
Types and Modularity for Implicit Invocation with
Implicit Announcement
FRIEDRICH STEIMANN AND THOMAS PAWLITZKI
Fernuniversität in Hagen
SVEN APEL
Universität Passau
and
CHRISTIAN KÄSTNER
Universität Magdeburg

__

Through implicit invocation, procedures are called without explicitly referencing them. Implicit announcement

adds to this implicitness by not only keeping implicit which procedures are called, but also where or when —

under implicit invocation with implicit announcement, the call site contains no signs of that, or what it calls.

Recently, aspect-oriented programming has popularized implicit invocation with implicit announcement as a

possibility to separate concerns that lead to interwoven code if conventional programming techniques are used.

However, as has been noted elsewhere, as currently implemented it establishes strong implicit dependencies

between components, hampering independent software development and evolution. To address this problem, we

present a type-based modularization of implicit invocation with implicit announcement that is inspired by how

interfaces and exceptions are realized in JAVA. By extending an existing compiler and by rewriting several

programs to make use of our proposed language constructs, we found that the imposed declaration clutter tends

to be moderate; in particular, we found that for general applications of implicit invocation with implicit an-

nouncement, fears that programs utilizing our form of modularization become unreasonably verbose are unjusti-

fied.

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs and Features –

abstract data types, polymorphism, control structures.

General Terms: Design, Languages

Additional Key Words and Phrases: implicit invocation; event-driven programming; publish/subscribe; aspect-

oriented programming; modularity; typing.

__

1. INTRODUCTION

Implicit invocation, which was first discussed by [Reiss 1990; Sullivan and Notkin 1990;

Authors' addresses: F. Steimann and T. Pawlitzki, Lehrgebiet Programmiersysteme, Fakultät für Mathematik
und Informatik, Fernuniversität in Hagen, D-58084 Hagen; S. Apel, Lehrstuhl für Programmierung, Fakultät für
Informatik und Mathematik, Universität Passau, D-94030 Passau; C. Kästner, Institut für Technische und Be-
triebliche Informationssysteme, Fakultät für Informatik, Universität Magdeburg, D-39016 Magdeburg.
Permission to make digital/hard copy of part of this work for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit or commercial advantage, the copyright notice,
the title of the publication, and its date of appear, and notice is given that copying is by permission of the ACM,
Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permis-
sion and/or a fee.
© 2001 ACM 1073-0516/01/0300-0034 $5.00

2

Sullivan and Notkin 1992], is both an architectural style and a programming paradigm

(the latter also known as event-driven programming (EDP) or publish/subscribe (P/S)

[Eugster et al. 2003]). Garlan and Shaw have characterized it succinctly as follows:

The idea behind implicit invocation is that instead of invoking a procedure

directly, a component can announce (or broadcast) one or more events. Other

components in the system can register an interest in an event by associating a

procedure with the event. When the event is announced the system itself invokes

all of the procedures that have been registered for the event. Thus an event an-

nouncement implicitly causes the invocation of procedures in other modules.

[Garlan and Shaw 1994, p. 9]

A special form of implicit invocation is implicit invocation with implicit announce-

ment of events (hereafter abbreviated as IIIA), in which events are not published through

a dedicated statement, but are instead specified declaratively. IIIA permits “events to be

announced as a side effect of calling a given procedure” [Garlan and Scott 1993], which

is considered “attractive because it permits events to be announced without changing the

module that is causing the announcement to happen” [Notkin et al. 1993]. According to

[Garlan and Scott 1993; Notkin et al. 1993], prominent applications of IIIA are database

triggers (allowing the interception of database operations and their enhancement with

stored procedures [Eswaran 1976]) and wrapper functions in the Common Lisp Object

System (CLOS) [Bobrow et al. 1988].

Aspect-oriented programming (AOP) [Kiczales et al. 1997; Elrad et al. 2001] can be

viewed as a contemporary form of IIIA [Xu et al. 2004]. Indeed, the most popular AOP

language to date, ASPECTJ, has a powerful, declarative pointcut language that allows one

to select from certain points of execution in a program, called join points, those with

which certain events can be associated.1 By binding pointcut expressions to methods

1 The set of possible join points in a program is determined by the so-called join point
model of the aspect language. ASPECTJ also offers static introductions (injection of mem-
bers into classes), which we do not consider here.

Table I. Terminology, rough equivalences
EVENT-DRIVEN PROGRAMMING, PUBLISH/SUBSCRIBE ASPECT-ORIENTED PROGRAMMING, THIS PAPER

event join point
event handler advice
event type join point type
publishes declaration exhibits declaration
subscribes declaration advises declaration
implicit announcement pointcut, join point type predicate

3

called advice, implicit invocation of these methods takes place whenever the correspond-

ing pointcut fires (matches). The announcement of the corresponding event can therefore

be considered implicit. Table I gives an overview of how the concepts of the event world

(IIIA) and AOP relate.

More recently, concerns have been raised that IIIA à la AOP compromises modularity

by establishing a strong, implicit coupling between the components of a system [Gud-

mundson and Kiczales 2001; Clifton and Leavens 2003; Rajan and Sullivan 2003; Xu et

al. 2004; Störzer and Graf 2005; Sullivan et al. 2005; Aldrich 2005; Dantas and Walker

2006; Griswold et al. 2006; Ongkingco et al. 2006; Steimann 2006]. Especially the ab-

sence of explicit interfaces, or other hints in the places where behaviour may get changed,

is thought to hamper independent development. While similar concerns had already been

raised for implicit invocation alone, namely that “when a component announces an event,

it has no idea what other components will respond to it” and that “reasoning about cor-

rectness can be problematic, since the meaning of a procedure that announces events will

depend on the context of bindings in which it is invoked” [Garlan and Shaw 1994, p. 10],

it should be clear that all these objections are in stark contrast to the expected benefit of

IIIA, namely the easing of software evolution.

To alleviate the modularity problems in AOP, several mechanisms have been pro-

posed. One breed of works suggest improvements in pointcut languages that aim at rais-

ing the level of abstraction of joint point specifications, thereby decoupling the imple-

mentations of the base program and its aspects (e.g., pattern-based pointcuts [Eichberg et

al. 2004], structural and behavioral property-based pointcuts [Gybels and Brichau 2003;

Masuhara and Kawauchi 2003; Rho et al. 2006], test-based pointcuts [Sakurai and Masu-

hara 2008]), and model-based pointcuts [Kellens et al. 2006]. Another breed, more in line

with our own work, proposes various forms of interfaces that make the coupling between

aspects and the advised code more explicit (e.g., the aspect-implied interfaces of

[Kiczales and Mezini 2005], the crosscutting interfaces of [Griswold et al. 2006], or the

open modules of [Aldrich 2005; Ongkingco et al. 2006]). However, all of these solutions

have drawbacks: they either require a whole-program analysis, or they rely on conven-

tions that cannot be enforced by the compiler, or they merely state dependencies, without

achieving greater decoupling. Also, they all introduce language constructs that do not

align well with the other constructs of their host language, including its type system.

4

1.1 Contribution

In this paper, we present a simple solution to the problems of IIIA that restores full

modularity of involved components. It evolved out of our own prior work on avoiding

accidental recursion in ASPECTJ by introducing type levels [Forster and Steimann 2006;

Bodden et al. 2006], and of our criticism of AOP as well as the solutions to its problems

as suggested in the literature to date [Steimann 2006]. Our approach is based on the novel

concepts of join point types as the types of events that can be implicitly announced, and

polymorphic pointcuts as their intensional specifications that are defined as parts of the

classes exhibiting join points. Our solution, which we present as an ASPECTJ-based ex-

tension to the JAVA programming language, blends naturally with JAVA’s native pro-

gramming concepts; in particular, it bears some similarities with its type-based notions of

interfaces and exceptions. More concretely:

 We interpret join points as runtime instances of user-declared join point types, with

fields of join point types representing the context of a join point instance.

 We interpret pointcuts as the type predicates (characteristic functions) of these join

point types.

 We require that classes exhibit join points explicitly, as declared by an exhibits

<join point type> clause.

 We define pointcuts polymorphically by requiring classes that declare to exhibit join

points of a certain type, to define their branch of the corresponding pointcut (type

predicate) locally. The complete pointcut is thus defined as a disjunction of its class-

local branches.

 We allow the explicit creation of join points at runtime via an exhibit new <join

point type constructor> {<statement>} expression. This is useful in cases in

which a suitable pointcut is difficult or impossible to formulate using the given point

 We make the dependencies of aspects explicit, by requiring them to declare — through

an advises <join point type> clause — instances of which join point types they in-

tend to advise.

Thus, our join point types are like JAVA interfaces (analogies in parentheses)

 in that they are abstract, i.e., provide no instances of their own, but take them from the

exhibiting (implementing) classes;

 in that they specify what the exhibiting (implementing) classes must provide, namely

the values of the fields that are declared in the join point type, while leaving the how,

the pointcuts establishing the bindings to the context, to the classes; and

5

 in that they allow the creation of anonymous inner join point types (anonymous inner

classes) via exhibit new <join point type constructor> {<statement>}.

As a result, each class can specify the sets of join points it exhibits individually by pro-

viding its own intensional specification of the join point type (the class-local pointcut),

and the extension of each join point type is the union of the sets of join points of that type

as specified by each class. This is analogous to interfaces, which let classes define the

method implementations individually, and whose extension is the union of those of its

implementing classes.

At the same time, our join point types are like exceptions (analogies in parentheses)

 in that their instances may either come into existence at some implicitly specified point

of program execution within the lexical scope of the exhibits (throws) clause, or are

explicitly created with an exhibit new <join point type constructor> {<state-

ment>} expression (throw new <exception constructor> expression); and

 in that their occurrence is handled in some place remote from, and unknown to, where

they occurred.

Most strikingly, our dealing with join points resembles dealing with exceptions in that it

avoids code tangling, but not scattering — each scope in which a join point may occur

must be explicitly marked with the corresponding join point type. While this may raise

fears that programs are becoming impracticably verbose (when compared to IIIA without

explicit interfaces), first evidence we have collected by applying our approach to several

programs suggests that the imposed “declaration clutter” is moderate, and likely out-

weighed by better readability and increased safety against programming errors.

1.2 Outline

The remainder of this paper is organized as follows. We begin with an introductory ex-

ample which demonstrates the problem we are attacking, namely the lack of explicit in-

terfaces between the code hosting IIIA and the code being invoked. In Section 3 we in-

troduce the basic concepts of our solution, namely join point types and polymorphic

pointcuts. This solution naturally extends to explicit join points interpreted as anonymous

inner subtypes, which in turn leads to subtyping of join point types. Section 4 presents

syntax and semantics of our conception of IIIA by describing its compiler. Section 5

summarizes our findings obtained by rewriting two mid-size applications, namely

BERKELEY DB and JHOTDRAW, to IIIA. A comprehensive discussion of related work

completes our contribution.

6

One further remark before we begin. This paper is at the intersection of OOP, EDP

(or P/S), and AOP. This imposes a terminological problem, namely which labels to use

for the concepts we rely on. Since we are using the join point model of ASPECTJ and also

relevant parts of its pointcut language to specify IIIA, we decided to stick with the jargon

of AOP, ASPECTJ in particular. For readers unfamiliar with AOP and better acquainted

with EDP, Table I should help through the paper.

2. A MOTIVATING EXAMPLE

We develop our proposed language for IIIA step by step, resorting to a simple example.

The example consists of a class ShoppingSession and three referenced classes Shop-

pingCart, Invoice, and Log. The referenced classes all offer methods for adding an

amount of items, the only difference being that Invoice takes a customer’s personal re-

bate into account, which is why its add method receives the customer as an additional

parameter. The corresponding JAVA program is shown in Fig. 1.

Now assume that after the design of the classes has been finalized, the marketing de-

partment wants to have installed a temporary customer bonus program “buy 2 books, get

1 for free”. Using ASPECTJ, this added behaviour can be realized, without changing the

original classes, by installing an aspect BonusProgram (Fig. 2Fig. 2) which adapts the

amount of books for all add transactions except that for Invoice. It does so by providing

01 package application;
02
03 class ShoppingSession {
04 ShoppingCart sc = new ShoppingCart();
05 Invoice inv = new Invoice();
06 Log log = new Log("buys");
07 Customer cus = customerLogOn();
08
09 void buy(Item item, int amount) {
10 sc.add(item, amount);
11 inv.add(item, amount, cus);
12 log.add(item, amount);
13 }
14 }
15
16 class ShoppingCart {
17 void add(Item item, int amount) {…}
18 }
19
20 class Invoice {
21 void add(Item item, int amount, Customer cus) {…}
22 }
23
24 class Log {
25 void add(Item item, int amount) {…}
26 }

Fig. 1. A standard shopping cart example.

7

a (named) pointcut2, buying (lines 5–6), which specifies the condition that leads to the

implicit invocation of the advice (lines 8–12). Note that the specification provided by the

pointcut is highly economical in that it specifies an open number of locations in the

source code (here lines 10 and 12 in Fig. 1), a property sometimes referred to as quantifi-

cation [Filman and Friedman 2004].

The problem with this approach is that only the aspect BonusProgram contains hints

that, and where or when, implicit invocation takes place. From a software engineering

perspective this poses a serious modularity issue: while BonusProgram implicitly speci-

fies on what it depends (through the pointcut buying it defines), the targets Shopping-

Cart and Log contain no hints of this coupling, a property referred to as obliviousness in

[Filman and Friedman 2004]. In particular, the lack of an explicit interface on the side of

the target means that whenever one wishes to change the implementation of that target,

one does not know which interfaces to respect. This situation is shown in Fig. 3 (a).

2 A pointcut is a predicate that selects from a set of join points (i.e., points in the execu-
tion of a program) those that are considered to be worth noting, so that advice can be
called (the implicit invocation, implicitly announced by way of the predicate evaluating
to true).

01 package aspects;
02
03 aspect BonusProgram {
04
05 pointcut buying(Item item, int amount):
06 execution(* *.add(Item, int)) && args(item, amount);
07
08 void around (Item item, int amount): buying(item, amount) {
09 if (item.category == Item.BOOK)
10 amount += amount / 2;
11 proceed(item, amount);
12 }
13 }

Fig. 2. Aspect extending the shopping cart application with additional behaviour.

8

To illustrate this problem for the case of ASPECTJ, suppose that after installation of

the BonusProgram aspect it is discovered that the log needs a customer entry (changes

highlighted):

class Log {
 void add(Item item, int amount, Customer cus) {…}
}

class ShoppingSession {
 …
 void buy(Item item, int amount) {
 …
 log.add(item, amount, cus);
 }
}

This change breaks the buying pointcut from above, which no longer matches Log’s add

method. Although this can be fixed by adapting the pointcut as in

pointcut buying(Item item, int amount):
 (execution(* *.add(Item, int)) && args(item, amount)) ||
 (execution(* Log.add(Item, int, Customer)) && args(item, amount,..));

or similar (but note that the new pointcut must not match Invoice.add accidentally)

nothing in Log informs the programmer of this necessary change. The untoward effect

this has on modularity (including modular reasoning) and independent development has

been discussed, e.g., in [Gudmundson and Kiczales 2001; Clifton and Leavens 2003;

Rajan and Sullivan 2003; Xu et al. 2004; Störzer and Graf 2005; Sullivan et al. 2005;

Aldrich 2005; Dantas and Walker 2006; Griswold et al. 2006; Ongkingco et al. 2006;

Steimann 2006].

Fig. 3. From standard aspects to typed and modular IIIA (dashed arrows indicate referencing and
change dependency, vertical dotted bars represent interfaces, and hollow arrows indicate the direc-
tion from which they are programmed against). (a) Aspect with local pointcut. (b) Same aspect with
pointcut moved in proximity of targets. (c) Pointcut encapsulated by a join point type (abbreviated
as jptype) and classes declaring to exhibit corresponding join points (Section 3.1). (d) Pointcut split
and branches moved into targets (“polymorphic pointcut”; Section 3.2).

(a)

(c)

(b)

(d)

class A

class B

class C

aspect X
pointcut

class A

class B

class C

aspect X
pointcut

class A

class B

class C

aspect Xjptype Y
pointcut

class A

class B

class C

aspect Xjptype Y
pointcut

class A

class B

class C

aspect Xpointcut y

class A

class B

class C

aspect Xpointcut y

aspect Xjptype Y

class A
pointcut

class B
pointcut

class C
pointcut

aspect Xjptype Y

class A
pointcut

class B
pointcut

class C
pointcut

9

Modularity problems are usually solved through the introduction of interfaces, i.e.,

“shared boundaries across which information is passed” [Geraci 1991]. In our example,

boundaries are shared between classes ShoppingCart and Log on the one side and the

aspect BonusProgram on the other, and the information passed consists of the parameters

Item item and int amount. However, declaration of this interface remains implicit in

BonusProgram (it can be derived from the pointcut named buying), and is completely

absent from the classes.

A number of attempts have been undertaken to tackle this problem by introducing

more explicit interfaces.3 So-called aspect-aware interfaces [Kiczales and Mezini 2005]

annotate class members with the aspects they are advised by, and aspects with the class

members they advise. However, rather than letting a designer specify these interfaces up-

front, they are computed from the aspects and the classes after a system has been com-

posed, and consequently change when the composition is changed. The support for inde-

pendent development and reuse (primary purposes of modules) is therefore rather weak.

This problem is avoided by the approach of Open Modules [Aldrich 2005; Ongkingco et

al. 2006], by adding a new module construct to the base language whose interface de-

clares the pointcuts the encapsulated program entities expose. Aspects then depend on the

pointcuts declared in these interfaces, but nevertheless depend on concrete pointcuts,

which may need to be changed when the base program changes. Coupling is therefore

still strong and independent development still compromised. So-called crosscut pro-

gramming interfaces (XPIs) [Sullivan et al. 2005; Griswold et al. 2006] rely on design

rules to specify the requirements for classes exposing join points; however, since most

design rules cannot be enforced automatically, XPIs also largely rely on pointcut expres-

sions that classes must observe and aspects depend upon. To summarize, the decoupling

achieved by any of these approaches does not go beyond what is shown in Fig. 3 (b): as-

pects depend on pointcuts that are defined external to them, and pointcuts depend on

classes whose join points they are to specify. By contrast, our goal is to let classes and

aspects both depend on a common interface between them, and to leave the interface

completely independent of both (Fig. 3 (d)).

3 We look only at the most prominent examples here. Section 6 contains a comprehensive
discussion of related work.

10

3. JOIN POINT TYPES AND POLYMORPHIC POINTCUTS

Our first step to achieve the modularity we envision is to make the shared boundary and

the information passed explicit, on both sides. We do this through the introduction of join

point types.

3.1 Join point types

Analogous to typed P/S [Eugster 2007] and also to JAVA’s type-based exception han-

dling, we interpret join points as typed events and introduce join point types as first class

constructs that serve to specify the interface between classes exhibiting join points and

aspects handling them (Fig. 3 (c)). In the case of our example, we define the following

join point type:

joinpointtype Buying {
 Item item;
 int amount;
 pointcut execution(* *.add(Item, int, ..)) && args(item, amount,..);
}

This type gets instantiated every time a join point covered by its pointcut gets executed in

the program. The resulting join point type instance is a record in memory whose fields

are set to the parameters of the context in which the join point occurs, as prescribed by

the pointcut. (In the given example, the first actual parameter of an executed add method

is assigned to item, and the second is assigned to amount.) Because it characterizes the

nature of its instances, we think of the pointcut as the type predicate (or characteristic

function, i.e., the intensional specification) of the join point type. Since there is only one

pointcut definition (type predicate) per join point type, the join point type’s name identi-

fies it uniquely so that it may be considered implicitly named. In Section 3.2, we will

move the pointcut out of the join point type definition into the classes in which it applies;

there, it will be named by the join point type to which it belongs.

Join point types like the above let us declare interfaces (boundaries and information

passed) between classes and aspects. In our example, we add the following clauses to

make the interfaces explicit:

class ShoppingCart exhibits Buying {…}
class Log exhibits Buying {…}

aspect BonusProgram advises Buying {…}

The exhibits clauses mark the caller side of implicit invocation, and the advises clause

the called. This may appear counter to intuition, since the aspect (as the “advisor”) seems

to be the active, and the class (the “advised”) the passive, and indeed the aspect depends

11

on the classes it advises and not vice versa; however, such reversal of dependency is not

unusual for interfaces (so-called enabling interfaces [Steimann and Mayer 2005]).

Definition of the join point type Buying as above allows us to rewrite the aspect Bo-

nusProgram as follows (changes highlighted):

aspect BonusProgram advises Buying {
 void around (Buying jp) {
 if (jp.item.category == Item.BOOK)
 jp.amount += jp.amount / 2;
 proceed(jp);
 }
}

The advice is now parameterized by the variable jp of type Buying, which holds the

join point instance that led to the implicit invocation of the advice and which is also the

(sole) argument of the proceed statement.4 Its fields can be written, in which case the

changed values replace those of the join point for the duration of the proceed statement.

Following the semantics of JAVA, writing to the fields can be prevented by declaring

them final in the join point type (cf. the discussion of spectators and assistants in Sec-

tion 6).

Generally, a class can exhibit, and an aspect can advise, arbitrarily many join point

types. Currently, a class cannot possess an advises clause, nor can an aspect possess an

exhibits clause. This is to avoid self-reference and the resulting problems addressed in

[Forster and Steimann 2006; Bodden et al. 2006], but may be changed in future work. For

reasons given below (Section 3.5), join point type exhibition is not inherited by the sub-

classes of an exhibiting class. A class declaring to exhibit a join point type but providing

no join points statically matching its pointcut (having no join point shadows) presents no

error; yet, the compiler issues a warning in such cases indicating that either pointcut or

class definition may be inappropriate. Note that it is impossible to require that a class

always produces a join point for every join point type it exhibits, since generally, the oc-

currence of a join point may depend on dynamic conditions the satisfiability of which the

compiler has no way of checking. However, the compiler does make sure that a pointcut

definition is present for each join point type exhibited, and that it binds all fields of its

join point type (see Section 4.2).

Our use of join point types improves modularity in that maintainers of a class wishing

to make changes to it can consult the definitions of the join point types the class exhibits,

and observe the pointcuts specified there (Fig 4). However, seemingly harmless changes

4 Note how this is reminiscent of the catch statement of exception handling in JAVA; this
is deliberate (cf. Section 1.1).

12

such as the one performed at the end of Section 2, and even refactorings believed to not

change program behaviour at all, may require adaptation of the pointcut, establishing a

strong change dependency between a class and its exhibited join point types. Also, the

surface structure (appearance) of join points of a single join point type can vary greatly

from class to class, in ASPECTJ typically resulting in complex pointcuts consisting of

many disjuncts (the “quantification failure” noted in [Sullivan et al. 2005]). Such a point-

cut then mirrors the diversity of the classes it covers; it compromises independent devel-

opment and presents a maintenance problem in its own right. This leads us to polymor-

phic pointcuts.

3.2 Polymorphic pointcuts

The object-oriented answer to diversity is polymorphism: rather than having the case

analysis in a single place (e.g., a switch statement), the different cases are represented by

different implementations of the same feature in different classes. Transferred to our

problem, this means that each class exhibiting a certain join point type specifies its own

pointcut, which matches the join points delivered by this class. In our example, the point-

cut definition in Buying should therefore be split among the classes ShoppingCart and

Log as follows:

class ShoppingCart exhibits Buying {
 pointcut Buying:
 execution(* add(Item, int)) && args(item, amount);
 …
}

class Log exhibits Buying {
 pointcut Buying:
 execution(* add(Item, int, ..)) && args(item, amount, ..);
 …
}

class ShoppingCart
exhibits Buying

joinpointtype Buying aspect BonusProgram
advises Buying

around (Buying jp)

class Log
exhibits Buying

pointcut …
join point 1

join point 2

«exhibits» «advises»

matches

«exhibits»

matches

Fig 4. Classes ShoppingCart and Log both depend on the join point type Buying, as does as-
pect BonusProgram (dashed arrows). The pointcut defined in Buying matches join points in the
classes, and is used to trigger the advice in BonusProgram. Note how this corresponds to Fig. 3
(c).

13

The resulting dependencies are shown in Fig. 5. Note that the local pointcuts lack infor-

mation to which class(es) they apply; the scope of each such pointcut is implicitly con-

strained to the class in which its definition occurs. The disjunction of all class-local

pointcuts associated with a join point type then constitutes the complete pointcut of that

type. Because this is reminiscent of how different classes implementing the same inter-

face provide for polymorphic methods in JAVA, we call such pointcuts polymorphic.

The question then is what remains of the pointcut in the join point type. Ideally,

something like a design-by-contract language [Meyer 1997] was available that could

specify the “semantics” of a join point type (i.e., the set of join points it covers) inde-

pendent of its “implementation” in the classes (a semantic pointcut language [Lopes et al.

2003; Ostermann et al. 2005; Gybels and Brichau 2003; Masuhara and Kawauchi 2003]

based on predefined tests [Sakurai and Masuhara 2008] or based on a conceptual model

of the program [Kellens et al. 2006]). In absence of such a language, we have to resort to

an informal description of the nature of the join points (as is also done for the crosscut-

ting interfaces described in [Sullivan et al. 2005; Griswold et al. 2006]; cf. Section 6 for a

discussion). It is then the responsibility of the developer of each class exhibiting a join

point type that the join points matched by the class’s local (polymorphic) pointcut con-

form to this informal specification. Note how this mirrors the current situation with

JAVA’s interface types, which also leave semantics to their implementing classes.

3.3 Explicit announcement of join points

Our view of join points as instances of types opens up an interesting opportunity: it al-

lows us to create join point instances explicitly. For instance, suppose that we want to add

class ShoppingCart
exhibits Buying

joinpointtype Buying aspect BonusProgram
advises Buying

around (Buying jp)

class Log
exhibits Buying

join point 1

join point 2

pointcut Buying

pointcut Buying

m
at

ch
es

m
at

ch
es

«exhibits» «advises»

«exhibits»

Fig. 5. Polymorphic pointcuts removing the dependency of join point types on exhibiting classes.
The decoupling achieved is thus that of Fig. 3 (d). Note how polymorphic pointcuts resemble inter-
face implementation in JAVA; here, however, (implicit) method invocations, not methods, are im-
plemented.

14

a counter cumulating the total number of items delivered, and that we therefore extend

ShoppingSession and its method buy as follows:

class ShoppingSession {
 int totalAmount = 0;
 …
 void buy(Item item, int amount) {
 sc.add(item, amount);
 inv.add(item, amount, cus);
 log.add(item, amount, cus);
 totalAmount += amount;
 }
}

The added statement must be advised by BonusProgram to maintain consistency, but be-

cause this statement does not involve the variable item (access to which is needed by the

advice), formulation of a suitable pointcut is unobvious (a combination of problems

called state-point separation and inaccessible join points in [Sullivan et al. 2005] and

reported to be quite common in [Murphy et al. 2001; Kästner et al. 2007]). Rather than

rewriting our program so as to allow pointcut matching (the intimacy described in [Elrad

et al. 2001; Xu et al. 2004; Sullivan et al. 2005]), we introduce the following construct

that creates the join point instance with all required parameters explicitly:

class ShoppingSession exhibits Buying {

 …
 void buy(Item item, int amount) {
 sc.add(item, amount);
 inv.add(item, amount, cus);
 log.add(item, amount);
 exhibit new Buying(item, amount) {
 totalAmount += amount;
 };
 }
}

The type of this newly created join point, which does typically not fall under the type

predicate (pointcut) of its declared type Buying (because otherwise the explicit creation

would be redundant), can be thought of as an anonymous inner subtype (analogous to the

anonymous inner classes of JAVA), i.e., as a join point subtype that comes with its own,

implicit type predicate.

Viewing explicit join point creation as a special application of a more general concept

of join point types (supporting implicit invocation with both implicit and explicit an-

nouncement) distinguishes our approach from other recent proposals of making implicit

invocation more explicit, most notably those of [Hoffman and Eugster 2007] and [Rajan

and Leavens 2008]). In particular, while Hoffman and Eugster also allow arbitrary blocks

of code to be marked through explicit join points for being advised, and also to add point-

cuts scoped to the hosting class to these join points, the notion of a join point type, and

thus an explicit interface between the base code and the aspects, is absent from their ap-

15

proach. By contrast, Rajan and Leavens introduce event types akin to our join point

types, but provide no means for class-locally specified implicit announcement. We sup-

port the notion of implicit announcement, but tame it by restricting its scope to that of the

implementation of an explicit interface (the exhibits clause), and supplement it with

explicit announcement where implicit announcement fails or requires awkward modifica-

tion of code. Cf. Section 6 for a more detailed discussion of related work.

3.4 Join point subtypes

Interpreting explicit join point creation as a form of anonymous subtyping suggests that

join point types can also have named subtypes. The notion of subtyping in turn suggests

that instances of join point types are also instances of their supertypes (set inclusion se-

mantics of subtyping) or, more concretely, that instances of join point types should be

allowed to occur wherever instances of their supertypes are expected (the principle of

substitutability [Liskov and Wing 1994]). This has implications for join point definition,

join point creation, and join point advising.

3.4.1 Defining join point subtypes Following the definition of Section 3.2, a join

point type definition consists of a set of field declarations and an informal characteriza-

tion of the nature of its instances (i.e., what the occurrence of a join point conveys to the

aspects observing it). Join point subtyping can then be defined by letting a join point sub-

type inherit the fields of its supertype, and by letting it add new fields (so-called type

extension [Wirth 1988]): since the only purpose of join point types is to capture the rele-

vant context in which implicit invocation takes place, and since an advice (as the only

client of join point types) can use an instance of a join point subtype as if it were an in-

stance of one of its supertypes, simply by dropping the added fields, substitutability is

always guaranteed. That the informal characterization of the subtype does not contradict

the ones of the supertypes cannot be checked — this is in the responsibility of the de-

signer of the subtype. As much as properties of a join point type (its intension) are caught

in the definition of class-local pointcuts, consistency must be maintained there; this will

be discussed in Section 3.4.3.

Based on these considerations, we extend our notion of join point types by subtyping

and require it to be declared using the extends keyword followed by the name of the join

point supertype. Continuing our running example, this allows us to introduce a new, more

general join point type CheckingOut defined as

joinpointtype CheckingOut {

16

 // going to take this item and amount from stock
 Item item;
 int amount;
}

and to let Buying subtype and inherit the fields from CheckingOut by writing

joinpointtype Buying extends CheckingOut {
 // buying this item and amount
}

A sibling join point subtype Renting could then be defined as

joinpointtype Renting extends CheckingOut {
 // renting this item and amount until returndate
 Date returndate;
}

which adds a field.

3.4.2 Advising join point subtypes Regarding instances of a join point subtype as

instances of its supertypes implies that aspects advising join points of a certain type can

advise join points of subtypes of this type as well, simply by ignoring the added fields.

For instance, if we introduce a new aspect BusinessRules which provides advice for

checking out items, such as

aspect BusinessRules advises CheckingOut {
 before (CheckingOut co) {
 if (Stock.amount(co.item) < co.amount)
 throw new OutOfStockException(co.item);
 }
}

this advice is invoked equally for join points (events) of type Buying and of type Rent-

ing, in the latter case simply ignoring the field returndate. Note that for the advice of

BusinessRules to be invoked for Buying events, nothing has to be changed in the base

classes. In particular, no new pointcut is needed. This will only become necessary if a

join point of type CheckingOut that is not at the same time a join point of type Buying is

to be created.

If an aspect offers advice for a join point type and any of its subtypes, the most spe-

cific advice for a join point instance (i.e., the one advising the most specific join point

type) is to be invoked. For instance, extending the above aspect BusinessRules with ad-

vice for join points of type Renting allows us to override the advice for join point type

CheckingOut, for instance to require renting to leave a minimum number of items in

stock.

Note that accepting instances of join point subtypes where an advice expects instances

of a join point supertype suffices to ensure that instances of a join point subtype are also

instances of its supertypes. In particular, there is no need for making sure that a (class-

17

local) pointcut of a join point type includes all join points of the (class-local) pointcuts of

its subtypes — if this is not the case, instances of the subtypes are nevertheless treated as

if they were (direct) instances of the supertype. Instead, it must be prevented that two

instances are created for the same event.

3.4.3 Exhibiting join point subtypes The previous subsection answered the question,

which advice should be invoked by a join point instance? Complementary to this question

is, a join point instance of which type should be created in case the pointcut of a join

point type and one of its subtypes match the same point of execution in a program?

Clearly, creating two instances for the same event where the type of one event subsumes

the type of the other does not reflect adequately what happened (and would lead to the

double execution of the same advice of an aspect if it is the most specific for both in-

stances, or to execution of advice for the type and the supertype if the aspect offers both).

Since instances of a join point type are subsumed by its supertypes, but not vice versa, an

instance of the more specific type — and only this — must be created. Fig. 6 gives an

example of the situation.

Fortunately, what seems like a non-trivial technical problem can be solved by a sim-

ple trick: rather than first checking whether the pointcut of a join point type and one of its

subtypes overlap and then making sure that for matches of this overlap, only one instance

is created, we implicitly conjoin the pointcut of the join point type with the negations of

the pointcuts of its subtypes specified in the same class. 5 Effectively, adding a join point

subtype does not reduce the extension of the join point type, since as noted above, the

instances of the subtype that are created instead are always accepted as instances of the

type. However, if pointcuts of sibling join point types overlap and a join point in the

overlap gets executed, one join point instance is created for each of the overlapping types.

This is intentional, since the two instances represent different events. On the other hand,

it means that if the most specific advice of an aspect is one for a common supertype, this

advice is executed twice.6

5 Note that our trick is somewhat similar to the one employed by EIFFEL, which disjoins
preconditions and conjoins postconditions to meet the conditions of subtyping [Meyer
1997].
6 This situation may appear somewhat awkward. It could be avoided by adopting the ab-
stract superclass rule for join point types: all join point types that have subtypes should be
declared abstract, i.e., should not be allowed to have instances of their own. We leave this
debate for future exploration.

18

Fig. 6 illustrates the semantics of join point subtyping for class ShoppingSession ex-

hibiting three join points of join point type CheckingOut and one of its subtypes, Buying,

and for the aspects BusinessRules and BonusProgram. BusinessRules advises only the

join point supertype, while BonusProgram advises both the join point supertype and the

join point subtype. The local pointcuts defined in ShoppingSession for the join point

types CheckingOut and Buying overlap such that CheckingOut matches join point 1 and

join point 2, whereas Buying matches join point 2 and join point 3. Set inclusion seman-

tics of join point subtyping requires that join point 3 belongs to the extension of join point

type CheckingOut even though the corresponding pointcut does not match it; this is made

up for by advice CheckingOut in aspect BusinessRules handling this join point (because

it is an instance of a subtype of CheckingOut). Join point 2 is matched by both pointcut

CheckingOut and pointcut Buying; since join point 2 is an instance of both join point type

CheckingOut and Buying, only one instance (of type Buying) is created, leading to the

execution of advice CheckingOut in aspect BusinessRules and advice Buying in aspect

BonusProgram (and not advice CheckingOut in aspect BonusProgram).

3.5 Inheritance of join point exhibition

Orthogonal to the question of having join point subtypes is the question of whether an

exhibits clause of a class is inherited by its subclasses, and if so, if the corresponding

pointcuts are inherited with it. Since inheritance is a known problem for modularity, and

class ShoppingSession
exhibits CheckingOut

join point 1

join point 2

join point 3

pointcut
CheckingOut

pointcut
Buyingm

at
ch

es

m
atches

joinpointtype
CheckingOut

joinpointtype
Buying

extends
CheckingOut

aspect BusinessRules
advises CheckingOut

aspect BonusProgram
advises CheckingOut

advice CheckingOut

advice CheckingOut

advice Buying

Fig. 6. Schematic view of class ShoppingSession exhibiting two join point types, CheckingOut
and Buying, one of which is a subtype of the other, and two aspects, BusinessRules and BonusPro-
gram, one advising both join point types, the other only the supertype. Join point 1 implicitly in-
vokes advice bound to CheckingOut in both aspect BusinessRules and BonusProgram, whereas join
points 2 and 3 implicitly invoke advice CheckingOut in BusinessRules and Buying in BonusPro-
gram. Note that although it matches the pointcut of CheckingOut, join point 2 does not invoke ad-
vice CheckingOut in BonusProgram — it is caught by the more specific advice Buying (see text).

19

since modularity is a driving force for our capture of IIIA, we decide this issue based on

modularity considerations.

Letting a class declare that it exhibits join points of a certain type expresses a state-

ment of consent that some of the classes’ variables may be accessed by aspects advising

the exhibited join points. Moreover, the local pointcut specification specifies within the

class which of its variables can get accessed. This policy gives classes the opportunity to

deny aspects access; in particular, and much in the spirit of information hiding, variables

can only be accessed if the owning class explicitly grants access to them.

The fragile base class problem of object-oriented programming has taught that seem-

ingly innocuous changes to a base class can break the contracts of subclasses (see

[Mikhajlov and Sekerinski 1998] for a discussion of a wide range of such situations).

This can directly be transferred to the inheritance of (class local) pointcuts: a change in a

pointcut expression that makes perfect sense in the base class can have unintended effects

in any of its subclasses (which may not even be known to the changer of the base class).

Therefore, we decided that the scope of pointcut definitions of a class does not automati-

cally extend to its subclasses, so that the designer of a subclass does not have to be aware

of the pointcuts of its superclasses. Note that if the subclass inherits code from the super-

class that is covered by pointcuts of the superclass (so that join point instances may be

created when the code is executed), execution of this code in the context of the subclasss

may nevertheless lead to join point creation; however, this code is outside the control of

the subclass and if its effect worries the programmer, the superclass’s specification

should be consulted. The situation is analogous to calling a method of a different class

whose execution leads to join point creation — this also does not give rise to a corre-

sponding exhibits clause in the calling class. Besides, and as will be seen from an ex-

ample in Section 5.3 (Fig. 11), not letting subclasses inherit join point exhibition pre-

serves its crosscutting nature.

There are however situations in which a subclass should exhibit the same join point

type as one of its superclasses. In these cases, the exhibits clause must be repeated in

the subclass, and a new pointcut must be specified (whose scope is again implicitly lim-

ited to the enclosing class). If the pointcut of the subclass is syntactically identical to that

of the superclass, the one of the superclass can be reused by using the super keyword; if

it is a variation of that of the superclass, super can be part of a suitable logical expres-

sion.

20

Fig. 7 gives an example of how explicit pointcut inheritance (via the super keyword)

works in practice. In the example, which is based on the standard drawing example from

[Kiczales and Mezini 2005], a hierarchy of geometrical shapes (Shape, Point, and Line)

has to notify a display whenever a shape is changed so that its representation on the dis-

play can be updated. The join point type representing the corresponding event is named

UpdateSignalling; it has no fields and its informal intension is specified by a comment

(recall that the pointcuts are sourced out into the exhibiting classes).

The class Shape serves as a common abstraction of the classes Point and Line. It

specifies an abstract method moveBy that should be supported by all subclasses. Since

moving a shape usually requires a display update, Shape also specifies a pointcut for Up-

dateSignalling that matches every execution of the moveBy method. However, since

moveBy in Shape is abstract, this join point never matches; its sole purpose is to serve re-

use by join points in subclasses.

joinpointtype UpdateSignalling {
 // change of state that affects display
}

abstract class Shape exhibits UpdateSignalling {
 pointcut UpdateSignalling : execution(void moveBy(int, int));
 public abstract void moveBy(int dx, int dy);
}

class Point extends Shape exhibits UpdateSignalling {
 pointcut UpdateSignalling : super || execution(void set*(int));
 int x, y;
 public int getX() { return x; }
 public int getY() { return y; }
 public void setX(int x) { this.x = x; }
 public void setY(int y) { this.y = y; }
 public void moveBy(int dx, int dy) {
 x += dx;
 y += dy;
 }
}

class Line extends Shape exhibits UpdateSignalling {
 pointcut UpdateSignalling : super;
 private Point p1, p2;
 public Point getP1() { return p1; }
 public Point getP2() { return p2; }
 public void moveBy(int dx, int dy) {
 p1.x += dx; p1.y += dy;
 p2.x += dx; p2.y += dy;
 }
}

aspect Display advises UpdateSignalling {
 after (UpdateSignalling us) { update(); }
 static void update() {...}
}

Fig. 7. Drawing example [Kiczales and Mezini 2005] with polymorphic pointcuts and explicit
pointcut inheritance (see text).

21

Subclass Point makes use of this pointcut by referring to it using super. However,

setting a coordinate of a point individually (via a corresponding setter) also requires an

update, so that it makes a corresponding addition to the inherited pointcut. Subclass Line

on the other hand offers no such possibilities, so that it can reuse its superclass’s pointcut

without alterations.

One might argue that defining an abstract method and a pointcut matching its execu-

tion as in the example can only mean that the pointcut should match the concrete imple-

mentations of the method. Indeed, one could go one step further and allow interfaces to

define pointcuts on the methods they declare. However, for reasons of modularity (a sim-

ple change of the interface a server implements or a client relies on may exhibit data pre-

viously kept secret without either knowing) and the analogy to the fragile base class prob-

lem (the fragile pointcut problem [Störzer and Graf 2005]), and also because of the ar-

guments made in Section 5.3, we do not consider such possibilities here.

3.6 Inheritance of join point advising

In ASPECTJ, an aspect (which is implemented as a special kind of class) can inherit from

a superclass or from an abstract superaspect. The semantics of inheritance of the class

facet of aspects is the same as that for JAVA (i.e., members are inherited by the subaspect,

in which inherited methods can be overridden). Pointcuts — like class members — are

also inherited and can be overridden in subaspects. Finally, advice, which is always un-

named, is inherited, but cannot be overridden.

Aspect inheritance is mainly used for the possibility to specify abstract pointcuts in an

abstract superaspect, which are then overridden by concrete pointcuts in concrete subas-

pects. This allows reuse of advice defined in the superaspect (possibly relying on abstract

pointcuts) by providing a different (or concrete) set of pointcuts.

Since our conception of IIIA relies on the aspects of ASPECTJ as the containers of ad-

vice, we need to consider inheritance among aspects as well. However, since in our cap-

ture of IIIA pointcuts are not defined as parts of aspects, a subaspect cannot inherit or

override pointcuts. Overriding of advice on the other hand would be possible in IIIA

(since every advice is associated with the join point type it advises), but this would re-

quire that aspects inherit advice from their superaspects. This is not useful, however,

since every join point instance is dispatched to (and thus causes the execution of advice

in) all aspects declaring to advise its type (or any of its supertypes; cf. above), so that it

would lead to duplicate execution of identical advice in all cases in which the advice is

22

not overridden in the subaspect. Therefore, a subaspect inherits neither the advises

clause from its superaspect, nor its advice bound to join point types.

3.7 Achievements

With IIIA designed as above, we have introduced a new kind of interfaces, join point

types, that specify the information passed between an implicit invoker, the exhibiting

class, and a set of implicitly invoked, the advising aspects (cf. Fig. 3 (d)). By declaring

which join point types it exhibits, not which aspects may advise it, the declaring class

remains completely unaware of its advising aspects. At the same time, the class is in full

control of the data it passes as parameters of implicit invocations, and of where or when

these invocations take place. Unlike with typed P/S [Eugster 2007] and related ap-

proaches (e.g., [Rajan and Leavens 2008]), implicit invocation may be implicitly an-

nounced — however, the pointcuts specifying the implicit announcements are always

class local, so that a programming tool can always mark their shadows [Hilsdale and Hu-

gunin 2004] in the source code of the class, without depending on any other source. This

is significantly different from, e.g., aspect-aware interfaces [Kiczales and Mezini 2005]

and XPIs [Sullivan et al. 2005; Griswold et al. 2006].

On the other side of the interfaces, the aspects and their advice can remain unaware of

the classes they advise — making reference to join point types as interfaces only, they are

completely decoupled from their advised classes, and also from the pointcuts triggering

the advice. This is significantly different from other approaches preserving the modular-

ity of aspects and classes in which aspects still specify their own pointcuts [Aldrich 2005;

Ongkingco et al. 2006], and also to ones in which pointcuts are external to aspects, but

nevertheless directly referenced (and homomorphic) [Sullivan et al. 2005; Griswold et al.

2006], but similar to typed P/S [Eugster 2007] and PTOLEMY [Rajan and Leavens 2008].

As a consequence, our proposal makes evolution of classes completely independent

from aspects: anyone wishing to make changes to the class can check locally, without

resorting to any other declarations or definitions than those of the exhibited join point

types, whether one’s changes respect the advising aspects’ interfaces. Much more: in case

one must break with a (local) pointcut definition (i.e., must change the program so that a

pointcut no longer matches where it should), one can adapt it without affecting the defini-

tions in other classes, because the scope of a local branch of a join point is always lim-

ited to the owning class. In fact, the only thing the programmer must guarantee is that the

variables declared in the join point type are correctly bound to variables in the context of

the local join points (where that they are bound is checked by the compiler; see Section

23

4.2). If that is impossible using a (local) pointcut definition, one can still work around it

with the explicit creation of a join point instance. This means that the advised classes can

be changed at will, as long as the local pointcut can be adapted accordingly. The prob-

lems of state-point separation and inaccessible join points described in [Sullivan et al.

2005] and also the fragile pointcut problem [Störzer and Graf 2005] therefore no longer

exist.

On the other side of the coin, it should be clear that with our form of IIIA and its mu-

tual explicit interfaces, it is impossible to extend code that has not been written foresee-

ing extension, or cannot be changed to allow it. While this may be viewed a serious limi-

tation of our approach, we counter that not allowing arbitrary unforeseen extensions, that

is, not allowing one to work around existing interfaces, is the immanent price for modu-

larity. In a way, our join point interfaces declaring implicit invocation are similar to in-

heritance interfaces declaring dynamic binding and open recursion: they allow the ex-

tending of base code at well-defined plug-points.

Last but not least, since our achievements in terms of modularization depend to a

large part on the utilization of polymorphic, class-local pointcuts, one might wonder what

the specific cost of this feature of our proposal is. In particular, one might be concerned

that a single global pointcut will translate to so many, perhaps identical, class-local poin-

cuts that our approach becomes infeasible. While this may indeed be the case for certain

standard examples of pointcuts (such as those used for tracing and debugging), we will

see in Section 5 that for general applications of IIIA, proliferation of pointcut definitions

is small.

4. IIIA LANGUAGE SPECIFICATION AND IMPLEMENTATION OF A COM-

PILER

We specify our language extension by giving its syntax rules, by describing the semantic

checks a compiler has to perform, and by describing the transformations of a program

using our IIIA constructs into one suitable for an aspect weaver. Note that we do not pro-

vide any formal soundness or completeness proofs; however, during our practical ex-

periments with our compiler implementing the language as described here (the results of

which are presented in Section 5) we have not witnessed any type errors in the generated

code.

24

4.1 Syntax

The syntax of our IIIA extension to JAVA and ASPECTJ is specified by the rules shown in

Fig. 8. Note that join point type declarations have no access modifier; they are implicitly

public. Also, the syntax requires that exhibit must be followed by a new expression (a

kind of default constructor call, where the parameters are implicitly given by the join

point type’s fields). This makes sure that exhibits cannot be executed on a variable.

4.2 Static semantics (informal)

A IIIA program must conform to the following static semantic constraints:

 The members of join point types must be fields. Their only allowed modifier is final.

A specified supertype must be a join point type. (These are semantic, rather than syn-

tactic, restrictions because join point types are defined as special kinds of classes.)

 The types following the exhibits and the advises clauses must be join point types.

 For every join point type declared to be exhibited by a class, there must be a corre-

sponding pointcut definition or explicit join point creation in the class, or an error will

be reported. For every pointcut defined in a class, there must be a corresponding ex-

hibits declaration, either of its associated type or one of its supertypes. Each class-

(* --- Extending the Base-Grammar of AsepctJ --- *)
type = … | joinpoint_type;
type_declaration = … | joinpointtype_decl;
class_declaration = … | exhibiting_class_declaration;
class_member_declaration = … | polymorphic_pc_declaration;
block = … | exhibit_block;
aspect_declaration = … | advising_aspect_declaration;
advice_declaration = … | joinpoint_advice_declaration;
basic_pointcut_expr = … | super_pointcut_expr;

(* ---- IIIA-Syntax-Extension ---- *)
(* Join Point Type Extension *)
joinpoint_type = { IDENTIFIER "." } IDENTIFIER;
joinpointtype_decl = ["public"] "joinpointtype" IDENTIFIER ["extends" joinpoint_type]
 joinpointtype_body;
joinpointtype_body = "{" {joinpointtype_field_declaration} "}";
joinpointtype_field_declaration = ["final"] type IDENTIFIER ";";

(* Class-Side Extension *)
super_pointcut_expr = "super";
polymorphic_pc_declaration = "pointcut" joinpoint_type ":" pointcut_expr ";";
exhibiting_class_declaration = [modifiers] "class" IDENTIFIER
 ["extends" type] ["implements" interface {"," interface}]
 "exhibits" joinpoint_type {"," joinpoint_type} "{" class_body "}";
exhibit_block = "exhibit" "new" joinpoint_type ({argument}) { {statement} } ";";

(* Aspect-Side Extension *)
advising_aspect_declaration = [modifiers] "aspect" IDENTIFIER "advises" joinpoint_type {"," joinpoint_type}
 "{" aspect_body "}";
joinpoint_advice_declaration = ("before"|"around"|"after") "(" joinpoint_type IDENTIFIER ")" "{" {statement} "}";

Fig. 8. Syntax of the IIIA language extension of ASPECTJ (EBNF).

25

local pointcut must bind all fields of the corresponding join point type to the context of

a join point using this(), target() or args(). Class-local pointcut definitions must

have no access modifiers — they would be meaningless, since the pointcuts are never

referenced from the program text (the names are necessary for solely disambiguation).

(Again, this is a semantic rather than a syntactic check since class-local pointcuts are

special cases of the more general ASPECTJ pointcuts.

 For every explicit join point creation (of the form exhibit new <join point

type>(…) {…}) in a class, the exhibited join point type or one of its supertypes must be

declared as being exhibited by the class. The parameters to the instance creation (listed

in the parentheses) must have the types of the fields of the instantiated join point type.

 For every join point type declared to be advised by an aspect, there must be a corre-

sponding advice defined in the aspect. Every advice must name one and only one join

point type. For every advice defined in an aspect, there must be a corresponding ad-

vises declaration.

 A proceed in the body of an advice must have precisely one parameter, which must be

a variable of the join point type to which the advice is bound.

 For every occurrence of super in a pointcut definition of a class, there must be a

pointcut definition for the same join point type in one of its superclasses.

The new language constructs of IIIA, join point types, polymorphic pointcuts, and ex-

plicit join point creation, map to standard constructs of JAVA and ASPECTJ as follows:

 A join point type maps to a class with the type’s fields and a constructor for creating

instances and setting the fields; a join point subtype maps to a corresponding subclass.

 A class local pointcut for a join point type maps to a disjunct of the global pointcut for

that type. The disjunct is restricted to the scope of the class by adding a

within(<class name>) expression conjoined with !within(<inner class name>)

expressions, excluding matches in inner classes and outside the class. If the class has

pointcuts for subtypes of the visited pointcut’s associated join point type, their gener-

ated disjuncts are negated and conjoined with the disjunct of the visited pointcut. For

internal reference, the global pointcut is named by the name of the join point type.

 An aspect maps to an aspect; an advice associated with a join point type maps to ad-

vice bound to the correspondingly named global pointcut created from the class-local

branches.

 To realize substitutability (subtyping) of join point types on the aspect side, subtypes

of join point types advised in an aspect, for which no specific advice exists in that as-

26

pect, are mapped to new advice whose body is identical to that advising the supertype

(cf. the discourse in Section 3.4.2).

 Finally, explicit announcement of a pointcut maps to a specially tagged block (see the

implementation of the compiler described below).

Note that exhibits and advises clauses are used for semantic checking only; they are

compiled away.

4.3 Implementation of a compiler

We have implemented a compiler for IIIA on top of the AspectBench Compiler (abc)

[Avgustinov et al. 2006]. Our implementation adds a number of compiler passes, which

are roughly characterized as follows (passes performing the semantic checks omitted):

 The first pass collects all join point types and creates a new node holding the fields, a

constructor setting the fields (including those inherited from supertypes), and an

empty pointcut definition for each type.

 The second pass visits all classes, collects all pointcut branches specified in each

class, explicitly restricts the scope of each branch to the class in which it occurred, ex-

cluding pointcuts for join point subtypes (see above), and adds it so-modified as a dis-

junct to the pointcut of the corresponding join point type. Explicit join point creation

(as expressed by the exhibit statement) is handled by introducing a new node type,

ExhibitBlock, to the AST which has a field for holding the exhibited join point type.

This new node type is complemented by a new pointcut designator matching nodes

that are tagged with the join point type with which a pointcut is to be associated.

 The third pass visits all aspects and binds each of its advices to the corresponding

pointcut constructed in the second pass, translating the fields of the join point type to

parameters of the advice. It inserts a constructor call for the join point type at the be-

ginning of each advice, which binds the pointcut and advice parameters to the fields of

the join point type advised. It also creates copies of the advice for all join point types

that are subtypes of the types already advised by the aspect, and for which no specific

advice is defined in the aspect. Finally, it adds the fields of the join point type to the

proceed statement in around advice.

Our compiler thus converts a program making use of our IIIA syntax to standard con-

structs of JAVA and ASPECTJ, the sole additions being the ExhibitBlock nodes and the

corresponding new pointcut designator.

27

The compiler together with additional material can be downloaded from

www.fernuni-hagen.de/ps/prjs/IIIA/.

5. APPLICATION AND FINDINGS

Experience with the design of object-oriented programming languages has taught that

subtyping and inheritance are sources of considerable (and also often unexpected) com-

plexity. However, while formal analyses can help avoid inconsistencies and ill-

definedness, they provide little help for making the right design decisions, i.e., for balanc-

ing issues such as usability and expressiveness. We believe that this can only be achieved

by experimenting with a language on actual programming projects, preferably involving

people other than the original designers of the language.7

To test the feasibility of our design decisions, we have refactored a number of small

standard examples of ASPECTJ to apply our conception of IIIA, and rewrote two larger

applications with it, namely BERKELEY DB (used in a prior case study of ours [Kästner et

al. 2007]) and AJHOTDRAW, an ASPECTJ-based refactoring of JHOTDRAW, a widely

known drawing framework.

5.1 Standard ASPECTJ examples

Applying IIIA to standard examples of AOP has led to code like that of Fig. 7 and

Fig. 13, i.e., to code making good use of polymorphic pointcuts, and moderate use of join

point subtyping. In particular, none of the examples required use of explicit join point

creation (explicit announcement) — in fact, most improvements over standard ASPECTJ

solutions came from more explicit program organization, that is, easily visible dependen-

cies through declaration of join point types, join point instance production, and consump-

tion (advising). On the other hand, the increased explicitness of program dependencies

resulted in a scattering of pointcut definitions and exhibits clauses that made certain

examples unconvincing. In particular, the usual debugging, profiling, and tracing (which

in the examples all use broadly generic pointcuts; but see [Sullivan et al. 2005; Kästner et

al. 2007] for how this fails in practice), are not reasonably expressed using IIIA. This can

be ascribed to the loss of obliviousness and quantification brought by IIIA, and seems to

be the necessary price for achieving modularity (cf. the discussion in Section 6).

7 This is in fact what we did: the first two authors are the original designers of the lan-
guage and its compiler, while the latter two have experimented with it on real projects
and provided detailed feedback of its usability.

28

5.2 Case study #1: BERKELEY DB

To evaluate IIIA in a larger, more realistic setting, we revisited a prior case study of ours,

in which we evaluated ASPECTJ’s adequacy as a target language for a feature-oriented

refactoring [Kästner et al. 2007]. As the basis of this study, we had chosen BERKELEY

DB, a widely used open source embedded database engine implemented in JAVA (ca. 84

KLOC). BERKELEY DB offers several more or less interacting features such as transaction

safety, caching, multithreading, statistics, and debugging; in most of its installations, not

all of these features are actually needed. Literature suggests that AOP, ASPECTJ in par-

ticular, is ideally suited to host such a decomposition [Lee et al. 2006], and indeed, most

of the features of BERKELEY DB (34 of 39) are crosscutting in character, in that they ex-

tended up to 30 (of about 300) classes per feature.

Due to the nature of the problem, a large part of the necessary refactoring consisted of

introducing so-called inter-type declarations, i.e., removing fields and dependent methods

from classes and reintroducing them via aspects representing the corresponding features.

This capability of ASPECTJ is foreign to IIIA, but similar to other object-oriented exten-

sion mechanisms such as mixins [Bracha and Cook 1990] or virtual classes [Madsen and

Møller-Pedersen 1989] so that IIIA should not be denied its practicality based on not of-

fering such possibilities.8 The remainder of the refactoring had to connect the new feature

code to the “base” code and to each other, for which ASPECTJ’s implicit invocation

mechanism using join points and pointcuts offered itself.

Interestingly, the picture we found in this repeated case study was quite different from

that obtained by applying IIIA to the standard examples of AOP as described above. First

of all, polymorphic pointcut definitions could not be used as often as expected; yet this

was not because they would have led to undue scattering, but rather because there were

only few cases in which a single advice applied to more than one place (which questions

the need for quantification in an undertaking such as ours). In fact, we found that of 214

advices, only 24 were designed to match more than one join point (shadow); of these, 5

could use pattern expressions (wildcards) to specify their multiple matches (typically

overloaded methods with different parameters), while the remainder resorted to enumera-

tion (explicit disjunctions of single matches) as exemplified in Fig. 9. Splitting such dis-

junctions into class-local branches is trivial (it could in fact be performed by a tool); the

8 In fact, as has been argued in [Apel et al. 2008], mixin techniques are in many situations
simpler than the static injection capabilities of ASPECTJ, so that integrating IIIA with a
mixin-based approach may be worthwhile.

29

result is simply a shift of responsibility — each target class now specifies for itself

whether and which matches it contributes.

On the other hand, explicit join point creation (which seemed mostly unneeded for the

standard AOP examples) turned out to be a huge improvement over join point selection

through pointcuts. Using ASPECTJ as the target language (our original refactoring de-

scribed in [Kästner et al. 2007]), of the 484 needed advices, 218 applied to a single

statement or a sequence of statements in the middle of a method, so that standard execu-

tion or call join points could not be used. In the original study, we worked around these

cases by extracting methods (43 times), introducing calls to empty hook methods (121

times) or by matching nearby method calls or field access (54 cases; note how this hides

the semantics of an aspect and is extremely sensitive to change). To be able to access

temporary variables in aspects, we also had to resort to hook methods, to method objects,

to code replication in aspects [Sullivan et al. 2005], and to other awkward workarounds.

Literally all of these problems vanish with the availability of explicit join points, which

therefore became the greatest facilitator of the refactoring.9

9 Also, use of explicit join points eliminated the need to use ASPECTJ’s more sophisti-
cated pointcuts such as cflow or cflowbelow, which in our prior refactoring were required
to fix various matching problems.

pointcut latchedMethods(IN in): (
 (execution(boolean IN.validateSubtreeBeforeDelete(int)) &&
 within(IN)) ||
 execution(void IN.verify(byte[])) ||
 execution(boolean BIN.isValidForDelete())
) && this(in);

Fig. 9. ASPECTJ pointcut with branches that are distributed to the exhibiting classes in IIIA.

30

Fig. 10 exemplifies this finding on a simplified excerpt from BERKELEY DB’s Tree

class. In this example, the traceInsert call in the original insert method is part of a

feature and therefore should be moved to an aspect.10 In the ASPECTJ implementation an

artificial hook method is necessary to expose a join point in the middle of the method and

to expose the temporary variables. The IIIA solution uses an anonymous join point sub-

type (explicit join point creation) instead. Note how this is different from using annota-

// Original Berkeley DB Source (excerpt, strongly simplified)
public class Tree {
 public long insert(LeafNode ln, byte[] key, …) {
 BottomNode bin = findBINForInsert(key, …);
 long position = ln.log(key, …);
 bin.updateEntry(ln, position, key);
 bin.clearKnownDeleted();
 traceInsert(Level.FINER, bin, ln, position);
 …
 }
}

// ASPECTJ Implementation
public class Tree {
 public long insert(LeafNode ln, byte[] key, …) {
 …
 bin.clearKnownDeleted();
 hook(Level.FINER, bin, ln, position);
 …
 }
 void hook(Level l, BottomNode b, LeafNode l, long p) {}
}
public aspect Logging {
 before (Level l, BottomNode bin, LeafNode ln, long pos):
 execution(void Tree.hook(..)) && args(l, bin, ln, pos) {
 traceInsert(l, bin, ln, pos)
 }
}

// IIIA Implementation
joinpointtype Trace { Level logLevel; }
joinpointtype TraceInsert extends Trace {
 BottomNode bin;
 LeafNode ln;
 long position;
}
public class Tree exhibits TraceInsert {
 public long insert(LeafNode ln, byte[] key, …) {
 …
 bin.clearKnownDeleted();
 exhibit new TraceInsert(Level.FINER, bin, ln, position) {};
 …
 }
}
public aspect Logging advises TraceInsert {
 after (TraceInsert t) {
 traceInsert(t.logLevel, t.bin, t.ln, t.position);
 }
}

Fig. 10. Reimplementation of a logging feature using IIIA. The explicit join point creation provides
access to local variables. Note the empty block: there is no statement to be advised, only a point
between two statements. before, after, and around all have the same effect here.

31

tions: an annotation cannot annotate a sequence of statements, nor can it provide access

to variables.

While explicit join point creation (that is, anonymous inner join point subtyping)

proved extremely useful in our feature-oriented refactoring endeavour, named join point

subtyping did not. However, this could not be ascribed to a general inappropriateness of

the concept, but rather to the fact that in BERKELEY DB, the sets of join points covered by

each join point type were usually quite small (432 of 484 were singular and only 10 cov-

ered more than 3 points in the program [Kästner et al. 2007]), so that set inclusion of ex-

tensions (indicative of subtyping; cf. Section 3.4) did not occur. At the same time, only

28 join points where shared by different aspects, which were however unrelated, also

providing no good opportunity for subtyping. On the other hand, Fig. 10 shows how an

abstract tracing join point type (Trace) can serve to structure the domain even when there

is no shared advice (i.e., advice applicable to a join point type and its subtypes).

Our findings seem to be consistent with that of others, in particular those reported on

in [Sullivan et al. 2005; Hoffman and Eugster 2007]. In fact, the material presented in

[Sullivan et al. 2005] suggests that our anonymous join point subtyping, or explicit join

point creation, can help solve the problems of state-point separation, inaccessible join

points, and quantification failure. At the same time, we found that the IIIA implementa-

tions of features in BERKELEY DB are easier to use and to read, but this of course lies in

the eye of the beholder.

5.3 Case study #2: AJHOTDRAW

In a second case study, we migrated the aspect-oriented version of JHOTDRAW, AJHOT-

DRAW, to our implementation of IIIA. AJHOTDRAW was written as a demonstrator of the

feasibility of using ASPECTJ in existing applications, and was used as the basis of several

recent case studies [van Deursen et al. 2005; Coelho et al. 2008]. Like our own migration

of BERKELEY DB to ASPECTJ [Kästner et al. 2007], AJHOTDRAW makes use of both in-

ter-type declarations (introductions) and implicit invocation. Since IIIA is orthogonal to

introductions, we refactored only the implicit invocation part.

Overall, we extracted 36 different join point types and implemented 19 aspects to ad-

vise them and 25 classes to exhibit them (for comparison: AJHOTDRAW implemented 31

aspects of which 14 contained advice, while 17 contained only inter-type declarations).

10 The tracing feature in BERKELEY DB writes log messages at well-defined points in the
execution of the program, logging several context variables. These points are too hetero-
geneous to be matched by generic pointcuts (quantification).

32

Splitting the (global) pointcuts into class-local branches was straightforward, since al-

most all applied to a single class only, and the remaining three pointcuts used separate

disjuncts to specify the pointcuts for each class anyway (note how this amounts to invert-

ing the transformation performed by our compiler). The situation was thus quite similar

to BERKELEY DB, where we also found only few pointcuts matching more than one join

point shadow (cf. Section 5.2). However, other than in the case of BERKELEY DB we

found a convincing application of join point subtyping.

5.3.1 Uses of join point subtyping One striking observation we made was that many

(23 out of 36) of the join point types we introduced were strongly related, both in terms

of the meaning they carried and in terms of the fields they defined. In fact, these join

point types naturally arranged into three subtype hierarchies, structuring the domain as in

the BERKELEY DB case. However, in AJHOTDRAW substitutability, i.e., the application of

an advice bound to a join point type to instances of its subtypes, also proved useful.

JHOTDRAW has an AbstractCommand class, which is an abstract superclass of all

command classes. In AJHOTDRAW, the undo facility and some sanity checks that apply

to commands were extracted into aspects (UndoableCommand, CommandPolicy, and Com-

mandDamage). The pointcuts of these aspects were defined as

pointcut commandExecuteCheckView(AbstractCommand acommand) :
 this(acommand)
 && execution(void AbstractCommand+.execute())
 && !within(*..DrawApplication.*)
 && !within(*..CTXWindowMenu.*)
 && !within(*..WindowMenu.*)
 && !within(*..JavaDrawApp.*);

and

pointcut commandExecuteNotifyView(AbstractCommand acommand) :

 commandExecuteCheckView(acommand)
 && !within(org.JHOTDRAW.util.UndoCommand)
 && !within(org.JHOTDRAW.util.RedoCommand)
 && !within(org.JHOTDRAW.standard.CopyCommand)
 && !within(org.JHOTDRAW.standard.ToggleGridCommand)
 && !within(org.JHotDraw.contrib.zoom.ZoomCommand);

Note how this first defines a pointcut applying to all classes of the AbstractCommand hi-

erarchy, and then removes matches in certain subclasses (using !within expressions).

This reflects the crosscutting nature of the commandExecuteNotifyView pointcut, which

means that if a class is to be advised, its subclasses are not automatically to be advised,

too. However, this information is coded in rather unwieldy pointcut definitions.

33

Using our join point types and join point subtyping it was easy to refactor the code to

reflect the relationships between commands and their aspects more clearly. As can be

seen from Fig. 11, the classes of the AbstractCommand hierarchy exhibit join point types

from the CommandExecuted hierarchy. Note that the two hierarchies are not parallel; in

fact, if join point type exhibition is considered a form of classification, this classification

is independent of the primary (or “dominant” [Tarr et al. 1999]) classification established

by subclassing. For this to be the case, however, it is necessary that join point exhibition

is not inherited by subclasses (cf. the discussion in Section 3.5). If a subclass happens to

exhibit the same join point type as its supertype, it has to declare to do so, and if it wants

to use the same pointcut, it has to import it (using super). Inheritance of join point exhi-

bition by subclasses is not default behaviour, but an explicit act.

While explicitly marking each class with the join point types it exhibits models the

crosscutting nature of the AbstractCommand and the CommandExecuted hierarchies nicely,

the aspect side also makes use of subtyping and substitutability: here, all classes exhibit-

ing a join point type from the CommandExecuted hierarchy enjoy the advice bound to the

CommandExecuted join point type (the root of the join point type hierarchy) as expressed

in the CommandPolicy aspect; all classes exhibiting a subtype of the DamagingCommand-

Executed join point type enjoy the advice of the aspect CommandDamage; and so forth. The

dispatching of a single event (the execution of a command) to advices of several types is

fully implicit, elegantly reducing the complexity of the code.

5.3.2 Refactoring the OBSERVER pattern Beyond the refactoring of existing aspects

in AJHOTDRAW, we found 16 opportunities for using IIIA in classic publish/subscribe

constellations, that is, for occurrences of the OBSERVER pattern. For this, we replaced the

event class by a join point type, moved the calling of the update() (or like) method to an

«class»

AbstractCommand

«class»

AllignCommand

«class»

FigureTransferCommand

«class»

SelectAllCommand

«class»

ZoomCommand

«class»

CutCommand
«class»

CopyCommand

«joinpointtype»

CommandExecuting

«joinpointtype»

DamagingCommandExecuting

«joinpointtype»

UndoableCommandExecuting

«joinpointtype»

AlignCommandExecuting
«joinpointtype»

CutCommandExecuting

«aspect»

CommandPolicy

«aspect»

Damage

«aspect»

Undo

«aspect»

AllignUndo

«aspect»

CutUndo

Fig. 11. Class hierarchy, the hierarchy of join point types exhibited, and the aspects advising
them. Note how join point exhibition is independent from subclassing.

34

aspect, replaced the registration of the observer by an advises clause, and replaced noti-

fication by an exhibits clause and a suitable pointcut in the subject class. However, due

to the singleton character of aspects, and due to the fact that in the original code, individ-

ual objects, not classes, are notified, boilerplate code had to be written in order to dis-

patch updating to the observing object (Fig. 12 gives an example of this). This could have

been avoided had a symmetrical approach to AOP been used in which objects advise ob-

jects (such as classpects [Rajan and Sullivan 2005]; cf. the discussion in Section 6).

5.4 Summary of findings

Table II summarizes our findings. Apart from the fact that join point types are generally

usable, the picture is not coherent — the only conclusion we can draw is that all other

features of our capture of IIIA are also useful, but not in all applications. This however

was to be expected.

Apart from this general observation, we found that in our two case studies of IIIA, us-

ing explicit join point creation seemed more convenient than writing pointcuts, even

when the latter posed no technical problems. Particularly considering the fact that in our

case studies, the average degree of quantification (i.e., the average number of join point

shadows matched by pointcuts) is close to 1, and that generally, the pointcut language of

public joinpointtype ToolJP {
 Tool subject;
}

public joinpointtype ToolEnabledJP extends ToolJP {
 boolean enabled;
}

public abstract class AbstractTool exhibits ToolEnabledJP … {
 …
 public void setEnabled(boolean newIsEnabled) {
 …
 exhibit new ToolEnabledJP(this, newIsEnabled) {};
 …
 }
}

public class ToolButton implements ToolListener … {…}

aspect ToolListening advises ToolEnabledJP … {
 HashMap<AbstractTool, Set<ToolListener>> listeners = new …

 void addToolListener(AbstractTool subject, ToolListener listener) {
 listeners.get(subject).add(listener);
 }

 after (ToolEnabledJP jp) {
 for (ToolListener listener : listeners.get(jp.subject))
 listener.setEnabled(jp.enabled);
 }
}

Fig. 12. Implementation of the OBSERVER pattern in JHOTDRAW using IIIA (strongly simplified).
Boilerplate code is needed to maintain the set of listeners and to dispatch event notification.

35

ASPECTJ often requires the rewriting of code so that it can be matched, writing generic

join point specifications seems rarely worth the effort.11 The picture is rather different for

the standard (text book) examples of ASPECTJ, which usually have much higher degrees

of quantification.12

The generally low degree of quantification has a like effect on the usefulness of po-

lymorphic pointcuts: the number of classes exhibiting the same join point type is usually

quite small, so that the scattering of join point type exhibition as well as that of pointcuts

is limited. This counters fears that use of our IIIA will lead to annoyingly verbose pro-

grams, in particular ones in which implicit calling information is widely scattered, where

it would be nicer to have it all in one place. In fact, given the low degree of quantification

that we found, it seemed more natural to specify join points (close to) where they oc-

curred, rather than (close to) where they are consumed.

Another observation in this vein is that while our definition of IIIA introduces some

syntactic overhead (in the form of exhibits and advises clauses), we felt that this over-

head leads to better readable programs, which is basically due to more explicitly stated

dependencies. The effect is largely comparable to that of the use of checked exceptions in

JAVA: while throwing an exception in the body of a method may seem a sufficient ex-

pression of the fact that the method has exceptions, it is the repeating in the method sig-

nature that leads to better readability (and that allows type-checking in absence of an im-

plementation).

Last but not least, there appears to be a correlation of the number of join point types

in a program and the opportunities for join point subtyping. This could be explained by

the fact that the greater the number of join point types in a program, the greater is the

11 One notable exception is the writing of execution pointcuts, which seems more conven-
ient than an explicit join point creation. See Section 7 on future work for how this can be
avoided using standardized join points.
12 However, a recent study of 11 ASPECTJ programs has shown that the degree of quanti-
fication is generally low: only 2% of all pointcuts are homogenous, i.e., match more than
one join point shadow [Apel and Batory 2008].

Table II. Frequency of use of IIIA programming constructs

IIIA PROGRAMMING
CONSTRUCT

STANDARD (TEXT BOOK)

EXAMPLES OF ASPECTJ
BERKELEY DB JHOTDRAW

join point type + + ++
polymorphic pointcut ++ º +
explicit join point creation – ++ º
join point subtyping º – +
legend: – = no, º = little, + = good, ++ = strong use

36

chance that these are conceptually related, and lend themselves to organization through

subtyping.

6. RELATED WORK

Event-driven programming and publish/subscribe In EDP, registering and unregistering

of subscribers usually occur at runtime, whereas in our approach to IIIA they are “woven

in” using the weaving mechanism of an aspect-oriented programming language (see, e.g.,

[Avgustinov et al. 2005; Hilsdale and Hugunin 2004], but also [Rajan et al. 2006] for a

viable alternative). Also, the announcement, or firing, of events in EDP is usually ex-

plicit, while it is by definition implicit in our approach: as can be seen from Fig. 13, there

is no publish statement or explicit call of a corresponding procedure. Types have been

introduced to EDP and P/S mainly as filters for subscribers [Eugster 2007]: rather than

accepting every event and checking it individually for relevance, a subscriber subscribes

only to certain types of events. By contrast, we use types mostly to specify interfaces on

the side of the publisher, a purpose that is explicitly declined by proponents of implicit

invocation [Garlan and Scott 1993; Notkin et al. 1993]. However, denying interfaces sac-

rifices modularity, which we want to restore.

joinpointtype ItemProducing {}
joinpointtype ConsumerCreation {
 Consumer consumer;
}

class Producer exhibits ItemProducing {
 pointcut ItemProducing : execution(Item produceItem());
 …
}

class Consumer exhibits ConsumerCreation {
 pointcut ConsumerCreation : execution(new(..)) && this(consumer);
 …
}

class Item {…}

aspect Dispatcher advises ItemProducing, ConsumerCreation {
 List consumer = new ArrayList();
 after (ConsumerCreation creation) returning {
 consumer.add(creation.consumer);
 }
 after (ItemProducing producing) returning (Item it) {
 // dispatch item to idle consumer
 }
}

Fig. 13. Event-driven consumer/producer communication based on IIIA. The Consumer class sig-
nals its instantiation, an event of type ConsumerCreation parameterized with the new consumer, to
the Dispatcher aspect. The Producer class signals the production of a new item to the Dispatcher,
which dispatches it to an idle consumer. Note how both Consumer and Producer remain completely
unaware of each other, and also of the dispatcher.

37

Aspect-oriented programming According to most common definitions of AOP, what we

suggest is no longer aspect-oriented. For instance, compared to ASPECTJ it does not per-

form well in the removal of scattered code, and therefore does not modularize crosscut-

ting concerns in the way expected by many in the AOP community. Compared to sym-

metric approaches such as HYPER/J [Ossher and Tarr 2000], it performs even worse —

because of its restriction to implicit invocation, it does not support the merging of classes

(or aspects) delivering aspect-wise structure and behaviour (introduction of new features

into classes is not supported). However, combining IIIA with mixin techniques is a prom-

ising approach to solve this problem [Apel et al. 2008].

It follows that implementing important standard aspects such as logging or tracing,

and also certain design patterns requiring structural introductions, with our proposal is no

good idea. Also, in terms of the much-cited quantification and obliviousness characteriza-

tion [Filman and Friedman 2004], our proposal does not make it as a form of AOP: quan-

tification is restricted to classes declaring to exhibit join points, and obliviousness is

compromised to the extent that all classes in which join points may occur must be explic-

itly tagged as such. In fact, we even go as far as permitting explicit marking of individual

join points through the exhibit new <join point type> construct, which eliminates

obliviousness and quantification completely. On the other hand, since aspects and classes

depend on join point types, not on their counterparts, they remain oblivious of each other.

Reduction of AOP to implicit invocation Xu et al. have shown how aspect-oriented pro-

grams can be automatically reduced to implicit invocation, so that available model check-

ing approaches designed for implicit invocation can be used for aspect-orientated pro-

grams also [Xu et al. 2004]. However, as the authors themselves admit, the practicality of

their approach is limited by the practicality of model checking in general: formulation of

conditions to be checked is difficult, scalability is poor, and translation of the results

(found counterexamples) back to the original input, in this case aspect-oriented programs,

is nontrivial. By contrast, we have suggested an intuitive and simple to use type system

that lets the compiler make certain checks.

Explicit Join Points In parallel but independent work, Hoffman and Eugster [2007] have

elaborated on a notion of explicit join points that is much akin to ours. Syntactically, an

explicit join point resembles a static method call qualified by an aspect, but like our join

point type instantiation it can be associated with a block of statements the aspect is to

advise. As an extension to explicit join points, Hoffman and Eugster allow the adding of

38

pointcuts whose scope is restricted to where they are defined in the base code. However,

their relationship of pointcuts and explicit join points is the inverse of ours: while we

introduce polymorphic pointcuts as (class) local join point type predicates and add ex-

plicit join point creation as a natural extension (analogous to an anonymous subclass,

specifying a pointcut with a single match), the explicit join points of Hoffman and Eug-

ster govern over local pointcuts so that the latter are unavailable without the former. Also,

since their explicit join points are typeless, there is no opportunity of subtyping; in fact,

in Hoffman and Eugster’s approach explicit join points are bound to specific aspects,

whereas in ours they are only bound to a join point type and its supertypes, which can be

advised by any aspect declaring to do so. This gives us a broadcast semantics, and with it

greater decoupling.

Another approach to modular AOP making the shift towards explicit announcement is

Rajan’s and Leaven’s language PTOLEMY [2008]. Like our own work, PTOLEMY relies on

event types to decouple the implicit invokers and invokees (the sources and sinks of join

points), and on fields of these types as holders of context information. A minor difference

is that PTOLEMY binds the arguments of the context to the fields of an event using context

variables of the same name; however, this kind of binding may cause problems in case of

nested event announcement, when names, but not values of arguments are identical.

Similar to Hoffman and Eugster [2007] and also to our anonymous join point subtypes,

PTOLEMY’s explicit announcement can wrap arbitrary blocks of code, which event han-

dlers can choose to execute.13 However, unlike our own work, which offers explicit an-

nouncement as a supplement to implicit announcement, the quantification property of

PTOLEMY seems rather limited: in particular, by relying entirely on the tagging of events

in source code using explicit event expressions, it is unclear to us in which way their

quantification differs from that of typed EDP [Eugster 2007]. The disjunction of event

types offered by PTOLEMY can easily be emulated in EDP and our form of IIIA by sup-

plying separate handlers that invoke identical code.

Unlike in our work and also in ASPECTJ, in PTOLEMY event handlers are methods as-

sociated to objects, not aspects, explicitly registered as having an interest in announced

events. This symmetry appears to be similar to the approach of classpects [Rajan and

Sullivan 2005] (see below), although it appears that no provisions are made in PTOLEMY

so as to let different subscriber instances register to different publisher instances. The

13 Note that, as with many other ASPECTJ-related approaches, this can lead to the para-
doxical situation that the event that triggered the handler actually did not take place.

39

filtering of events by objects having interest in events published by certain objects only is

then left to the subscribing objects, likely imposing significant overhead.

Classpects and EOS-U To achieve greater conceptual integrity, the “classpects” of EOS-

U [Rajan and Sullivan 2005] drop the distinction between classes and aspects and let in-

stances advise other instances. However, this requires binding of advising to advised ob-

jects, which introduces additional dependencies. By contrast, we have introduced join

point instances that are automatically created when a pointcut matches, and let advice

operate on these instances as if it were a method of the corresponding join point type (ad-

vice is dynamically bound depending on the type of a join point). Our gain in conceptual

integrity is therefore comparable. On the other hand, we believe that EOS-U would profit

from the typing we suggested: for instance, its addObject method could be typed to ac-

cept only objects exhibiting the advised join point type.

Crosscutting Interfaces (XPIs) Griswold et al. [2006] suggest the introduction of cross-

cutting interfaces (XPIs) as interfaces “that base code designers ‘implement’ and that

aspects may depend upon” [Sullivan et al. 2005]. For this, each XPI comes with a “syn-

tactic part” that exposes the signature of named pointcuts, and a “hidden implementation”

[Griswold et al. 2006, p. 54], the part that specifies the concrete pointcut expressions.

XPIs are enhanced by informal, “semantic” specifications (“design rules”) of join points

that need to be observed by the maintainers of classes. Note that storing the implementa-

tion, the pointcuts, in the interface is somewhat unusual (cf. the discussion of attaching

pointcuts to join point types in Sections 3.1 and 3.2), but may be seen as technical tribute

to ASPECTJ as the language in which XPIs are currently implemented. However, this

technicality impairs independent module evolution to a certain extent, since the imple-

mentation of the interface is not part of the implementation of the module (so that de-

coupling reaches only stage (b) in Fig. 3). At the same time, it does not solve many of the

problems noted in [Sullivan et al. 2005], which are mostly due to the inability to formu-

late pointcuts that readily match the intended points in a program. By letting interfaces be

implemented polymorphically, that is, per implementing class as we do, XPIs would

achieve full modularity (stage (d) in Fig. 3). Also, by letting join points be created explic-

itly, many of the problems of state-point separation, inaccessible join points, and quanti-

fication failure would be solved. From there, however, it is only a small step to our con-

cept of join point types as interfaces.

40

Open Modules Following Aldrich’s influential work [2005], Ongkingco et al. [2006]

present an implementation of Open Modules for ASPECTJ. It introduces a module concept

as an owning collection of classes that together declare a set of friend aspects (that can

freely access all classes of the module) as well as specific pointcuts advertised or exposed

(the difference is of little importance here) to aspects. All join points included in the

module that are not exposed are invisible from the outside. In addition, a module may

expose join points selectively to aspects that it names. This is somewhat comparable to,

although still sufficiently different from, our approach in which join points are exposed to

aspects that declare to depend on the join points’ types. In sharp contrast to our work is

that in Open Modules classes remain unaware of the join points they expose, and also of

the pointcuts specifying those join points. In particular, in Open Modules à la Ongkingco

et al. [2006] the pointcuts used by an aspect cannot be adapted and maintained on a per

class basis, thereby limiting independent evolution of aspects and base classes to a certain

extent. Also, the ability to declare friend aspects of a module, while allowing such things

as debugging via aspects, provides for unspecified (implicit) interfaces to the module,

which basically implies that friend aspects are part of the modules whose classes they

advise.

Spectators and assistants Clifton and Leavens [2002] use the accept keyword to let

classes declare that they admit advice from the aspects listed thereafter. In Fig. 3, this

would correspond to (a) with bidirectional dependencies. We are taking a different route:

by introducing join point types as middle men between aspects and their targets, and by

introducing class-wise polymorphic pointcuts, we reach the degree of decoupling shown

in Fig. 3 (d). Clifton and Leavens [2002; 2003] further distinguish between spectators

(aspects that may only observe) and assistants (aspects that can actually change state).

Using our approach, and would JAVA offer a modifier similar to C++’s const, we could

allow declaring single fields of a join point type as being observable only, or as being

changeable, thereby granting finer-grained access control. On the other hand, preventing

direct write access to objects cannot prevent the behaviour changing interception of

methods. For a more detailed discussion of how potentially interfering aspects can be

separated from “harmless advice”, see [Dantas and Walker 2006].

Modular aspects with ownership (MAO) In subsequent work, the distinction between

spectators and assistants and the enforcement of corresponding access policies have been

implemented using an ownership type and effect system [Clifton et al. 2007]. Using this

41

system, it can be statically checked whether an aspect can make changes to heap objects

it does not itself own (usually objects of the base program). Together with restrictions on

aspects regarding their alteration of the advised program’s control flow, the number of

aspect that need to be considered when reasoning about a particular piece of code can be

reduced significantly. Compared to our introduction of join point types as bilateral inter-

faces between aspects and base code (with references to the interfaces in both the aspects

and the base code), the interfaces of modular aspects with ownership express obligations

only for the aspect, and need to be inspected by designers of base code for potential ef-

fects.

Aspect-implied interfaces In their effort to restore modularity of AOP, Kiczales and

Mezini [2005] argue that “aspects cut new interfaces through the primary module struc-

ture”, and that a tool can compute these interfaces once a system has been assembled.

This means that a module is no longer sovereign over its own interfaces — rather, they

are forced upon it by system composition. It follows immediately that modules cannot be

changed independently of their use in a particular assembly, simply because it is unclear

which interfaces to keep constant. This in turn hampers reuse in all cases in which a

module is to be used in more than one composition. By contrast, what we have suggested

here is much more conservative: we require that all interfaces of a module be made ex-

plicit at module design time, so that programmers can observe them while doing what-

ever they need to do, independently of each other. In our approach to IIIA, a change to an

aspect can never require a change of a class; changing the fields of a join point type, the

interface between a class and its advising aspects, may require changes (in both the class

and its aspects), but these are enforced by the compiler.

Adding Polymorphism to ASPECTJ Ernst and Lorenz [2003] noted that the polymor-

phism present in ASPECTJ is basically ad-hoc; all available inclusion polymorphism is

that of the base language (JAVA). In order to introduce late binding of advice, the authors

require some kind of advice grouping, so that a binding algorithm can “choose exactly

one most specific advice and invoke it, ignoring all the others in the group (they are being

overridden).” [Ernst and Lorenz 2003]. By our introduction of join point types and sub-

types, and by linking advice to join point types (providing some kind of “advice signa-

tures” [Ernst and Lorenz 2003]), we have installed such groupings. However, with the

language and its translation to ASPECTJ as defined above, advice is still bound at compile

42

time; in particular, we have not yet explored whether and how our approach could open

the door for separate compilation.

In a different line of work, Apel et al. proposed the notion of aspect refinement to in-

troduce polymorphism to ASPECTJ [2007]. Using aspect refinement, advice can be named

and thus overridden in specialized aspects, where it can also be bound to specialized

pointcuts. A specialized pointcut may refer to its base using the super keyword, which is

similar to our specialization of pointcuts as type predicates of join point subtypes. Even

though in our present work we did not consider specialization of aspects or advice, letting

join point handlers (advice) of a specialized join point type refer to handlers of the more

general type seems like a natural extension.

Type-theoretic interpretation of pointcuts and advice In [Ligatti et al. 2006], Ligatti,

Walker, and Zdancewic present formal semantics for an idealized AOPL. For this, they

extend the simply-typed lambda calculus with two new abstractions covering join points,

pointcuts, and advice, and prove type safety for this calculus. They present a small func-

tional language, MINIAML, and show how this maps to the core calculus. MINIAML has

some similarities with our language, most prominently that it allows scoping of advice:

functions can be hidden from advice, thereby allowing “programmers to retain some con-

trol over basic information hiding and modularity principles in the presence of aspects.”

[Ligatti et al. 2006] The mapping of MINIAML to the core calculus is non-trivial; we ex-

pect a corresponding mapping of our own language, although certainly desirable to prove

the soundness of our type system, to be no easier. On the other hand, what we have deliv-

ered can be immediately tried out in practical settings, allowing the community to test

and improve it until it is maximally useful.

Stratified aspects In our own previous work, we proposed [Forster and Steimann 2006]

and implemented [Bodden et al. 2006] an extension of ASPECTJ that adds type levels to

its join points and aspects. In the resulting language, type information in a program is

partly implicit, and for the rest consists of meta modifiers attached to aspects and point-

cuts. According to this type system, all join points contained in classes are of type level 0,

all in aspects of type level 1, all in aspects declared with a single meta modifier of type

level 2 and so forth. Pointcuts to range over join points of type level 0 remain unmodi-

fied, while those to range over type level 1 and higher have to be modified with a corre-

sponding number of meta modifiers. This allows us to build towers of aspects as adver-

tised in [Rajan and Sullivan 2005], albeit on the class rather than the instance level (cf.

43

below). As can easily be seen, our current type system can emulate our previous one,

simply by dividing the set of join point types into disjoint subsets each associated with a

type level, and requiring that aspects advise only join point types from levels lower than

the join points they themselves exhibit (if that is what they do; aspects exhibiting join

points are not discussed in this paper). In fact, it should even be possible to automatically

construct the type strata from the exhibits/advises relationships found in a program,

and to report a typing error (or warning) should the relationship contain circles (poten-

tially leading to self-application and recursion).

Fine-grained generic aspects Rho et al. [2006] propose a mechanism for capturing arbi-

trary join points in the execution and structure of a program. Fine-grained pointcuts use a

combination of metaprogramming and logic programming to allow the programmer to

precisely select join points. While the fine granularity increases the expressive power of

advice compared to present aspect-oriented languages, it decreases modularity further

since more details of a module’s implementation are exposed.

Test-based pointcuts for robust and fine-grained join point specification Sakurai and

Masuhara [2008] present a pointcut mechanism for selecting join points using the unit

test cases that are associated with the base program. Test-based pointcuts can be used to

distinguish between different execution histories of a method and, thus, are more power-

ful for the specification of dynamic join points. Each test-based pointcut refers to one or

more unit test methods of a unit test class. Hence, the unit test class is like an interface

between the base program’s execution and the advices. Typing and subtyping are not

addressed in this work. Type checking is done like in conventional ASPECTJ-like lan-

guages and join points do not have types that can be checked against advice.

Managing the evolution of aspect-oriented software with model-based pointcuts Kellens

et al. [2006] introduce model-based pointcuts in order to decouple the implementation of

a base program from its aspects. Instead of referring to the identifiers of the elements of a

base program, model-based pointcuts refer to a conceptual model of the base program.

The advantage is that the base program’s implementation may change without breaking

the pointcuts, as long as the model remains unchanged and consistent with the intention

of the base program. This burdens the programmer to make sure that changes do not in-

validate the model. The conceptual model is a kind of interface between program and

advice. However, type checking is not possible since the conceptual model is at a differ-

ent level of abstraction, usually written in another language with different type structure.

44

Event patterns Douence, Motelet, and Südholt [2001] have suggested looking at se-

quences (or temporal patterns) of events for identifying the join points aspects are to ad-

vise. Like ourselves, they equate points of interest with events; however, they extend a

pointcut language such as ASPECTJ’s to allow the specification of patterns to be matched

(also referred to as tracematches [Allan et al. 2005]). For this purpose, they introduce a

single event type, Event, whose instances consist of a name tag and a time stamp. Using

this event type in pattern specifications increases the expressiveness of the pointcut lan-

guage (by adding a temporal dimension), but it does not alleviate problems of modularity

in any way.

7. FUTURE WORK

During our experiments with IIIA and our compiler, a number of directions for future

work became apparent. The following seem most important to us.

 It may make sense to combine interface implementation with join point exhibition: a

class offering a method published in an interface it declares to implement may at the

same time declare to announce whenever this method is being executed. Rather than

specify a corresponding execution pointcut in every class implementing this interface

(as is currently required), it might be more convenient to specify this pointcut in the

interface and have it inherited by the implementing classes. To avoid untoward change

dependencies (as discussed at the end of Section 3.5), the pointcut could be standard-

ized as always binding the parameters of the method to the fields of a corresponding

join point type.

 Another issue that should be investigated is whether, rather than letting the advice

choose its kind (i.e., before, after, etc.), the kind of advice should be associated to the

join point type (so that both advised class and advising aspect must agree on the kind).

In fact, one could argue that a class should not only have control over which join

points it exhibits, but also whether it admits advice before or after a join point is exe-

cuted, and whether the advice is allowed to change the context in which it executes

(around advice). Attaching the kind to the join point type poses new questions, how-

ever, in particular with respect to subtyping: how can subtypes change (extend, re-

strict) the kind of a join point type without breaking contracts of their supertypes?

 A rather minor open issue is the problem of join point exhibition in anonymous inner

classes: because the JAVA syntax of these classes leaves no room for an exhibits

clause, and since join point exhibition is not inherited by subclasses, there is no consis-

45

tent way for making these classes announce join points. We currently work around this

problem by assuming the exhibits clause of the superclass (making an exception to

the rule that these clauses are not inherited), but then this always requires the specifi-

cation of join points within the anonymous class, either through pointcut or through an

explicit announcement. An alternative would be to not require an exhibits clause for

anonymous classes, but this is not very satisfactory, either.

 Last but not least, it may make sense to investigate the combination of join point types

with traits [Ducasse et al. 2006]. In fact, since join point types can be viewed (and are

currently implemented in our compiler) as classes with state, but no behaviour, attach-

ing behaviour through traits, rather than aspects, may be a viable alternative. Together

with the fact that mixin-like constructs can replace for the introductions offered by

ASPECTJ [Apel et al. 2008], and that implicit invocation can be standardized as

sketched above, our IIIA could drop much of the dependence on AOP and its language

constructs.

8. CONCLUSION

Due to the lack of explicit interfaces, implicit invocation with implicit event announce-

ment mechanisms such as those offered by aspect-oriented programming languages suffer

from serious modularity problems. Inspired by how typed exceptions are declared in

JAVA, and how its interfaces-as-types allow for polymorphic implementations while at

the same time decoupling callers from the called, we have introduced the notion of join

point types as interfaces between producers and consumers of events. Borrowing the

pointcut language from ASPECTJ, the type predicates of our join point types are defined

as class-local, polymorphic pointcuts. Join point types extend naturally to subtyping and

to explicit join points as anonymous subtypes. Applications of the so extended, fully

modular language are the same as that for other implicit invocation mechanisms with

implicit or explicit event announcement, such as (database) triggers or occurrences of the

EVENT NOTIFICATION [Riehle 1996] and OBSERVER [Gamma et al. 1995] patterns. Its

limitations are clearly cases in which the publisher should remain unaware of the fact that

it publishes. This includes, for practical reasons, some of the most prominent applications

of aspect-oriented programming, in particular all extensively crosscutting concerns such

as logging or tracing.

46

ACKNOWLEDGEMENTS

The authors are indebted to Eric Bodden for his many comments on an earlier version of

this paper, as well as to the anonymous reviewers for their critical questions and helpful

suggestions.

REFERENCES

ALDRICH, J. 2005. Open modules: Modular reasoning about advice. In Proceedings of the 19th European

Conference on Object-Oriented Programming (Glasgow, UK). 144–168.

ALLAN, C., AVGUSTINOV, P., CHRISTENSEN, A. S., HENDREN, L., KUZINS, S., LHOTÁK, O., DE MOOR, O.,

SERENI, D., SITTAMPALAM, G., AND TIBBLE, J. 2005. Adding trace matching with free variables to As-

pectJ. In Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-Oriented Programming,

Systems, Languages, and Applications (San Diego, CA, USA, October 16–20, 2005).

APEL, S., KÄSTNER, C., LEICH, T., AND SAAKE, G. 2007. Aspect Refinement — Unifying AOP and stepwise

refinement. Journal of Object Technology 6, 9, 13–33.

APEL, S., LEICH, T., AND SAAKE, G. 2008. Aspectual Feature Modules. IEEE Trans. Softw. Eng. 34, 2 (Mar.

2008), 162–180.

APEL, S. AND BATORY, D. 2008. How AspectJ is Used: An Analysis of Eleven AspectJ Programs. Technical

Report MIP-0801, Department of Informatics and Mathematics, University of Passau.

AVGUSTINOV, P., CHRISTENSEN, A. S., HENDREN, L., KUZINS, S., LHOTÁK, J., LHOTÁK, O., DE MOOR, O.,

SERENI, D., SITTAMPALAM, G., AND TIBBLE, J. 2005. Optimising AspectJ. SIGPLAN Not. 40, 6 (Jun.

2005), 117–128.

AVGUSTINOV, P., CHRISTENSEN, A. S., HENDREN, L. J., KUZINS, S., LHOTÁK, J., LHOTÁK, O., DE MOOR, O.,

SERENI, D., SITTAMPALAM, G., AND TIBBLE, J. 2006. abc: an extensible AspectJ compiler. Transactions

on Aspect-Oriented Software Development 1, 293–334.

BRACHA, G. AND COOK, W. 1990. Mixin-based inheritance. In Proceedings of the European Conference on

Object-Oriented Programming/Proceedings on Object-Oriented Programming Systems, Languages, and

Applications (Ottawa, Canada). OOPSLA/ECOOP '90. ACM, New York, NY, 303–311.

BOBROW, D. G., DEMICHIEL, L. G., GABRIEL, R. P., KEENE, S. E., KICZALES, G., AND MOON, D. A. 1988.
Common Lisp Object System specification. SIGPLAN Not. 23, SI (Sep. 1988), 1–142.

BODDEN, E., FORSTER, F., AND STEIMANN, F. 2006. Avoiding infinite recursion with stratified aspects. In

Proceedings of NODe/GSEM (Erfurt, Germany) NODe/GSEM '06. GI-Edition Lecture Notes in Informatics

P-88, 49–64.

CLIFTON, C. AND LEAVENS, G. 2002. Observers and assistants: A proposal for modular aspect-oriented

reasoning. In Workshop on Foundations of Aspect-Oriented Languages. FOAL 2002. 33–44.

CLIFTON, C. AND LEAVENS, G. 2003. Obliviousness, modular reasoning, and the behavioral subtyping anal-

ogy. In Software Engineering Properties of Languages for Aspect Technologies. SPLAT. Workshop at

AOSD 2003.

CLIFTON, C., LEAVENS, G.T., AND NOBLE, J. 2007. MAO: Ownership and effects for more effective reason-

ing about aspects. In Proceedings of the European Conference on Object-Oriented Programming. ECOOP

2007. 451–475.

47

COELHO, R., RASHID, A., GARCIA, A., FERRARI, F., CACHO, N., KULESZA, U., STAA, A., AND LUCENA, C.
2008. Assessing the impact of aspects on exception flows: An exploratory study. In Proceedings of the

22nd European Conference on Object-Oriented Programming (Paphos, Cypress, July 07–11, 2008). J.

VITEK, Ed. Lecture Notes In Computer Science, vol. 5142. Springer-Verlag, Berlin, Heidelberg, 207–234.

DANTAS, D. S. AND WALKER, D. 2006. Harmless advice. In Conference Record of the 33rd ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (Charleston, South Carolina, USA, January

11–13, 2006). POPL '06. ACM, New York, NY, 383–396.

DOUENCE, R., MOTELET, O., AND SÜDHOLT, M. 2001. A formal definition of crosscuts. In Proceedings of

the Third international Conference on Metalevel Architectures and Separation of Crosscutting Concerns

(September 25–28, 2001). A. YONEZAWA AND S. MATSUOKA, Eds. Lecture Notes In Computer Science, vol.

2192. Springer-Verlag, London, 170–186.

DUCASSE, S., NIERSTRASZ, O., SCHÄRLI, N., WUYTS, R., AND BLACK, A. P. 2006. Traits: A mechanism for

fine-grained reuse. ACM Trans. Program. Lang. Syst. 28, 2 (Mar. 2006), 331–388.

EICHBERG, M., MEZINI, M,. AND OSTERMANN, K. 2004. Pointcuts as functional queries. In WEI-NGAN

CHIN, editor, Programming Languages and Systems: Second Asian Symposium, APLAS 2004, Taipei, Tai-

wan, November 2004. Lecture Notes in Computer Science, 366–381.

ELRAD, T., FILMAN, R. E., AND BADER, A. 2001. Aspect-oriented programming: Introduction. Commun.

ACM 44, 10 (Oct. 2001), 29–32.

ERNST, E. AND LORENZ, D. H. 2003. Aspects and polymorphism in AspectJ. In Proceedings of the 2nd

International Conference on Aspect-Oriented Software Development (Boston, Massachusetts, March 17–21,

2003). AOSD '03. ACM, New York, NY, 150–157.

ESWARAN, K. P. 1976. Specifications, Implementations and Interactions of a Trigger Subsystem in an Inte-

grated Database System, IBM Research Report RJ1820 (Nov. 1976).

EUGSTER, P. T., FELBER, P. A., GUERRAOUI, R., AND KERMARREC, A. 2003. The many faces of pub-

lish/subscribe. ACM Comput. Surv. 35, 2 (Jun. 2003), 114–131.

EUGSTER, P. 2007. Type-based publish/subscribe: Concepts and experiences. ACM Trans. Program. Lang.

Syst. 29, 1 (Jan. 2007), 6.

FILMAN, R. E. AND FRIEDMAN, D. P. 2004. Aspect-oriented programming is quantification and oblivious-

ness In Aspect-Oriented Software Development, R. E. FILMAN, T. ELRAD, S. CLARKE, AND M. ASKIT, Eds.

Addison-Wesley Longman, Amsterdam.

FORSTER, F. AND STEIMANN, F.: AOP and the antinomy of the liar. In Workshop on the Foundations of Aspect-

Oriented Languages. FOAL 2006. 47–56.

GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. 1995. Design Patterns: Elements of Reusable Ob-

ject-Oriented Software. Addison-Wesley.

GARLAN, D. AND SCOTT, C. 1993. Adding implicit invocation to traditional programming languages. In

Proceedings of the 15th international Conference on Software Engineering (Baltimore, Maryland, United

States, May 17–21, 1993). International Conference on Software Engineering. IEEE Computer Society

Press, Los Alamitos, CA, 447–455.

GARLAN, D. AND SHAW, M. 1994. An Introduction to Software Architecture. Technical Report. UMI Order

Number: CS-94-166., Carnegie Mellon University.

GERACI, A. 1991 IEEE Standard Computer Dictionary: Compilation of IEEE Standard Computer Glossaries.

Institute of Electrical and Electronics Engineers Inc., The.

48

GRISWOLD, W. G., SULLIVAN, K., SONG, Y., SHONLE, M., TEWARI, N., CAI, Y., AND RAJAN, H. 2006. Modu-

lar software design with crosscutting interfaces. IEEE Softw. 23, 1 (Jan. 2006), 51–60.

GUDMUNDSON, S. AND KICZALES, G. 2001. Addressing practical software development issues in AspectJ

with a pointcut interface. In Workshop on Advanced Separation of Concerns.

GYBELS, K. AND BRICHAU, J. 2003. Arranging language features for more robust pattern-based crosscuts. In

Proceedings of the 2nd international Conference on Aspect-Oriented Software Development (Boston, Mas-

sachusetts, March 17–21, 2003). AOSD '03. ACM, New York, NY, 60–69.

HILSDALE, E. AND HUGUNIN, J. 2004. Advice weaving in AspectJ. In Proceedings of the 3rd international

Conference on Aspect-Oriented Software Development (Lancaster, UK, March 22–24, 2004). AOSD '04.

ACM, New York, NY, 26–35.

HOFFMAN, K. AND EUGSTER, P. 2007. Bridging Java and AspectJ through explicit join points. In Proceed-

ings of the 5th international Symposium on Principles and Practice of Programming in Java (Lisboa, Portu-

gal, September 05–07, 2007). PPPJ '07, vol. 272. ACM, New York, NY, 63–72.

KÄSTNER, C., APEL, S., AND BATORY, D. 2007. A Case Study Implementing Features Using AspectJ. In

Proceedings of the 11th international Software Product Line Conference (September 10–14, 2007). Interna-

tional Conference on Software Product Line. IEEE Computer Society, Washington, DC, 223–232.

KELLENS, A., MENS, K., BRICHAU, J., AND GYBELS, K. 2006. Managing the evolution of aspect-oriented

software with model-based pointcuts. In Proceedings of the European Conference on Object-Oriented Pro-

gramming (ECOOP 2006), Lecture Notes in Computer Science, Vol. 4067. Springer, Berlin. 501–525.

KICZALES, G., LAMPING, J., MENDHEKAR, A., MAEDA, C., LOPES, C., LOINGTIER, J., AND IRWIN, J. 1997.
Aspect-oriented programming. In European Conference on Object-Oriented Programming (ECOOP 1997).

220–242.

KICZALES, G. AND MEZINI, M. 2005. Aspect-oriented programming and modular reasoning. In Proceedings

of the 27th international Conference on Software Engineering (St. Louis, MO, USA, May 15–21, 2005).

ICSE '05. ACM, New York, NY, 49–58.

LEE, K., KANG, K. C., KIM, M., AND PARK, S. 2006. Combining Feature-Oriented Analysis and Aspect-

Oriented Programming for Product Line Asset Development. In Proceedings of the 10th international on

Software Product Line Conference (August 21–24, 2006). International Conference on Software Product

Line. IEEE Computer Society, Washington, DC, 103–112.

LIGATTI, J., WALKER, D., AND ZDANCEWIC, S. 2006. A type-theoretic interpretation of pointcuts and advice.

Sci. Comput. Program. 63, 3 (Dec. 2006), 240–266.

LISKOV, B. H. AND WING, J. M. 1994. A behavioral notion of subtyping. ACM Trans. Program. Lang. Syst.

16, 6 (Nov. 1994), 1811–1841.

LOPES, C. V., DOURISH, P., LORENZ, D. H., AND LIEBERHERR, K. 2003. Beyond AOP: toward naturalistic

programming. In Companion of the 18th Annual ACM SIGPLAN Conference on Object-Oriented Program-

ming, Systems, Languages, and Applications (Anaheim, CA, USA, October 26–30, 2003). OOPSLA '03.

ACM, New York, NY, 198–207.

MADSEN, O. L. AND MØLLER-PEDERSEN, B. 1989. Virtual classes: a powerful mechanism in object-oriented

programming. In Conference Proceedings on Object-Oriented Programming Systems, Languages and Ap-

plications (New Orleans, Louisiana, United States, October 02–06, 1989). OOPSLA '89. ACM, New York,

NY, 397–406.

49

MASUHARA, H. AND KAWAUCHI, K. 2003. Dataflow pointcut in aspect-oriented programming. In Proceed-

ings of The First Asian Symposium on Programming Languages and Systems (APLAS'03) Lecture Notes in

Computer Science 2895, 105–121.

MEYER, B. 1997 Object-Oriented Software Construction (2nd Ed.). Prentice-Hall, Inc.

MIKHAJLOV, L. AND SEKERINSKI, E. 1998. A study of the fragile base class problem. In Proceedings of the

12th European Conference on Object-Oriented Programming (July 20–24, 1998). E. JUL, Ed. Lecture Notes

In Computer Science, vol. 1445. Springer-Verlag, London, 355–382.

MURPHY, G. C., LAI, A., WALKER, R. J., AND ROBILLARD, M. P. 2001. Separating features in source code:

an exploratory study. In Proceedings of the 23rd international Conference on Software Engineering (To-

ronto, Ontario, Canada, May 12–19, 2001). International Conference on Software Engineering. IEEE Com-

puter Society, Washington, DC, 275–284.

NOTKIN, D., GARLAN, D., GRISWOLD, W. G., AND SULLIVAN, K. J. 1993. Adding implicit invocation to

languages: Three approaches. In Proceedings of the First JSSST International Symposium on Object Tech-

nologies For Advanced Software (November 04–06, 1993). S. Nishio and A. Yonezawa, Eds. Lecture Notes

In Computer Science, vol. 742. Springer-Verlag, London, 489–510.

ONGKINGCO, N., AVGUSTINOV, P., TIBBLE, J., HENDREN, L., DE MOOR, O., AND SITTAMPALAM, G. 2006.
Adding open modules to AspectJ. In Proceedings of the 5th international Conference on Aspect-Oriented

Software Development (Bonn, Germany, March 20–24, 2006). AOSD '06. ACM, New York, NY, 39–50.

OSSHER, H. AND TARR, P. 2000. Hyper/J: multi-dimensional separation of concerns for Java. In Proceedings

of the 22nd international Conference on Software Engineering (Limerick, Ireland, June 04–11, 2000). ICSE

'00. ACM, New York, NY, 734–737.

OSTERMANN, K., MEZINI, M., AND BOCKISCH, C. 2005. Expressive pointcuts for increased modularity. In

Proceedings of the 19th European Conference on Object-Oriented Programming. ECOOP 2005. LNCS

3586, Springer-Verlag, 214–240.

RAJAN, H. AND SULLIVAN, K. 2003. Eos: instance-level aspects for integrated system design. In Proceed-

ings of the 9th European Software Engineering Conference Held Jointly with 11th ACM SIGSOFT interna-

tional Symposium on Foundations of Software Engineering (Helsinki, Finland, September 01–05, 2003).

ESEC/FSE-11. ACM, New York, NY, 297–306.

RAJAN, H. AND SULLIVAN, K. J. 2005. Classpects: unifying aspect- and object-oriented language design. In

Proceedings of the 27th international Conference on Software Engineering (St. Louis, MO, USA, May 15–

21, 2005). ICSE '05. ACM, New York, NY, 59–68.

RAJAN, H., DYER, R., HANNA, Y., AND NARAYANAPPA, H. 2006. Preserving separation of concerns through

compilation. In Software Engineering Properties of Languages and Aspect Technologies (March 2006)

SPLAT '06. L. BERGMANS, J. BRICHAU, AND E. ERNST, Eds., workshop affiliated with AOSD 2006.

RAJAN, H. AND LEAVENS, G. T. 2008. Ptolemy: A language with quantified, typed events. In Proceedings of

the 22nd European Conference on Object-Oriented Programming (Paphos, Cypress, July 07–11, 2008). J.

VITEK, Ed. Lecture Notes In Computer Science, vol. 5142. Springer-Verlag, Berlin, Heidelberg, 155–179.

REISS, S. P. 1990. Interacting with the FIELD environment. Softw. Pract. Exper. 20, S1 (Jun. 1990), 89–

115.

RIEHLE, D. 1996. The event notification pattern—integrating implicit invocation with object-orientation.

Theor. Pract. Object Syst. 2, 1 (Nov. 1996), 43–52.

50

RHO, T., KNIESEL, G. AND APPELTAUER, M. 2006. Fine-grained generic aspects. In Workshop on Foundati-

ons of Aspect-Oriented Languages. FOAL'06. G. LEAVENS, C. CLIFTON, R. LÄMMEL, AND M. MEZINI, Eds.,

workshop affiliated with AOSD 2006.

SAKURAI, K. AND MASUHARA, H. 2008. Test-based pointcuts for robust and fine-grained join point specifi-

cation. In Proceedings of the 7th international Conference on Aspect-Oriented Software Development (Brus-

sels, Belgium, March 31–April 04, 2008). AOSD '08. ACM, New York, NY, 96–107.

STEIMANN, F. AND MAYER, P. 2005. Patterns of interface-based programming. Journal of Object Technol-

ogy 4, 5, 75–94.

STEIMANN, F. 2006. The paradoxical success of aspect-oriented programming. In Proceedings of the 21st

Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and Applica-

tions (Portland, Oregon, USA, October 22–26, 2006). OOPSLA '06. ACM, New York, NY, 481–497.

STÖRZER, M. AND GRAF, J. 2005. Using pointcut delta analysis to support evolution of aspect-oriented soft-

ware. In Proceedings of the 21st IEEE international Conference on Software Maintenance (September 25–

30, 2005). ICSM. IEEE Computer Society, Washington, DC, 653–656.

SULLIVAN, K. AND NOTKIN, D. 1990. Reconciling environment integration and component independence.

SIGSOFT Softw. Eng. Notes 15, 6 (Dec. 1990), 22–33.

SULLIVAN, K. J. AND NOTKIN, D. 1992. Reconciling environment integration and software evolution. ACM

Trans. Softw. Eng. Methodol. 1, 3 (Jul. 1992), 229–268.

SULLIVAN, K., GRISWOLD, W. G., SONG, Y., CAI, Y., SHONLE, M., TEWARI, N., AND RAJAN, H. 2005. In-

formation hiding interfaces for aspect-oriented design. In Proceedings of the 10th European Software Engi-

neering Conference Held Jointly with 13th ACM SIGSOFT international Symposium on Foundations of

Software Engineering (Lisbon, Portugal, September 05–09, 2005). ESEC/FSE-13. ACM, New York, NY,

166–175.

TARR, P., OSSHER, H., HARRISON, W., AND SUTTON, S. M. 1999. N degrees of separation: multi-dimensional

separation of concerns. In Proceedings of the 21st international Conference on Software Engineering (Los

Angeles, California, United States, May 16–22, 1999). ICSE '99. ACM, New York, NY, 107–119.

VAN DEURSEN, A., MARIN, M., AND MOONEN, L. 2005. AJHotDraw: A showcase for refactoring to aspects.

In Proceedings of the AOSD Workshop on Linking Aspects and Evolution. LATE '05. CWI, Amsterdam,

The Netherlands.

WIRTH, N. 1988. Type extensions. ACM Trans. Program. Lang. Syst. 10, 2 (Apr. 1988), 204–214.

XU, J., RAJAN, H. AND SULLIVAN, K. 2004. Understanding aspects via implicit invocation. In Proceedings of

the 19th IEEE international Conference on Automated Software Engineering (September 20–24, 2004).

Automated Software Engineering. IEEE Computer Society, Washington, DC, 332–335.

