,
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and LOC. Yet, a difference of twice can be considered large,
depending on the evaluation goal. The DIT metric is an interesting
case. The threshold of DIT did not present large variation among
domains. For instance, the 95% thresholds of DIT varied between 3
and 6 (2 times) for 14 out of 15 domains. The only exception was E-
commerce with both 90% and 95% thresholds of 2 for DIT (see
Table 5). Therefore, we consider the variation of DIT moderate.

Answer to RQ1: Thresholds for the same metric may vary from
1.3x (CBO) to 4.1x (WMC) for the 90% cut, and from 1.5x
(CBO) to 4.8x (WMC) for the 95% cut. We have not observed
high variation of thresholds only for Number of Children (NOC).
Therefore, we conclude that the metric thresholds are typically
sensitive to the software domain.

5.2 RQ2: Similar Thresholds across Domains

We analyze similar thresholds across different domains for each
metric. The main reason for this analysis is to identify whether and
which domains can be grouped to promote more reliable
benchmarks. In addition, if different domains have similar
thresholds for the same metric, it means that some metric thresholds
can be reused across domains.

For this analysis, we cluster thresholds for each metric into three
levels according to how high these values are. Table 7 uses grey
scale to indicate domains (rows) with low, medium, and high
thresholds for each metric (columns). In Table 7, light grey boxes
mean lower thresholds, grey boxes mean medium thresholds, and
dark grey boxes mean high thresholds. Based on Table 5, we jointly
analyzed both the 90% and 95% thresholds to determine if the metric
threshold is low, medium, or high for a domain. For instance,
Accounting domain has high thresholds for 6 metrics (LOC, NOA,
NOM, WMC, LCOM and CBO), medium thresholds for DIT, and
low thresholds only for NOC.

It is interesting to observe that Accounting and Business domains
have the same levels of thresholds for all eight metrics (i.e., same
colors in corresponding boxes). This result means that these two
domains are very similar in terms of measurement. Therefore, if
someone derives thresholds for a set of Accounting systems, these
thresholds are expected to be reliable to be used for detecting
technical debts in Business systems, for instance. As discussed
before, one reason for this similarity is because both domains
involve broader trade fields. In addition, they are usually large and
complex systems as indicated by high threshold for most metrics.

Other pairs of similar domains in terms of metric thresholds are:
Education and Home, Free Time and Development, Dictionary and
Science & Engineering, and Dictionary and Localization. The
explanation for similar thresholds vary in a case by case basis. For
instance, Education and Home in our dataset have some of the
smallest and simplest systems. Therefore, these domains share low
thresholds for most metrics. On the other hand, Free Time and
Development tend to be heterogeneous, but both are used in many
situations. For instance, Free Time is often used for entertainment
and leisure purposes, while development must support a variety of
scenarios for completing development projects. An interesting
similarity is between Dictionary and Localization systems, although
these domains deal with completely different requirements, we
observed that they share some similar coding styles. For instance,
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Dictionary and Localization systems have large methods coupled to
several API classes. This characteristic makes them similar in terms
of metrics and thresholds. This explanation can also be given to the
similarity between Dictionary and Science & Engineering.

Table 7: Low, Medium and High Levels for each Metric

LOC NOA NOM WMC LCOM CBO DIT NOC

Edu

Hom

Number of Children (NOC) has similar — and low — thresholds
for all domains. In fact, the 90% thresholds are always 0 for all
domains while the 95% threshold is either 0 or 1. We observed in
the distribution of NOC that its values only vary largely if we select
the 3% to 1% classes with more children (i.e., the 97% to 99%
thresholds). This result means that only 1% to 3% of classes in a
system usually have more than one subclass. Therefore, when
defining threshold for NOC, someone needs to consider this
particularity of this specific metric.

Answer to RQ2: Some domains have similar thresholds for the
same metrics. This result implies that these domains can be
grouped to promote more reliable benchmark-based threshold
derivation. Accounting and Business are examples of domains
with similar thresholds for all metrics.

5.3 RQ3: Impact of System Size on Thresholds

This section discusses if the size of the systems which compose
a benchmark affects the metric thresholds. It so, in addition to
domains, the system size should be considered when building
benchmarks for quality assessment. For instance, metrics-based
code smell detection tools should consider the size of the systems in
this case. Otherwise, they might use overly high thresholds for small
systems, and vice versa.

To investigate RQ3, we build four balanced benchmarks with
different system sizes and compare the derived thresholds. The first
one is Qualitas Corpus [32] which is a benchmark composed of 111
large Java systems, such as Eclipse, Netbeans, and Ant. The second
one is the AlISystems benchmark which includes all 3,107
heterogeneous systems of this study that we mined from GitHub.
The third benchmark, named MediumSystems, is a subset of
AlISystems comprising 20 systems per domain and, making 300
systems in total. Our aim was to exclude outlier (too large or too
small) systems in this benchmark of medium-sized systems.
Therefore, we only selected 10 systems immediately above and 10



TechDebt’18, May 2018, Gothenburg, Sweden

systems immediately below the median of each domain in terms of
LOC. The fourth benchmark, SmallSystems, is also a subset of
AllSystems with 20 systems per domain (i.e., 300 systems in total).
However, in this case we randomly selected systems below the
median LOC for each domain. For instance, all 20 Health systems
in SmallSystems have between 1,000 LOC (selection quality
criterion) and 4,786 LOC. Since three domains (E-Commerce, Free
Time, and Science & Engineering) have less than 40 systems and we
have the criterion of 20 systems per domain, SmallSystems has
exactly the 20 smallest systems for these three domains.

Table 8 presents the results of the 95% thresholds for the four
benchmarks described in the previous paragraph. This table focuses
on 7 metrics because we have not observed difference for NOC; i.e.,
its 95% thresholds are either 0 (SmallSystems and MediumSystems)
or 1 (Qualitas and AllSystems). The results in Table 8 shows that
larger systems have higher thresholds for all metrics. For instance,
in the case of LOC, the 95% thresholds are 602, 599, 315, and 286
for Qualitas Corpus, AllSystems, MediumSystems, and
SmallSystems, respectively.

Table 8: Thresholds for Different Benchmarks

LOC NOA NOM WMC LCOM CBO DIT
Qualitas 602 16 34 111 406 20 6
AllSystems 599 18 37 125 475 22 5
MediumSyst. 315 13 23 59 168 17 4
SmallSystems 286 12 20 52 129 15 4

In fact, we already expected that larger systems have higher
thresholds for size metrics, such as LOC, NOA, and NOM.
However, it is interesting to observe that the system size has also
affected the thresholds of complexity and inheritance metrics. This
result contradicts previous studies [10, 33] that claim metrics like
CBO and DIT do not have a high correlation with LOC. In fact, we
observe that larger systems have both more complex classes and
denser use of inheritance relationships. In addition, we observed in
Table 8 that Qualitas Corpus and AllSystems have similar
thresholds, although they do not have any system in common. This
observation suggests that if the benchmark is composed of a high
enough number of heterogeneous systems (i.e., from different
domains and sizes), the metrics thresholds tend to be comparable.

Answer to RQ3: The size of the systems that compose the
benchmark influences the metric thresholds. Benchmarks with
larger systems yield higher thresholds for all metrics.
Furthermore, benchmarks composed of many heterogeneous
systems in terms of size and domains tend to have similar
thresholds.

6 CODE SMELL DETECTION EVALUATION

Code smells describe a technical debt where there are hints that
suggest a flaw in the source code [31]. For instance, one of the most
well-known code smell, God Class, is defined as a class that knows
or does too much in the software system [9, 12]. God Class is a
strong indicator of technical debt because this component is
aggregating functionality that should be distributed among several
components. In fact, previous work has found that this code smell is
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related to maintenance problems, such as bugs [11], design flaws
[24, 25], and instability [8].

This section evaluates the God Class detection by comparing the
thresholds derived from each domain with the thresholds derived
from AllISystems benchmark. The first set we call domain-specific
thresholds and the second set we call generic thresholds. The
evaluation consists of comparing precision and recall of both sets in
God Class detection. To perform this evaluation, we followed four
steps. First, we randomly selected 43 systems from all 15 domains
explored in this study and built an oracle of God Class instances for
these systems (Section 6.1). Second, we used the metric-based
strategy to identify God Classes and, then, to compute precision and
recall (Section 6.2). Finally, we analyzed the effectiveness results
for detecting code smells to answer RQ4 (Section 6.3).

6.1 Dataset for Code Smell Analysis

To build the Smell Dataset, we randomly selected 43 systems
using two criteria: (i) at least two systems per domain; (ii) systems
that compiles in Eclipse IDE. The first criterion is to have a sample
that covers all domains and the second one is to address tool support
limitations. This dataset is then composed by 3 systems per domain,
except two domains (E-Commerce and Free Time) which we only
found 2 systems that match the second criterion.

Oracle Creation. For each system of our Smell Dataset, we built an
oracle of true positive instances. The oracle can be understood as the
reference list of the actual smells found in a system. This oracle is
the basis for determining whether the derived thresholds are
effective in the identification of God Classes. In order to provide a
reliable oracle, we run three well-known code smell detection tools
(JDeodorant [20], JSpirit [35], and PMD [11]) for all target systems
and build a list with possible anomalies pointed by these tools. Then,
at least a pair of authors analyzed each class pointed as God Class to
validate our oracle. This manual validation consisted of the answer
of four questions (Does the class have more than one responsibility?
Does the class have functionality that would fit better into other
classes? Do you have problems summarizing the class responsibility
in one sentence? Would splitting up the class improve the overall
design?) with a confidence rate varying from 1 to 5. These four
questions were based on questions of a previous study [29]. In the
cases we had a disagreement between the two evaluators or an
average confidence score small than 3, a third evaluator checked the
class and the three evaluators discussed to reach a consensus. The
oracle validation questions and the complete reference list can be
found in our support website [30].

6.2 Metric-based Detection Strategy and
Measurement of Effectiveness

Metrics are often too fine-grained to comprehensively quantify
technical debt [16]. To overcome this limitation, metric-based
detection strategies have been proposed [19]. This work selected and
adapted a detection strategy from the literature to identify God Class
[24], presented in Fig. 2. There are two main reasons to use such
strategy. First, it has been evaluated in other studies and presented
good results for the detection of God Class [24]. Second, this
detection strategy defines a straightforward way for identifying
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instances of God Class by combining four different metrics. In fact,
we adapted its original definition based on the metrics we investigate
in this paper, but the adapted detection strategy captures the same
quality characteristics from the original work [16, 19].

Figure 2: God Class Detection Strategy.

We use precision and recall as a proxy for effectiveness in code
smell detection. Recall measures the fraction of relevant classes
listed by the detection strategy using a set of thresholds. Relevant
classes are classes that appear in the oracle. Precision measures the
ratio of correctly detected code smells by the total classes listed. To
compute precision and recall we need to know the values of true
positives (TP), false positives (FP), and false negatives (FN). TP and
FP quantify the number of correctly and wrongly identified code
smells by the detection strategy compared to the oracle. FN, on the
other hand, quantifies the number of code smells the detection
strategy missed out from the oracle. The computation of recall and
precision is: Recall = TP / (TP + FN) and Precision = TP / (TP +
FP). Recall and precision vary from 0 to 1 and higher values are
related to better effectiveness.

6.3 RQ4: Effectiveness of Thresholds for Code
Smell Detection

In this section, we answer and discuss RQ4 (Are domain-specific
thresholds better than general thresholds for code smell detection?).
To do that, we computed precision and recall as just described.
Analyzing the results presented in Table 9, domain-specific
thresholds did not always get the best results in such evaluation. In
terms of precision, domain-specific thresholds were better in 3
cases, and technically equal in other 5 cases. We considered
technically equal, cases that the difference is smaller than 5%. In
terms of recall, the results are more exciting since domain-specific
thresholds are better in 8 cases and technically equal in other 5 cases.
We use bold to show which is better in the pairwise comparison.

High precision means that the detection strategy indicated more
relevant than irrelevant code smells. High recall, on the other hand,
means that the detection strategy was able to identify most code
smells in the system. Hence, a large number of false positives (high
recall) are preferred over a large number of false negatives (high
precision) by software engineers, because manual inspection, which
is inevitable, tends to uncover false positives. Therefore, considering
that recall is higher for domain-specific thresholds in 8 domains, we
conclude that domain-specific thresholds fared better in detecting
code smells than generic thresholds.

Still talking about Table 9 and considering the four categories
presented in Section 4, higher thresholds got higher precision and
lower recall than generic thresholds. Exactly, the opposite result for
low thresholds category. For the intermediate categories is harder to
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conclude something, but it tends to follow low thresholds category
where generic thresholds achieved higher precision and domain-
specific higher recall. Therefore, the classification of domains
presented in Section 4 should be considered for selecting the most
appropriate thresholds for software quality evaluation.

Table 9: Precision and Recall using Domain-Specific and
Generic Thresholds

Precision Recall
Cat. Dom. DS G DS G
All Acc 1.00 0.75 0.20 0.60
. Bus 0.00 0.00 0.00 0.00
High

ScEng  0.88 0.82 0.58 0.75

Gam 0.05 0.09 0.67 0.67
High Hea 0.50 0.75 0.36 0.27
Size Mes 0.40 1.00 0.40 0.20
Res 0.25 0.00 0.25 0.00

Dev 0.67 0.76 0.94 0.94

2:)%: | FT 0.43 0.75 0.50 0.50
exti P bic 0.00 0.00 0.00 0.00
Y Loc 0.64 0.67 0.69 0.46
Com 0.58 0.68 0.83 0.72

All EC 0.03 0.00 0.50 0.00

Low Edu 0.54 0.80 0.54 031
Hom 0.79 0.89 0.85 0.62

Answer to RQ4: In terms of recall, domain-specific thresholds
are usually better than generic thresholds for most domains.

7 THREATS TO VALIDITY

Our empirical study, like others, has some potential threats to
validity. Hence, we discuss the main actions we have taken to
mitigate their impact on the research results.

Internal and Conclusion Validities. There are two main threats to
internal validity: the selected domains and measurements.
Regarding the first threat, we might have not selected the best or
more representative software domains. We selected these domains
because they are consolidated and we expect to get high quality and
frequently used systems. In addition, we have also filtered systems
with more than 1,000 lines of code. For measurements threat, we
may get false or wrong measures for the target software systems. We
quantify eight metrics for all systems that compose this study and
we also derive thresholds for these metrics. Aiming to make these
measurement processes easier, we used a specific tool presented in
another study [34]. In addition, we also made some tests to check if
the results of this tool were as expected.

External and Construction Validities. There are four external
threats to validity of our study. First, it is not possible to ensure that
the select systems reflect the best samples of the recurrent practices.
To reduce this risk, we filter the total amount of systems by number
of stars and lines of code. Second, the systems that compose our
dataset are developed in Java. However, for other programming
languages or technologies similar results can be found. Third, our
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results are restricted for the set of metrics we selected, but we believe
that similar results can be also found for metrics that quantify similar
quality attributes or characteristics. Finally, even though we have
presented a large-size study, additional replications are necessary to
determine if our findings can be generalized to other domains and
dataset of systems. We described the main actions to minimize
possible threats regarding the oracle creation, detection strategies,
and how we built our benchmarks in Sections 6.1 and 6.2.

8 CONCLUSIONS AND FUTURE WORK

This paper presented an empirical study on domain-specific
thresholds. We conducted the study by selecting and measuring
3,107 software systems from 15 software domains. Once we have
the measurements, we derived 90% and 95% thresholds for each
metric per domain and analyzed them in different ways. For
instance, we compared the thresholds among domains and
investigated the effectiveness of code smell detection between
domain-specific and generic thresholds. The results indicate that
metric thresholds are sensitive to software domain. For example,
some metrics may vary across domains from 1.5x to 4.8x for the
95%. Moreover, we observed that not only the domains, but also the
size of the systems that compose the benchmark is a factor that affect
the metric thresholds. That is, the results corroborate with the claim
that benchmarks composed of heterogeneous systems tend to have
similar thresholds. Finally, in terms of recall, we collect evidence
indicating that domain-specific thresholds are better than generic
thresholds on average for code smell detection.

For future work, we plan further investigation with additional
technical debts and additional replications of this study to determine
whether our findings can be generalized to other domains and
systems. In addition, we are also considering commercial software
systems to confirm whether and how thresholds vary across domains
and their impact on technical debts.
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