#—JOURNAL OF OBJECT TECHNOLOGY

Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering. ©JOT, 2002

Vol. 0, No. 0, 2007

Aspect Refinement — Unifying AOP and Step-
wise Refinement

Sven Apel, Department of Informatics and Mathematics, University of Passau
Christian Kastner, School of Computer Science, University of Magdeburg
Thomas Leich, School of Computer Science, University of Magdeburg
Gunter Saake, School of Computer Science, University of Magdeburg

Stepwise refinement (SWR) is fundamental to software engineering. As aspect-
oriented programming (AOP) is gaining momentum in software development, aspects
should be considered in the light of SWR. In this paper, we elaborate the notion of
aspect refinement that unifies AOP and SWR at the architectural level. To reflect this
unification to the programming language level, we present an implementation tech-
nique for refining aspects based on mixin composition along with a set of language
mechanisms for refining all kinds of structural elements of aspects in a uniform way
(methods, pointcuts, advice). To underpin our proposal, we contribute a fully func-
tional compiler on top of AspectJ, present a non-trivial, medium-sized case study, and
derive a set of programming guidelines.

1 INTRODUCTION

Aspect-oriented programming (AOP) is a novel programming paradigm to implement
complex software in a modular way [16]. Aspects, the main abstraction mechanism
of AOP, modularize crosscutting concerns. Without aspects, the implementation of
such concerns would result in code scattering, tangling, and replication.

AOP is gaining momentum and pervading more and more phases and parts of
software engineering [12]. This paper relates AOP to stepwise refinement (SWR), a
fundamental approach to software development [33, 13, 26, 8]. By adding new pro-
gram details in a stepwise manner, the programmer breaks down complex software
into manageable pieces (modules). The resulting program structure is supposed to
be more comprehensible, reusable, and customizable — compared to a monolithic
structure [33, 26, 8]. By its incremental development methodology SWR, facilitates
software evolution, where each increment in program functionality reflects an evolu-
tionary development step. Sometimes these increments are called refinements [8, 25].

Since most software is developed, adapted, and evolved in a more or less incre-
mental way [29], it is desirable that modern programming paradigms reflect this
by explicit support of SWR. That is, the principles of SWR should be taken into
account when designing AOP languages, e.g., all software artifacts are subject of
the subsequent refinement [8]. To this day, aspects have not been not adequately
studied and understood with respect to SWR, with some notable exceptions [24, 21].

In this paper, we develop the idea of aspect refinement (AR), which is the appli-
cation of SWR principles to AOP [4]. It is a design methodology to incrementally
develop, adapt, and evolve aspects by means of SWR. Our study of AR explores

Cite this article as follows: Sven Apel, Christian Kastner, Thomas Leich, Gunter Saake: Aspect
Refinement — Unifying AOP and Stepwise Refinement, in Journal of Object Technology, vol.
0, no. 0, 2007, pages 1-20,

http://www.jot.fm /issues/issues_2007_/

http://www.jot.fm/issues/issues_2007_/

C"#_/ ASPECT REFINEMENT - UNIFYING AOP AND STEPWISE REFINEMENT

the differences of AOP and SWR and proposes a convergence of both. AR unifies
aspects and classes with respect to SWR and improves the reusability and customiz-
ability of aspects, e.g., it enables the adaptation of aspects to changed requirements
or to a modified base program.

In prior work we outlined the mere possibility of refining aspects and examined
the consequences for software development [4, 5, 1]. In this paper we explore how
to support AR at the language level by taking AspectJ' as an archetype as well as
by a non-trivial case study. We introduce the notion of mizin-based inheritance [11]
to AOP. Mixin-based aspect inheritance explicitly supports SWR at the language
level by introducing mixin capabilities to aspects. Though most aspect languages
such as AspectJ support a limited form of aspect inheritance, they do not do so
flexibly enough to express refinements of aspects and their structural elements, as we
will discuss. Mixin-based aspect inheritance overcomes this limitation and enables
programmers to freely compose aspects and their refinements. This provides the
required flexibility to reuse, customize, and evolve aspects in the sense of SWR.

Furthermore, we propose a uniform approach for refining all kinds of structural el-
ements of aspects. Specifically, we propose mechanisms for refining pointcuts (point-
cut refinement) and advice (named advice, advice refinement), which are tailored to
AspectJ-like languages.

We demonstrate the practical applicability of our language proposal by providing
a fully functional compiler on top of AspectJ. We use our compiler to apply AR
to a non-trivial, medium-sized case study. Based on this study, we propose a set
of programming guidelines for applying AR. In this paper we make the following
contributions:

e an elaboration of the idea of AR that unifies AOP and SWR

e the mechanism of mixin-based aspect inheritance, which is accompanied by

language mechanisms for refining aspects, pointcuts, and advice

e a fully functional compiler on top of AspectJ that implements our proposal

e a case study and a set of programming guidelines

2 ASPECTS AND STEPWISE REFINEMENT

AHEAD - The Big Picture

AHEAD (Algebraic Hierarchical Equations for Application Design) is an architec-
tural model for SWR and a framework for large-scale program synthesis based on
features [8]. A feature is an increment in program functionality and corresponds
to a development step. The goal of AHEAD is to synthesize software (individual
programs) by composing a series of desired features.

AHEAD unifies several approaches of SWR and scales them to programming in
the large. First, AHEAD generalizes the operations a feature performs on a given
base program: (a) the introduction of new functionality and (b) the modification of
existing functionality. Second, AHEAD scales the idea of program refinement to ar-

thttp:/ /eclipse.org/aspectj/

2 JOURNAL OF OBJECT TECHNOLOGY VOL 0, NO. 0

2 ASPECTS AND STEPWISE REFINEMENT

bitrary kinds of software artifacts (e.g., code, test cases, documentation, makefiles),
which is captured by the underlying principle of uniformity: features are imple-
mented by a diverse selection of software artifacts and any kind of software artifact
can be subject to subsequent refinement [8].

In AHEAD, features are modeled as functions. A constant function (a.k.a. con-
stant) represents a base program. All other functions take a program as input and
return a modified program as output. That is, functions represent program refine-
ments that implement program features. For example, ‘Add e X’ adds feature Add
to program X, where ‘@’ denotes function composition. A generated program is
represented by a named feature expression, e.g., ‘Prog = Add e Base’.

In AHEAD, each feature is represented by a containment hierarchy, which is
a directory that exhibits a subdirectory structure to store the feature’s artifacts.
Composing features means composing containment hierarchies and, to this end,
composing respective artifacts by mizin composition [11, 31]. Hence, for each artifact
type, a different implementation of the composition operator has to be provided.

For example, Figure 1 depicts a Java class Add (Lines 1-3), which is part of
feature Base and a refinement (Lines 4-7), which is part of feature Buffer. The
refinement adds a new field (Line 5) and extends an existing method via overriding
(Line 6); calling super invokes the refined method. The refinement is implemented
in Jak [8], a Java language extension that introduces basically the keyword refines.

1| class Add {
2 static int add(int a, int b) { return a + b; }
31}
_) [ga)] sase
4| refines class Add {
5 int buf; T
6 static int add(int a, int b) { : Add | | Buffer
7 buf = super.add(a, b); ,
8 return buf; refinement
9 }
10| ¥

Figure 1: A class and a refinement in Jak.

Aspects — Just Another Kind of Software Artifact

In AHEAD, a feature is implemented by a collection of collaborating software ar-
tifacts of varying types. In this sense, an aspect is just another kind of software
artifact. The AHEAD principle of uniformity has an interesting consequence: since
aspects are artifacts as any others, it is natural to refine them in a SWR manner
as well. That is, a feature may not only extend and modify classes via subsequent
refinement but also aspects, which we call AR. Hence, AR is the consequential ap-
plication of SWR principles to the world of AOP.

With AR, aspects can be adapted, customized, evolved, as can all other software
artifacts. In each development step, aspects may be refined, i.e., extended and
modified. We focus on three use cases of AR, which may overlap in parts:

VOL 0, NO. 0 JOURNAL OF OBJECT TECHNOLOGY 3

C"#_/ ASPECT REFINEMENT - UNIFYING AOP AND STEPWISE REFINEMENT

1. Adapting aspects to the changes made to a base program, e.g., join points
have changed or new join points occur.

2. Tailoring aspects to changing user requirements, e.g., the user needs an aspect
to implement a new design decision.

3. Decomposing aspects to decouple them from a specific configuration of the base
program, e.g., a base program in different configurations demands aspects in
different variants.

Applying AR to deal with the above situations means decomposing and subsequently
composing an aspect out of a base aspect and a series of refinements. Refinements
should be freely combinable — of course, in the limits of desired program behav-
ior. This flexibility facilitates reuse of aspect code. The user-driven composition of
aspects and refinements customizes aspect-specific functionality. AR enables a sim-
ilar improvement in reusability and customizability of aspect code as the analogous
object-oriented mechanisms do for classes [11, 31, §].

AR unifies classes and aspects with respect to subsequent refinement. An advan-
tage of this view is that several ideas of class refinement can be mapped directly to
aspects, as we will show. But more interesting is the fact that it becomes possible
to refine also aspect-specific constructs, in particular pointcuts and advice, which
opens new possibilities of aspect reuse and customization.

An Example of Aspect Refinement

Figure 2 illustrates the evolution of a program developed using aspects. The program

contains classes for buffers and sockets as well as aspects for synchronizing concurrent

access. The evolution spans four steps shown in four subfigures (Base, Sync, Stack,

Socket). Each development step is explained in terms of its Java/AspectJ code

and in diagram form; refinements of aspects are implemented as subaspects; aspect

weaving is denoted by dashed arrows.

Base: Buffer objects store sets of data items; the class Buffer provides the meth-
ods put and get for accessing the stored items.

Sync: The aspect BufferSync synchronizes the access to the methods put and get
of Buffer by invoking the methods lock and unlock.

Stack: The class Stack is introduced; in order to synchronize the access to Stack
objects, the aspect StackSync refines the aspect BufferSync and broadens the
set of intercepted method executions by push and pop; for that it overrides
and extends the pointcut syncPC of aspect BufferSync.

Socket: The class Socket is introduced; a Socket object uses several Buffer and
Stack objects. The aspect SocketSync limits the set of synchronized methods
to those that are inside the control flow of Socket, i.e., method executions are
synchronized only when they are initiated directly or indirectly by a Socket
object. This is achieved by overriding the pointcut syncPC and restricting the
set of captured join points via the pointcut cflow.

This example illustrates the usefulness of refining aspects in a stepwise manner over

several development steps. Aspect refinement is a logical consequence of applying

SWR principles to AOP. The incremental development process makes the evolution

4 JOURNAL OF OBJECT TECHNOLOGY VOL 0, NO. 0

—_

[y

2 ASPECTS AND STEPWISE REFINEMENT

U W N =

O 00~ Ut W=

O © 00O Uk W

class Buffer {
Vector buf = new Vector ();
void put(Item e) { buf.add(e); I} ‘ ‘
Item get(int i) { return (Item)buf.get(i); } Base
}
abstract aspect BufferSync {
pointcut syncPC()
execution(Item Buffer.get(int)) ||
execution (void Buffer.put(Item)); ‘ ‘Base
Object around() : syncPC(O) { -
lock(); Object res = proceed(); unlock(); »" sync
return res; Sync
}
}
class Stack {
LinkedList list = new LinkedList ();
void push(Item i) { list.addFirst(i); } ‘ ltem ‘Base
Item pop() { return (Item)list.getFirst(); }
} "// Sync
abstract aspect StackSync extends BufferSync { Sync
pointcut syncPC() : BufferSync.syncPC() ||
execution(Item Stack.pop()) || Stack
execution (void Stack.push(Item)); Syne M-~
}
class Socket {
void receive () { ‘ ‘Base
Buffer buf = new Buffer(); i
Stack stack = new Stack(); /x ... x/ »/ Sync
Sync
}
}
aspect SocketSync extends StackSync { \\f't@ Stack
pointcut syncPC() : StackSync.syncPC() &&
. cflow (execution (* Socket.*(..))); Socket

O © 00~ O ULk W -

Figure 2: Four steps in the evolution of a program using aspects.

VOL 0, NO. 0 JOURNAL OF OBJECT TECHNOLOGY

C"#_/ ASPECT REFINEMENT - UNIFYING AOP AND STEPWISE REFINEMENT

of the program explicit. Design decisions are encapsulated and can be modified in
separation as well as combined and reused in different variants. A reasonable wish
is to derive different customized program variants that share common features and
reuse invariant code, e.g., ‘Sync e Base’ or ‘Socket e Stack e Sync e Base’.

Limited Language-Level Support for Aspect Refinement

Beside the advantages of AR, our example also demonstrates the shortcomings of

AspectJ in supporting SWR:

Aspect inheritance: While aspect inheritance enables the refinement of aspects
to some degree, it lacks flexibility to interchange and reuse refinements. Using
aspect inheritance, a refinement (subaspect) is tied to a specific base aspect.
Hence, refinements cannot be combined flexibly in different permutations for
customization and adaptation purposes. For example, we are not able to derive
different variants of our buffer example without changing code invasively.

Constrained aspect extension: Using traditional aspect inheritance in AspectJ,
an aspect has to be declared abstract to be able to be refined. This means
that adding a subaspect requires the programmer to modify the parent as-
pect. This and similar requirements? cause a fundamental problem regarding
SWR: implementing an aspect in a particular development step forces the pro-
grammer to decide whether the aspect will be refined in a subsequent step.
While declaring the aspect as abstract makes it necessary to add later at
least one concrete subaspect, declaring it as concrete (without modifier) the
programmer prevents the subsequent refinement of the aspect.

Adpvice is not first-class: Advice is one of the main mechanisms of AOP [23]. A
piece of advice is invoked implicitly, i.e., it executes code when an associated
pointcut matches. This prevents other advice or methods from invoking it
explicitly. Since advice has no name it cannot be overridden and extended by
another piece of advice, inside a subsequent refinement. This prevents reusing
and customizing advice code. It has been shown that advising advice is also
not an adequate solution [9].

The problems sketched above show that current AOP languages, as exemplified by

AspectJ, do not support SWR appropriately. Consequently, we propose an alterna-

tive approach implementing AR along with a set of language constructs.

3 MIXIN-BASED ASPECT INHERITANCE

In order to implement AR at the language level, we introduce the notion of mizin-
based aspect inheritance. It supports SWR at the language level by introducing
mixin capabilities to aspects. Traditional aspect inheritance is not flexible enough
to express refinements of aspects and their structural elements. Mixin-based aspect
inheritance overcomes this limitation by allowing refinements to be freely combined
and applied to a base aspect. A set of accompanying language mechanisms enables

2E.g., refining a pointcut in AspectC++ requires to declare the parent pointcut as virtual.

6 JOURNAL OF OBJECT TECHNOLOGY VOL 0, NO. 0

3 MIXIN-BASED ASPECT INHERITANCE

W N =

0~ O Ut

11
12
13
14

to refine all the kinds of structural elements of an aspect, in particular pointcut
refinement and advice refinement, which are tailored to AspectlJ-like languages.

We use the Jak language as the archetype for expressing AR at the language level.
This emphasizes the uniformity of classes and aspects with respect to refinement.
Figure 3 shows a synchronization aspect (Lines 1-4) and a refinement (Lines 5—
14) extending the aspect. Refinements may introduce new structural elements as
well as extend existing ones, as we will explain soon. They can be applied to
abstract and concrete aspects as well as to other refinements. This eliminates the
dilemma of anticipating subsequently applied refinements by declaring base aspects
as abstract. Moreover, it allows a series of refinements to be applied to an aspect
in different permutations.

aspect Sync {
void lock () { /+ locking access %/ }
void unlock () { /* wunlocking access */ }
}
refines aspect Sync {
int threads;
void lock() { threads++; super.lock(); }
void unlock () { threads--; super.unlock(); }

pointcut syncPC() : execution(Item Buffer.get(int)) ||
execution (void Buffer.put(Item));
Object around() : syncPC() {
lock(); Object res = proceed(); unlock(); return res;
}
}

Figure 3: Adding members and extending methods via AR.

Notably, refining aspects is conceptually different from weaving aspects. Weaving
two aspects modifies the base program in two independent steps. In our example
this would lead to two different instances of the aspect Sync. Instead, AR results
in two aspect fragments that are merged via mixin composition. That is, an aspect
together with all of its refinements constitutes a final aspect that is woven once to
the base program.

Adding Members and Extending Methods.

A refinement may add new members to an aspect. As shown in Figure 3, the
refinement adds a field (Line 6), a pointcut (Lines 9-10), and a piece of advice
(Lines 11-13). Refinements may also extend methods to reuse existing functionality
(Lines 7 and 8). A method extension usually overrides and calls the overridden
method via the keyword super.

Pointcut Refinement

A refinement may refine the pointcuts of an aspect. Recall our example aspect that
synchronizes the access to Buffer (Fig. 2). Two refinements (Stack, Socket) override

VOL 0, NO. 0 JOURNAL OF OBJECT TECHNOLOGY 7

C"#—d ASPECT REFINEMENT - UNIFYING AOP AND STEPWISE REFINEMENT

the pointcut syncPC, reuse its expression, and add new pointcut expressions that
extend or constrain the set of matched join points.

In AspectJ, pointcuts have to be accessed by their fully qualified name, in our
example, BufferSync.syncPC. Thus, the programmer is forced to hard-wire the
aspect to be refined and the subaspect, which decreases reusability. Using mixin-
based aspect inheritance the refined pointcut is accessed via super (Fig. 4). Hence,
the programmer need not be aware of the actual sequence of refinements applied to
a base aspect. While with standard inheritance the refinement order is fixed, with
mixin-based inheritance the order is variable.

1| aspect Sync { // synchronize Buffer

2 pointcut syncPC() : execution(Item Buffer.get(int)) ||

3 execution (void Buffer.put(Item));

4 Object around() : syncPC() {/x synchronization x/}

50

6| refines aspect Sync { // synchronize Stack

7 pointcut syncPC() : super.syncPC() || execution(* Stack.*x(..));
8|}

9| refines aspect Sync { // only within cflow of Socket

10 pointcut syncPC() : super.syncPC() && cflow (execution (* Socket.*(..)));
1)}

Figure 4: Altering the set of locked methods via pointcut refinement.

Semantics of pointcut refinement. The semantics of pointcut refinement is as
follows: the most refined (specialized) pointcut in a series of pointcut refinements
specifies when advice is executed. Which pieces of advice are executed can be defined
all along the refinement chain, i.e., in every refinement of an aspect advice may be
connected to a pointcut.

Figure 5 illustrates what happens when refining a pointcut (solid arrow): the
most refined pointcut alters the set of matched join points (dotted arrows) and
triggers the advice (dashed arrow). After refinement, the advice advises an extended
set of join points (dot-dashed arrows).

aspect| matches class
aspect Sync { join points | ¢lass Buffer {
pointcut syncPC() : execution(* Buffer.*(..)); 1~~~ - void put(item e) { ... }
L7 Object around() : syncPC() { ... }*.-__\\\ »/,»‘7 Item get(inti) { ... }
e }
, A advises
refines [triggers \,\join points
pointcut \ advice refinement | ™~ class
3| refines aspect Sync { \"»\, class Stack {
> pointcut syncPC() : Super.syncPC() || >N void push(iteme) { ... }
execution(* Stack.*(..)); {-. .) - Y item pop(){...}
} matches |}
join points

Figure 5: The most refined pointcut triggers connected advice.

8 JOURNAL OF OBJECT TECHNOLOGY VOL 0, NO. 0

3 MIXIN-BASED ASPECT INHERITANCE

DU W N

DU W N

Advice Refinement

Named advice. Before explaining advice refinement it is necessary to introduce
named advice. Named advice is a named version of advice. It can be overridden
and referred to from advice inside subsequent refinements. Figure 6 depicts an
aspect for synchronization that contains named advice (Lines 3-5). Named advice
is defined by an optional result type (Object), an advice type (around), a name
(syncMethod), an argument list (empty), an exception list (empty), a binding to a
pointcut (syncPC), and an advice body. One can think of named advice as a pair
of an unnamed advice and a separate method (advice method), in which the advice
calls the method. The difference to this analogy is that named advice has full access
to the dynamic context (proceed and join point API). Though named advice can
be implemented differently (cf. Sec. 5), this view is helpful for understanding the
semantics of advice refinement.

aspect Sync {
pointcut syncPC() : execution(x Buffer.x*(..));
Object around syncMethod() : syncPC() {
lock(); Object res = proceed(); unlock(); return res;
}
¥

Figure 6: An aspect with named advice.

Refining named advice. In contrast to traditional advice, named advice can be
refined in subsequent development steps. The key idea is to treat named advice in
subsequent refinements similarly to a method. This is possible since named advice
has a name, a result type, and an argument list. According to our analogy, an advice
refinement simply refines the advice method by method overriding, i.e., by defining
a method with the same name and signature as the named advice to be refined.

Figure 7 depicts an aspect that refines our synchronization aspect by extending
its named advice. The refinement contains an advice method syncMethod (Lines 3
5) that overrides the parent named advice by counting the number of threads. The
refining method must have the same name and the same signature as the parent
advice. The keyword super is used to refer to the parent advice (Line 4).

refines aspect Sync {
int count = 0;
Object syncMethod () {
count++; Object res = super.syncMethod(); count--; return res;
}
}

Figure 7: Refining named advice.

VOL 0, NO. 0 JOURNAL OF OBJECT TECHNOLOGY 9

C"#_/ ASPECT REFINEMENT - UNIFYING AOP AND STEPWISE REFINEMENT

Semantics of advice refinement. The semantics of named advice is equivalent
to a virtual method, which passes the control flow to the most specialized descen-
dant method of the inheritance chain. Mapped to advice refinement this means
that, when the associated pointcut matches, the most specialized advice method
is invoked. Figure 8 shows an advice method that refines a named advice (solid
arrow). It is executed (dashed arrows) when the pointcut syncPC matches (dotted
line). Programmers use super to navigate the refinement chain upwards. The root
of the refinement chain binds the pointcut to the piece of advice.

aspect| matches class
aspect Sync { join points | class Buffer {
, pointcut syncPC() : execution(* Buffer.*(..)); "~~~ -\ void put(teme) { ... }
’ Object syncMethod around() : syncPC() { {1 Item get(inti) {... }
/ -
)/ Object res = proceed(); //‘
) refines i
triggers } advice /
advice | } s
\\ //'
\ " e .
\ refinement | .-~ advises
N o join points
&eflnes aspect Sync { e
Object syncMethod() { -~
Super.syncMethod();
}
}

Figure 8: Semantics of advice refinement.

Accessing contextual information. An issue that we did not address yet is
which information of the exposed context of a join point should be visible to de-
scendant advice methods. This issue arises because programmers may access the
context using proceed or runtime variables as thisJoinPoint. Thus, one may use
information that is not passed explicitly via the advice interface. Should refinements
have unlimited access to context information and proceed?

We argue that an advice refinement should only be permitted to access those
pieces of context information that are passed via the advice interface, and thus are
part of the advice method signature. This would preclude invoking proceed or
accessing thisJoinPoint from within a refinement of an advice method. While this
restriction is not necessary for our proposal, we believe it preserves simplicity and
robustness of the aspect language. Furthermore, we do not allow named advice to
be invoked directly by other advice and methods — such a mechanism is out of scope
of this paper and addressed elsewhere (cf. Sec. 5).

Discussion

AR and its implementation via mixin-based aspect inheritance offer the following
benefits: they allow a base aspect to be composed with a series of refinements,
thus enabling to customize and reuse aspect code. Pointcut refinement decouples

10 JOURNAL OF OBJECT TECHNOLOGY VOL 0, NO. 0

3 MIXIN-BASED ASPECT INHERITANCE

Uk W N =

refinements from their immediate base aspects, thus enhancing the composability
of aspects and refinements. Advice refinement promotes reuse in the same way as
method extension between classes. Named advice can be reused in different variants
of an aspect, thus supporting the customization of advice code.

At the beginning of the paper we identified three beneficial use cases of AR,

which we now want to revisit:

1. A programmer applies a refinement to adapt an aspect to the changes made
to a base program. For example, Figure 9 shows an aspect that counts the
updates of Buffer objects (Lines 1-5) and a refinement that adapts the aspect
to count also executions of clear (Lines 6-8) that updates the Buffer object
state as well; this is achieved by pointcut refinement (Line 7).

aspect UpdateCounter {

int count = 0;

pointcut updatePC() : execution(void Buffer.put(Item));

after updateCounter () returning: updatePC() { count++; }

}
refines aspect UpdateCounter {
pointcut updatePC() : super.updatePC() || execution(void Buffer.clear());
}
Figure 9: Counting the updates of Buffer objects.

2. A programmer customizes an aspect to react to a changed user requirement.
Suppose a new design decision that requires our UpdateCounter aspect to
inform a listener when an update operation was performed. Figure 10 shows
a refinement of UpdateCounter (Fig. 9) that implements this design decision
via advice refinement.

refines aspect UpdateCounter {

UpdateListener listener = null;

void setlistener (UpdatelListener 1) { listener = 1; }

void updateCounter () { super.updateCounter (); listener.notify(); 2}

}

Figure 10: Notify a listener when Buffer objects are updated.

3. A programmer decomposes an aspect to decouple it from a specific config-
uration of the base program. For example, Figure 11 shows an aspect that
introduces a new interface Serializable to a set of target classes (Buffer,
Stack). Figure 12 shows the result of decomposing this aspect into a base and
two refinements, where each refinement introduces the interface to one tar-
get class. Before composing and compiling the final program, a programmer
or a tool selects only those refinements that target classes that are actually
present in the program configuration, e.g., when Stack is present then also
the according refinement is present (Lines 5-7).

The use cases discussed have one thing in common: aspect code can be reused

in different variants of a program; aspects can be customized to the specific needs
of a programmer or to fit the structure of the base program.

VOL 0, NO. 0 JOURNAL OF OBJECT TECHNOLOGY 11

C"#—d ASPECT REFINEMENT - UNIFYING AOP AND STEPWISE REFINEMENT

[Nl

—

=W N

~ O Ut

aspect Serialization { /x ... x/
declare parents : (Buffer || Stack) implements Serializable;

}

Figure 11: Introducing the interface Serializable to Buffer and Stack.

aspect Serialization { /x ... %/}
refines aspect Serialization {

declare parents : Buffer implements Serializable;
¥
refines aspect Serialization {

declare parents : Stack implements Serializable;
}

Figure 12: Decomposed Serialization aspect.

It is worth noting, that without the AHEAD model for SWR, it would be difficult
to realize AR. The layered AHEAD structure assigns to each aspect an enclosing
feature (layer), which is associated with a development step. This information helps
to organize and compose refinements and their base aspects (see [15]).

With regard to AHEAD, mixin-based aspect inheritance is a composition oper-
ator that is invoked when aspects (and their refinements) of different development
steps are composed. Hence, this aspect composition operator corresponds to the
class composition operator, which composes classes using mixin-based inheritance.

Tool Support

ARJ. ARJ is a language extension of AspectJ that supports AR. It has been
implemented as a modular extension to the abe compiler framework [7]. It extends
the abc parser enabling it to recognize our new syntactical elements and it adds
several frontend and backend passes for implementing a syntax tree transformation.
ARJ is implemented to work in concert with the AHEAD Tool Suite and Jak to
integrate AR into program features: ARJ expects a feature expression in the form
of an AHEAD equation file. Feature containment hierarchies contain the associated
aspects, classes, and refinement files (class and aspect refinements). Further details
about ARJ are explained elsewhere [15]. The current version of ARJ supports all
language constructs proposed here. The compiler as well as several documents and
examples can be downloaded from the ARJ Web site?.

FeatureC++. FeatureC++* is a Jak-like language extension of C++ with aspect
support [3]. The FeatureC++ compiler supports a limited form of AR. Aspects can
be refined (using ‘refines’) by adding members, extending methods, and refining
pointcuts. There is no support for named advice or advice refinement.

3http:/ /wwwiti.cs.uni-magdeburg.de/iti_db/arj/
4http: //wwwiti.cs.uni-magdeburg.de/iti_db/forschung /fop /featurec/

12 JOURNAL OF OBJECT TECHNOLOGY VOL 0, NO. 0

4 CASE STUDY

aspect (# pieces) | description

serialization (11) | prepares objects for serialization
responding (4) | sends replies automatically

toString (12) | introduces toString methods
log/debug (13) | mix of logging and debugging

pooling (3) | stores and reuses open connections
dissemination (3) | piggyback meta-data propagation
feedback (2) | generates feedback by observing peers

Table 1: Refined aspects in P2P-PL.

4 CASE STUDY

We applied AR to a non-trivial case study, a product line for peer-to-peer overlay
networks (P2P-PL). P2P-PL was developed as part of a comprehensive study that
explored the relationship of program features and aspects [1]. Here, we discuss the
results relevant for AR.

P2P-PL was implemented to experiment with advanced overlay network features
such as query evaluation optimization and meta-data propagation. Hence, there was
a desire for a highly customizable design that allows features to be reused in different
configurations. One goal was to improve the structuredness of the P2P-PL design
as well as the reusability and customizability of the contained aspects.

The code base of P2P-PL is about 6,426 LOC. In summary, it contains 14 aspects
(406 LOC; 6 %). We applied AR to 7 aspects, i.e., we decomposed each of the 7
aspects into several pieces (one base aspect and several refinements). Table 1 gives
an overview of the refactored aspects and the number of refinements.

Example. Connection pooling is a mechanism to save time and resources for fre-
quently establishing and shutting down connections. Figure 13 lists the aspect
Pooling; it uses a Pool for storing references to connections (Line 2). The pointcuts
close (Lines 3-4) and open (Lines 5-6) match the join points that are associated
with shutting down and opening connections. Named advice putPool (Lines 7-9)
intercepts the shutdown process of connections and instead stores the associated
ClientConnection objects in a Pool object. Named advice getPool (Lines 10-13)
recovers open connections (if available) and passes them to clients that request a
new connection. This aspect makes use of the built-in pointcut this to limit the
advised calls to those that originate from MessageSender objects.

We refined the aspect Pooling twice, as shown in Figure 14. The first refinement
(Lines 1-4) refines the pointcut open to limit the matched joint points to those
that occur in the control flow of Peer. This excludes join points associated with
helper and experimentation classes that use ClientConnection objects as well.
Pointcut refinement decouples the aspect refinement from a fixed base aspect and
thus increases the flexibility to combine this refinement with other refinements.

The second refinement is more sophisticated (Lines 5-12). It refines both pieces
of advice (putPool, getPool) to guarantee thread safety. Since the pooling activities
are implemented via named advice, a refinement can add synchronization code.

VOL 0, NO. 0 JOURNAL OF OBJECT TECHNOLOGY 13

C"#—d ASPECT REFINEMENT — UNIFYING AOP AND STEPWISE REFINEMENT

aspect Pooling {
static Pool pool = new Pool();
pointcut close(ClientConnection con)
call (void ClientConnection.close()) && target(con) && this(MessageSender);
pointcut open(ClientSocket socket)
call(ClientConnection.new(ClientSocket)) && args(socket) && this(MessageSender);
void around putPool(ClientConnection con) : close(con) {
pool.put(con);
¥
ClientConnection around getPool(ClientSocket socket) : open(socket) {
if (! pool.contains(socket)) return proceed(socket);
else return (ClientConnection)pool.get(socket);
}
}
Figure 13: Connection pooling aspect (excerpt).
refines aspect Pooling {
pointcut open(ClientSocket sock) : super.open(sock) &&
cflow (execution (void Peer.main(..)));
}
refines aspect Pooling {
Object putPool(ClientConnection con) {
synchronized (pool) { return super.putPool(con); }
}

ClientConnection getPool(ClientSocket sock) {
synchronized (pool) { return super.getPool(sock); }
}
}

Figure 14: Encapsulating design decisions using AR.

Other refinements. In summary, we applied the notion of AR to 7 of 14 aspects
of P2P-PL (cf. Tab. 1). On average, there were 7 refinements per base aspect and
1/2 of all aspects were decomposed via AR. While the predominant role of AR was to
add new structural elements, i.e., advice, pointcuts, methods, and fields, we refined
3 named advice and 1 pointcut.

The application of AR increased the total number of features in P2P-PL con-
siderably. However, the fine-grained decomposition of aspects (which results in 48
refinements applied to 7 aspects) did not only structure the design and implemen-
tation of P2P-PL, but it also increased the configuration space, i.e., the tailored
variants of P2P systems that can be derived by the configuration process. For
example, the aspect Serialization shown in Figure 12 has as many variants as
different sets of target classes are possible in P2P-PL (theoretically 2!°). The as-
pect Pooling comes in fewer variants (4) because it has only 2 optional refinements,
which can be combined freely (22).

Beside an improvement in customizability we were able to reuse aspect code
amongst different variants of P2P-PL. In our study, all derivable variants of aspects
share common functionality, thus reusing aspect code. For example, each of the 4
Pooling variants reuse code of the base aspect and of possibly another refinement.
On average, each variant of each of the 7 decomposed aspects reuses code of 1.5
aspects and refinements. This is because, for most aspects, all variants can be freely

14 JOURNAL OF OBJECT TECHNOLOGY VOL 0, NO. 0

5 RELATED WORK

combined, i.e., refinements are optional and can be applied standalone, in combina-
tion with some other refinements, or in combination with all other refinements.

Finally, we did not find many use cases for advice refinement (3 x) and pointcut
refinement (1 x). We believe that this small number originates from the refactoring
approach we chose, i.e., we decomposed each considered aspect retroactively into a
base aspect and several refinements. Developing software from scratch with aspects
and refinements in mind enables one to plan aspect reuse more systematically.

Discussion and Programming Guidelines

In our study we identified two main use cases of AR (cf. Sec. 2). First, we de-
coupled 4 aspects from a particular set of classes to be extended/advised, which
maps to use case 3 (decoupling an aspect from a specific program configuration).
For that, we decomposed aspects into several pieces to enable the programmer to
combine these pieces in different combinations. For example, we decomposed the
aspect Serialization to be able to choose only those pieces for adding serialization
functionality that are actually needed in a particular P2P-PL configuration. This
allows us to use the aspect in varying contexts, i.e., in different configurations of
P2P-PL that contains different sets of classes to be serialized.

Second, we encapsulated the effects of different design decisions of 3 aspects into
refinements, which maps to use case 2 (tailoring an aspect to a changed require-
ment). Decomposing aspects along design decisions facilitates customization, i.e.,
selecting different subsets of the overall set of refinements that are desired for a par-
ticular situation. Thereby, aspects can be tailored to different base programs and
to differing requirements. For example, we decomposed the aspect Pooling into 3
pieces that encapsulate design decisions such as synchronization. By doing that, we
were able to add and remove functionality and to select alternative implementations.
This facilitates reuse of invariant aspect code and enables customization and tailor-
ing of aspects to different P2P-PL configurations and to different requirements, e.g.,
performance.

Finally, we did not find applications for use case 1 (adapting aspects to changes
in a base program). This is not surprising since this situation occurs typically when
a program evolves, which was not covered by our case study.

5 RELATED WORK

Aspect refinement and AHEAD. The idea of AR emerged from our prior work
on aspect-oriented and feature-oriented product lines and AHEAD [5]. Aspectual
mizin layers (AMLs) integrate aspects and features in the sense of the AHEAD
model [5, 1]. Aspect refinement based on mixin-based aspect inheritance enhances
AMLs toward a unified integration of features and aspects with regard to SWR.
While in prior work we outlined just the possibility of refining aspects and ex-
amined the consequences for the architectural model of AHEAD [4, 5], in this paper
we focused on the language level support for AR, its implementation in the form of

VOL 0, NO. 0 JOURNAL OF OBJECT TECHNOLOGY 15

C"#_/ ASPECT REFINEMENT - UNIFYING AOP AND STEPWISE REFINEMENT

a fully functional compiler, and a non-trivial case study. We have shown how the
idea of AR unifies the refinement of classes and aspects at the language level.

Implementation of aspect refinement. Beside mixin-based aspect inheritance,
a further possibility arises to refine aspects: an aspect could be refined itself via
advice and inter-type declarations of another aspect. In this case aspects themselves
are part of a base program and the programmer has the choice to refine them via
Jak-like refinements or via aspect weaving. However, it has been observed that
advising advice can lead to logical errors and infinite loops [9].

AR is closely related to superimposition [10]. However, AR superimposes aspects,
not just superimposes object-oriented structures using aspects [30].

Higher-order functions, pointcuts, and advice. Aspects are refinements and
can be modeled as functions [21, 20, 6]. It is interesting, that in this view, AR
is related to higher-order functions. A higher-order function expects a function as
input and returns another function as output. Since aspects can be modeled as
functions a refinement of an aspect can be understood as a function that applies to
a function, which is a higher-order function, e.g., R[A](P), where P is a program, A
is an aspect, and R is a refinement of A. It remains open how high-order functions
fit with current algebraic models [21, 20, 6].

Tucker and Krishnamurthi integrate advice and pointcuts into languages with
higher-order functions and model them as first-class entities [32]. This way, it be-
comes possible to implement higher-order pointcuts and advice. Pointcuts can be
passed to other pointcuts as arguments. Thus, they can be modified, combined, and
extended. In this respect, our approach of aspect and pointcut refinement is similar.
We can combine, modify, and extend pointcuts by applying subsequent refinements.

Due to the opportunity of refining named advice, we can also modify and ex-
tend advice using subsequent advice. This corresponds to higher-order advice that
expects a piece of advice as input and returns a modified piece of advice. Named
advice can be passed to other advice — usually to advice that refines other advice.
Thus, refining advice is similar to passing a piece of advice to higher-order advice.

Unification of advice and method. Using the annotation-based programming
style of AspectJ, aspects are implemented as classes and advice is implemented as
method and declared as such via annotation. In this programming style advice is
already named and can be refined by method overriding. However, it is not obvious
how this relates to other mechanisms for refinement, e.g., pointcut refinement.

Rajan and Sullivan propose classpects that combine capabilities of aspects and
classes [28]. A classpect associates a method that is executed for advising a par-
ticular join point to each piece of advice. Moreover, classpects unify aspects and
classes with respect to instantiation. Since advice is implemented via methods, it
could be refined. However, the authors of classpects do not make a statement about
the relationship to SWR nor about its consequences.

16 JOURNAL OF OBJECT TECHNOLOGY VOL 0, NO. 0

6 CONCLUSION

Aspects and genericity. Several recent approaches enhance aspects with gener-
icity, e.g., Sally [14], Generic Advice [19], LogicAJ [17], Framed Aspects [22]. This
improves reusability of aspects in different application contexts. Aspect refinement
and mixin-based aspect inheritance provide an alternative way to customize as-
pects, i.e., by composing a base aspect and a series of refinements. However, ideas
on generic aspects can be combined with our compositional approach, just as generic
feature modules combine features with generics [2].

AspectJ design patterns. Hanenberg et al. discuss the benefits of inheritance
in the context of AOP [14]. They argue that aspect inheritance improves aspect
reuse and propose design patterns that exploit structural elements specific to As-
pectJ. Their patterns pointcut method, composite pointcut, and chained advice sug-
gest to refine pointcuts in subsequent development steps to improve customizability,
reusability and extensibility. AR can enhance these patterns by simplifying the com-
position of aspects. The pattern template advice can be improved by using named
advice because it becomes possible to refine advice directly.

Feature-optionality problem. In FOP, features may interact with other features
that are optional [27, 18]. In order to be reliable with regard to putting in and
removing optional features, Prehofer proposes to split features into slices, i.e., into a
base feature and several so called lifters [27]. Lifters encapsulate those pieces of code
that depend on (and interact with) other features. When composing a program from
features, a programmer or a tool selects for each feature the base feature and those
lifters that refer to features that actually participate in the current configuration.
Liu et al. lay an algebraic foundation for this methodology [18].

Our method of splitting aspects into pieces to resolve dependencies between as-
pects and the classes of a base program is similar to their approach: our refinements
correspond to lifters, but in the context of AOP.

6 CONCLUSION

AR is the incarnation of SWR in AOP. It follows directly from the integration
of aspects and stepwise development methodology of AHEAD. AR unifies classes
and aspects with respect to subsequent refinement. We have illustrated three use
cases where AR improves reuse and customization of aspect code. To introduce the
principles of SWR at the programming language level, we proposed mixin-based
aspect inheritance and a set of accompanying language constructs that facilitate
SWR: pointcut refinement, named advice, and advice refinement.

To underpin our proposal, we developed a fully functional compiler on top of
AspectJ. The compiler implements all proposed language constructs. We used the
compiler to apply our approach to a non-trivial case study. The study demonstrated
that technically our approach is realizable and applicable to a medium-sized software
project. Our study indicated that the proposed language mechanisms facilitate
aspect reuse and customization in a SWR manner. Furthermore, the study revealed

VOL 0, NO. 0 JOURNAL OF OBJECT TECHNOLOGY 17

C"#_/ ASPECT REFINEMENT - UNIFYING AOP AND STEPWISE REFINEMENT

guidelines when aspect refinement is useful: (1) for decoupling aspects from fixed
configurations of the base program, and (2) for structuring aspect-oriented designs
along design decisions. By composing refinements that encapsulate design decisions
or interactions with the base program, one customizes aspects to a specific context.
Our language mechanisms facilitate this composition.

Finally, AR as embodied in our ARJ compiler can be understood as an AHEAD
composition operator for aspects, thus queuing in a long line of research on program
synthesis and SWR [8].

Acknowledgements. We thank Don Batory, William Cook, Christian Lengauer,
and Roberto Lopez-Herrejon for their insightful comments on earlier drafts of this
paper. This work was sponsored in parts by the German Research Foundation
(DFG), project number SA 465/32-1.

REFERENCES

[1] S. Apel and D. Batory. When to Use Features and Aspects? A Case Study. In
Proceedings of the International Conference on Generative Programming and
Component Engineering, pages 59-68. ACM Press, 2006.

2] S. Apel, M. Kuhlemann, and T. Leich. Generic Feature Modules: Two-Staged
Program Customization. In Proceedings of the International Conference on
Software and Data Technologies, pages 127-132. INSTICC Press, 2006.

[3] S. Apel, T. Leich, M. Rosenmiiller, and G. Saake. FeatureC++: On the Sym-
biosis of Feature-Oriented and Aspect-Oriented Programming. In Proceedings
of the International Conference on Generative Programming and Component
Engineering, volume 3676 of LNCS, pages 125-140. Springer, 2005.

[4] S. Apel, T. Leich, and G. Saake. Aspect Refinement and Bounded Quan-
tification in Incremental Designs. In Proceedings of the Asia-Pacific Software
Engineering Conference, pages 796-804. IEEE Computer Society, 2005.

[5] S. Apel, T. Leich, and G. Saake. Aspectual Mixin Layers: Aspects and Fea-
tures in Concert. In Proceedings of the International Conference on Software
Engineering, pages 122-131. ACM Press, 2006.

(6] S. Apel and J. Liu. On the Notion of Functional Aspects in Aspect-Oriented
Refactoring. In Proceedings of the ECOOP Workshop on Aspects, Dependen-

cies, and Interactions, pages 1-9. Computing Department, Lancaster Univer-
sity, 2006.

[7] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, J. Lhotak, O. Lhotak,
O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. abc: An Extensible
AspectJ Compiler. In Proceedings of the International Conference on Aspect-
Oriented Software Development, pages 87-98. ACM Press, 2005.

18 JOURNAL OF OBJECT TECHNOLOGY VOL 0, NO. 0

6 CONCLUSION

8]

9]

[10]

[11]

D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling Step-Wise Refinement.
IEEE Transactions on Software Engineering, 30(6):355-371, 2004.

E. Bodden, F. Forster, and F. Steimann. Avoiding Infinite Recursion with Strat-
ified Aspects. In Proceedings of the International Net.ObjectDays Conference,
pages 49-64. Gesellschaft fiir Informatik, 2006.

L. Bouge and N. Francez. A Compositional Approach to Superimposition.
In Proceedings of the International Symposium on Principles of Programming
Languages, pages 240-249. ACM Press, 1988.

G. Bracha and W. R. Cook. Mixin-Based Inheritance. In Proceedings of the In-
ternational Conference on Object-Oriented Programming, Systems, Languages,

and Applications and the European Conference on Object-Oriented Program-
ming, pages 303-311. ACM Press, 1990.

S. Clarke and E. Baniassad. Aspect-Oriented Analysis and Design: The Theme
Approach. Addison-Wesley, 2005.

E. W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

S. Hanenberg, A. Schmidmeier, and R. Unland. AspectJ Idioms for Aspect-
Oriented Software Construction. In European Conference on Pattern Languages
of Programs, pages 617-644. Universitatsverlag Konstanz, 2003.

C. Kastner, S. Apel, and G. Saake. Implementing Bounded Aspect Quantifica-
tion in AspectJ. In Proceedings of the ECOOP Workshop on Reflection, AOP
and Meta-Data for Software Evolution, pages 111-122. School of Computer
Science, University of Magdeburg, 2006.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Lo-
ingtier, and J. Irwin. Aspect-Oriented Programming. In Proceedings of the
FEuropean Conference on Object-Oriented Programming, volume 1241 of LNCS,
pages 220-242. Springer, 1997.

G. Kniesel and T. Rho. A Definition, Overview and Taxonomy of Generic
Aspect Languages. L’Objet, 11(3):9-39, 2006.

J. Liu, D. Batory, and C. Lengauer. Feature-Oriented Refactoring of Legacy
Applications. In Proceedings of the International Conference on Software En-
gineering, pages 112-121. ACM Press, 2006.

D. Lohmann, G. Blaschke, and O. Spinczyk. Generic Advice: On the Combi-
nation of AOP with Generative Programming in AspectC++. In Proceedings
of the International Conference on Generative Programming and Component
Engineering, volume 3286 of LNCS, pages 55-74. Springer, 2004.

VOL 0, NO. 0 JOURNAL OF OBJECT TECHNOLOGY 19

f—

C"#_/ ASPECT REFINEMENT - UNIFYING AOP AND STEPWISE REFINEMENT

[20]

[21]

[29]

[30]

[31]

[32]

[33]

R. Lopez-Herrejon, D. Batory, and W. R. Cook. Evaluating Support for Fea-
tures in Advanced Modularization Technologies. In Proceedings of the European
Conference on Object-Oriented Programming, volume 3586 of LNCS, pages 169
194. Springer, 2005.

R. Lopez-Herrejon, D. Batory, and C. Lengauer. A Disciplined Approach to
Aspect Composition. In Proceedings of the International Symposium on Partial
Fvaluation and Semantics-Based Program Manipulation, pages 68-77. ACM
Press, 2006.

N. Loughran and A. Rashid. Framed Aspects: Supporting Variability and
Configurability for AOP. In Proceedings of the International Conference on
Software Reuse, volume 3107 of LNCS, pages 127-140. Springer, 2004.

H. Masuhara and G. Kiczales. Modeling Crosscutting in Aspect-Oriented Mech-
anisms. In Proceedings of the European Conference on Object-Oriented Pro-
gramming, volume 2743 of LNCS, pages 2-28. Springer, 2003.

T. Mens, K. Mens, and T. Tourwé. Aspect-Oriented Software Evolution.
ERCIM News, 1(58):36-37, 2004.

C. Morgan. Programming from Specifications. Prentice Hall, 2nd edition, 1994.

D. L. Parnas. Designing Software for Ease of Extension and Contraction. IEFE
Transactions on Software Engineering, SE-5(2):264-277, 1979.

C. Prehofer. Feature-Oriented Programming: A Fresh Look at Objects. In Pro-
ceedings of the Furopean Conference on Object-Oriented Programming, volume
1241 of LNCS, pages 419-443. Springer, 1997.

H. Rajan and K. J. Sullivan. Classpects: Unifying Aspect- and Object-Oriented
Language Design. In Proceedings of the International Conference on Software
Engineering, pages 59-68. ACM Press, 2005.

V. Rajlich. Changing the Paradigm of Software Engineering. Communications
of the ACM, 49(8):67-70, 2006.

M. Sihman and S. Katz. Superimpositions and Aspect-Oriented Programming.
The Computer Journal, 46(5):529-541, 2003.

Y. Smaragdakis and D. Batory. Mixin Layers: An Object-Oriented Imple-
mentation Technique for Refinements and Collaboration-Based Designs. ACM
Transactions on Software Engineering and Methodology, 11(2):215-255, 2002.

D. Tucker and S. Krishnamurthi. Pointcuts and Advice in Higher-Order Lan-
guages. In Proceedings of the International Conference on Aspect-Oriented Soft-
ware Development, pages 158-167. ACM Press, 2003.

N. Wirth. Program Development by Stepwise Refinement. Communications of
the ACM, 14(4):221-227, 1971.

20

JOURNAL OF OBJECT TECHNOLOGY VOL 0, NO. 0

