Access Control in Feature-Oriented Programming

Sven Apel?, Sergiy Kolesnikov?®, Jorg Liebig?, Christian Kistner®, Martin
Kuhlemann®, Thomas Leichd

%Department of Informatics and Mathematics, University of Passau, Germany
{ apel,kolesnik,joliebig} @fim.uni-passau.de
b Department of Computer Science and Mathematics, University of Marburg, Germany
kaestner@informatik.uni-marburg.de
¢School of Computer Science, University of Magdeburg, Germany
kuhlemann@iti.cs.uni-magdeburg. de
4 Metop Research Center, Magdeburg, Germany
thomas.leich@metop.de

Abstract

In feature-oriented programming (FOP) a programmer decomposes a program
in terms of features. Ideally, features are implemented modularly so that they
can be developed in isolation. Access control mechanisms in the form of access
or visibility modifiers are an important ingredient to attain feature modularity
as they allow programmers to hide and expose internal details of a module’s
implementation. But developers of contemporary feature-oriented languages
have not considered access control mechanisms so far. The absence of a well-
defined access control model for FOP breaks encapsulation of feature code and
leads to unexpected program behaviors and inadvertent type errors. We raise
awareness of this problem, propose three feature-oriented access modifiers, and
present a corresponding access modifier model. We offer an implementation of
the model on the basis of a fully-fledged feature-oriented compiler. Finally, by
analyzing ten feature-oriented programs, we explore the potential of feature-
oriented modifiers in FOP.

Keywords: Feature-Oriented Programming, Feature Modularity, Access
Control, Access Modifier Model, FuJi

1. Introduction

The goal of feature-oriented programming (FOP) is to modularize software
systems in terms of features [1, 2]. A feature is a unit of functionality of a
program that satisfies a requirement, represents a design decision, or provides
a potential configuration option [3]. A feature module encapsulates exactly
the code that contributes to the implementation of a feature [4]. The goal
of the decomposition into feature modules is to construct well-structured and
customizable software. Typically, from a set of feature modules, many different
programs can be generated that share common features and differ in other
features.

Preprint submitted to Elsevier August 11, 2010

Many feature-oriented languages and tools aim at feature modularity, e.g,
AHEAD/Jak [2], FeatureC++ [5], and FeatureHouse [6]. Feature modules are
supposed to hide implementation details and to provide access via interfaces [7].
The rationale behind such information hiding is to allow programmers to de-
velop, type check, and compile features in isolation. However, contemporary
feature-oriented languages do not perform well with regard to feature modu-
larity [7]; they lack sufficient abstraction and modularization mechanisms to
support independent development based on information hiding, modular type
checking, and separate compilation. In a theoretical work, Hutchins has shown
that, in principle, feature-oriented languages are able to attain this level of fea-
ture modularity [8]. However, there are many open issues, such as the interaction
with other language mechanisms.

An important ingredient for feature modularity that is missing in contem-
porary feature-oriented languages is a proper mechanism for controlling the
visibility of or access to individual program elements. Access modifiers allow a
programmer to define the scope and visibility of program elements such that im-
plementation details can be encapsulated. For example, in Java, programmers
use access modifiers (e.g., private or public) to grant or prohibit access to classes,
methods, and fields. Access control has not been considered so far in research
on feature-oriented languages. Contemporary feature-oriented languages do not
provide proper access control mechanisms that take feature-oriented abstrac-
tions such as feature modules into account. The absence of a well-defined access
control model for FOP breaks the encapsulation of feature code and leads to
unexpected program behaviors and inadvertent type errors, as we will demon-
strate. To improve the situation, we make the following contributions:

e We analyze object-oriented modifiers used in FOP and identify several
shortcomings that limit the expressiveness of feature-oriented languages
and that may lead to unexpected program behaviors and inadvertent type
errors.

e We explore the design space of feature-oriented access control mechanisms
and propose three concrete access modifiers.

e We present an access modifier model that integrates common object-
oriented modifiers with our novel feature-oriented modifiers.

e We offer an implementation of the proposed modifiers on top of the fully-
fledged feature-oriented compiler FuJI.

e We analyze ten feature-oriented programs to demonstrate that there is a
potential for feature-oriented access control modifiers.

Especially, the last two contributions are novel compared to an earlier version of
this work presented at FOSD’09 [9]. In a nutshell, we found evidence that there
is a need for feature-oriented modifiers in FOP. Another observation is that
features are mostly self-referential, which supports the view of features being
cohesive units rather than being stepwise refinements, as we will explain.

1
2

[RoNvIEN NG IITNIG)

=

2. Feature-Oriented Programming

Often, a feature-oriented language extends an object-oriented base language
by mechanisms for the abstraction and modularization of features.! Here we
concentrate on languages that gained considerable attention in the past: AHEAD-
/Jak [2], FeatureHouse [6], FeatureC++ [5], Classbox/J [12], CaesarJ [13], and
OT/J [14]. To implement the additions and changes a feature makes, these and
other feature-oriented languages introduce a mechanism for class refinement.
We illustrate the capabilities of FOP by means of a brief example: we intro-
duce a class (Figure 1) and refine it subsequently (Figure 2). Note that in real
feature-oriented programs, a feature typically comprises multiple classes and
refinements.

In Figure 1, we depict a class Stack written in the Jak language, which is an
extension of Java and belongs to the AHEAD tool suite [2]. The class definition
is identical to a definition in Java except for the layer declaration (Line 1), which
defines the feature to which class Stack belongs—in our case, feature BASE.

Feature BASE

layer Base;
class Stack {
private LinkedList elements = new LinkedList();
public void push(Object element) {
elements.addFirst(element);

¥
public Object pop() {
return elements.removeFirst();
}
}

Figure 1: A basic stack implemented in Jak.
Feature UNDO

layer Undo;
refines class Stack {
private Object lastPush = null;
private Object lastPop = null;
public void push(Object item) {
lastPush = item; lastPop = null;
Super.push(item);

public Object pop() {
lastPop = Super.pop();
lastPush = null; return lastPop;

public void undo() {
if (lastPush != null) Super.pop();
else if (lastPop != null) Super.push(lastPop);

Figure 2: A refinement of class Stack implemented in Jak.

IWe are aware of some feature-oriented languages that build on languages that are not
object-oriented [10, 11]. These languages are outside the scope of the paper, as they do not
provide access modifiers like the ones we consider here.

In Figure 2, we depict a refinement of class Stack, declared by keyword refines
(Line 2). The refinement is part of feature UNDO, which enables clients of the
stack to revert the last operation. It adds a new method undo (Lines 13-16) and
two new fields lastPush and lastPop (Lines 3 and 4) to class Stack. Furthermore,
it refines the methods push and pop (by overriding; Lines 5-8 and 9-12) to store
the last item added to or removed from the stack. Keyword Super refers to the
class that has been refined (Lines 7 and 10).> Typically, a feature comprises
multiple class declarations and class refinements that implement the feature in
concert.

We visualize a feature-oriented program design—like the design of our stack
example—using a collaboration diagram [15, 16, 17].> In Figure 3, we show a
sample feature-oriented design, which decomposes the underlying object-oriented
design into features. The design in Figure 3 consists of the five classes A — F
(represented by medium-gray boxes), which are located in the two packages
P, and P, (represented by light-gray boxes). The diagram displays features
(Fy — F3) as horizontal slices that cut across the core object-oriented design
(represented by dark-gray boxes). Hence, a class is decomposed into several
fragments, called roles, that belong to different features [16]; the set of roles be-
longing to a feature make up a feature module [4]. For example, class A consists
of the roles Ay, As, and As; feature Fj is implemented by the roles Ay, By, Cy,
Dy, and E;. The topmost role of a class is also called the base class (e.g., Aq)
and the other roles are called class refinements (e.g., As and As). The solid
arrow denotes the refinement relationship between roles and the empty arrow
denotes inheritance between full classes.

Note that the sample feature-oriented design of Figure 3 is minimal in the
sense that it covers all situations that can occur in access control and it fits onto
a single page. We created this design on the basis of the specifications of Java
and Jak. Nevertheless, we checked that it applies also to the other languages we
consider (see above). Despite its abstractness, we have implemented the design
and used it for regression testing our compiler (see Section 5).

3. Problem Statement & Related Work

We explain the problems we encountered with feature-oriented languages by
means of Jak—later we consider other feature-oriented languages. Jak, as a
Java extension, has inherited the access modifiers of Java. Hence, programmers
can control access to classes and members using the modifiers private, package,
protected, and public. But there are two problems with this:

2For brevity, we use a slightly less verbose notation than used in Jak; other feature-oriented
languages use different keywords anyway.

3Note that the collaboration diagrams we refer to have their origin in collaboration-based
design [16] and are not to be confused with UML collaboration diagrams.

4We assume a basic knowledge on Java’s access modifiers. In Java, if a class, field, or
method does not have an access modifier then only elements from the same package may
access them. For sake of consistency, we assume modifier package for this case.

[]package [Jrole [{ifeature { class <— refinement <}— inheritance

Figure 3: A sample feature-oriented design.

1. Undefined semantics: object-oriented modifiers interact in undefined
ways with feature-oriented mechanisms such as class refinement.

2. Limited expressiveness: object-oriented modifiers are not expressive
enough to control access in the presence of feature-oriented abstractions.

Undefined Semantics

Let us illustrate the problem of undefined semantics by means of our stack
example. Suppose we refine our class Stack by applying a feature TRACE. Fea-
ture TRACE monitors the accesses to the stack and, as soon as the stack is
changed, it writes all stack elements to the console. In Figure 4, we depict
a corresponding refinement that refines the methods push (Lines 3-5) and pop
(Lines 6-8), accesses the list storing the stack’s elements (Lines 10 and 11), and
prints them to the console (Line 11).

Feature TRACE

1 layer Trace;

2 refines class Stack {

3 public void push(Object item) {

4 Super.push(item); trace();

5 }

6 public Object pop() {

7 Object res = Super.pop(); trace(); return res;
8

9 private void trace() {

10 for (int i = 0; i < elements.size(); i++)
11 System.out.print(elements.get(i).toString() + " ");

Figure 4: A refinement of class Stack to trace accesses to a stack instance.

The question is whether the above example is correct. Is the class refinement
allowed to access the private field elements of the refined class? The answer is not
obvious since feature-oriented languages usually do not come with a specification
and the behavior is de facto defined by the implementation of the compiler—
a situation that we are going to change. Also, formally specified subsets of
feature-oriented languages do not include modifiers [18, 19, 20, 21]. Compiling
this code (or similar code) with the Jak compiler reveals that, depending on a
compiler flag, the code is correct or not.

The background of this inconsistency is that the Jak compiler generates Java
code in an intermediate step and it supports two options to do so [22]: in the
first option, called Mixin, the compiler generates an inheritance hierarchy with
one subclass per refinement (which is good for debugging); in the second option,
called Jampack, the compiler generates a single class consisting of the elements
of the base class and all of its refinements (which is good for performance).
Comparing the two options, it becomes clear that we get different results in
our example, which we illustrate in Figure 5.° Using Mixin (top of Figure 5),
private field elements cannot be accessed because the refinement is translated to a
subclass, which cannot access private members of superclasses. Using Jampack
(bottom of Figure 5), private field elements can be accessed because all code of
all refinements is moved to the class that is refined. So, we have two different
results when compiling a single program depending on a flag that is intended
for debugging and optimization.

One can argue for one or the other semantics of private in FOP, and cer-
tainly it is possible to fix either Mixin or Jampack such that both provide equal
behavior. But we would like to stress that the semantics of access modifiers
in general and their interaction with feature-oriented mechanisms such as class
refinements are not well-defined in contemporary feature-oriented languages.

The difference between Mixin and Jampack is furthermore not only a matter
of tool support because it can affect the program semantics beyond type errors,
as illustrated in Figure 6.° Which value is returned by method bar? Again,
it depends on a compiler flag: using Jampack, bar returns 42; using Mixin,
bar returns 23. The return value of method bar depends on the composition
mechanism (Mixin or Jampack) and Java’s overloading rules. Method foo in
class Foo is overloaded, the first variant with a parameter of type A and the
access modifier protected (Line 5) and the second variant with a parameter of
type B and the access modifier private (Line 6). Calling foo from bar returns
either 23 or 42, depending on which variant of foo was selected during method
dispatch, which in turn depends on whether we use Mixin or Jampack. Using
Jampack, the compiler merges class Foo and its refinement into a single class.
In this case, both variants of foo are visible to bar and the second is called

5Figure 5 illustrates also how method overriding is implemented with Mixin and Jampack.
A discussion of the differences is outside the scope of this paper; more details are presented
elsewhere [22, 6].

SFor brevity, we merged the definitions of A, B, and Foo in a single listing.

Ju—
QWO U W

11

13

Code generated by Mixin

class StackBase {

private LinkedList elements = new LinkedList();

public void push(Object element) {
elements.addFirst(element);

¥
public Object pop() {
return elements.removeFirst();

}

class Stack extends StackBase {
public void push(Object item) {
super.push(item); trace();

public Object pop() {
Object res = super.pop(); trace(); return res;

private void trace() {

for (int i = 0; i < elements.size(); i++)
System.out.print(elements.get(i).toString() + " ");
¥

}

Code generated by Jampack

class Stack {
private LinkedList elements = new LinkedList();
public void push(Object element) {
elements.addFirst(element); trace();

}
public Object pop() {
Object res = elements.removeFirst(); trace(); return res;

}

private void trace() {
for (int i = 0; i < elements.size(); i++)
System.out.print(elements.get(i).toString() + " ");

}
}

Figure 5: Code generated by Mixin (top) vs. code generated by Jampack (bottom).

(returning 42) based on Java’s overloading rules (its parameter type is more
specific with respect to the argument supplied by bar). Using Mixin, a subclass
is created for the refinement of class Foo, such that bar cannot access the second
variant of foo and has to resort to the first variant (returning 23).

In Table 1, we compare different feature-oriented languages with respect
to their semantic rules for accessing fields from a refinement and the program
behavior with respect to our example of Figure 6. We argue that the differences
between the individual feature-oriented languages are not intended but stem
solely from the fact that research on FOP has not considered access modifiers
so far.

We hope that the examples make clear that we need well-defined semantics
of feature-oriented languages including access modifiers as well as a scientific
discussion that motivates the choices of the semantics definition. We argue
that internal implementation details of compilers or the use of debugging and
optimization flags should not decide arbitrarily program semantics.

‘soSengue|
POIUSLIO-0INea) JUSISPIP Ul 9 8In3L JO Jeq Poyjowl JUul[[ed JO SHMSAI 9} SMOYs mol woljoq oy, '(pejroddns jou — ‘pejueid sseode 4 ‘pejiqryord
$S900' X) JUUWIAUYDI ® A(POSSOdOR 9 URD SSR[D ® JO SIOQUIOW UDIYm Of preSal yjm soSenSue| pajuslIo-aIngesj JuaIoyip jo uosiredwo)) :T 9[qe],

/810" sureaqqoalqo-mmmn//:daay 5 /203 /op psog-mum//:daay e
/810 [xeseed//:daay c /ui/ep psoz-mmm//:daay z
/sexoqsseTd/ysIeasal/yo oqrun-8os//:dyay . TUAY* SLY/Z3TeMydS. /nps ‘ sexaqn so-mum//:daay I

4 e 44 4 4 4 €2 (9 om31yg) ()4eq
s N » N N Va N s1ignd
2 N N 2 2 2 » pajosjoud
2 — A — A M M a8exoed
» X N N N % X ajenld
D)
S| £ £| F| & | F&| £s
A $ & g g gz g T
= g o 5 5 N &
S 3 3 Z 2
¥ AN g S Na
< <
PN +* &
e £

http://www.cs.utexas.edu/~schwartz/ATS.html
http://www.fosd.de/fh/
http://www.fosd.de/fcc/
http://scg.unibe.ch/research/classboxes/
http://caesarj.org/
http://www.objectteams.org/

N OO W N

10

Feature BASE

layer Base;

class A {}

class B extends A {}

class Foo {
protected int foo(A a) { return 23; }
private int foo(B b) { return 42; }

}

Feature EXT

layer Ext;
refines class Foo {
public int bar() { return foo(new B()); }

11 }

Figure 6: Abstract example that illustrates the difference between Jampack and Mixin com-
piler flag. Method bar returns 23 using Jampack and 42 using Mixin.

Limited FExpressiveness

We have also observed that object-oriented modifiers are not expressive
enough for feature-oriented mechanisms (see page 4), as illustrated by the follow-
ing example. Suppose we refine our class Stack such that accessing the stack’s
methods is thread-safe (feature SYNC). A refinement of feature SYNC shown
in Figure 7 adds a new field lock and overrides the methods push and pop to
synchronize access via the methods lock and unlock. Furthermore, suppose that
feature SYNC also refines many other classes to attain thread safety (e.g., Queue,
Map, and Set) and that a central registry keeps track of all locks in use. To grant
the lock registry access to the locks of the synchronized stack (queue, map, set,
etc.) objects, we have to change the access modifier in Line 3 from private to
public (similarly for the other synchronized classes). However, this also means
that every class of the entire program has access to the lock (not only the lock
registry), which is certainly not desired. Other modifiers such as package and
protected are also not sufficient for similar reasons, and none of the languages
compared in Table 1 provide proper support. Instead, we envision a modifier
that states that all roles of a given feature may access a member within the
same feature. In our case, we would like to grant access to the locks from the
lock registry, which is introduced in the same feature as the locks, but not from
other classes of other features. The synchronization example illustrates that
the access modifiers available in contemporary feature-oriented languages are
not sufficient for fine-grained, feature-based access control.

Summary

Our discussion shows that we need access modifiers that are specific to the
needs of FOP. Programmers would like to restrict access to a program ele-
ment to only certain features. Furthermore, we would like to define how the
feature-oriented modifiers interplay with the object-oriented modifiers to avoid
inadvertent interactions. To this end, in the next section, we define an access
modifier model for feature-oriented languages.

Feature SYNC

1 layer Sync;

2 refines class Stack {

3 private Lock lock = new Lock();
4 public void push(Object item) {
5 lock.lock();

6 Super.push(item);

7 lock.unlock();

8
9

}
public Object pop() {

10 lock.lock();

11 Object res = Super.pop();
12 lock.unlock(); return res;
14 }

Figure 7: A refinement of class Stack to synchronize accesses to a stack instance.

4. An Orthogonal Access Modifier Model

We explore the design space of possible and potentially useful modifiers
for feature-oriented language mechanisms. First, we introduce three feature-
oriented modifiers and, second, we explain how they can be combined with the
modifiers commonly found in object-oriented languages.

4.1. Feature-Oriented Modifiers

We introduce three modifiers that control the access to members of roles.
The motivation for the modifiers comes directly from the fact that features cut
across the underlying object-oriented design (see Figure 3).

Modifier feature

The modifier feature is motivated by our previous example, in which we
added synchronization support to a stack and other data structures. There, we
had the problem that object-oriented modifiers are not able to express that only
elements introduced by the synchronization feature—possibly of different classes
and packages—may access the locks of the synchronized objects. The modifier
feature grants exactly this access and forbids the access from other features, as
we illustrate for our stack example in Figure 8. Modifying a member with feature
allows every other role of the same feature to access the member in question, in
our example, including the lock registry (not shown), and prohibits access from
the roles of all other features.

Feature SYNC

1 layer Sync;

2 refines class Stack {

3 feature Lock lock = new Lock();
4 .

5

Figure 8: Using modifier feature to grant access to field lock from all members of feature
SyNc.

10

Modifier subsequent

Modifier subsequent is motivated by FOP approaches that treat features as
stepwise refinements. That is, starting from a base program, features refine the
existing program code gradually and produce a new version in each step [2, 23]—
some researchers even draw a connection to functions that map programs to
programs [2, 23, 24]. In the stepwise refinement scenario, a feature (represented
by a function) must not “know” about program elements that are introduced
by subsequent features. The positive effect of such a disciplined programming
style is that features can be composed incrementally [23].

In Figure 9, we show a feature STREAMLINE that refines class Stack such
that it writes the stack’s state to a stream after each operation (details omit-
ted). Further suppose that another feature BYTEORDER, shown also in Fig-
ure 9, allows a client to switch the byte order of the stream. If we would like
to be able to compose the stack’s features incrementally, we have to compose
feature STREAMLINE before feature BYTEORDER because the latter refers to
the former. To guarantee incremental compositionality, we propose a modifier
subsequent that grants access to a program element from all elements of the same
feature or of features added subsequently. Features that have been added pre-
viously cannot access the program element in question. So, for our example,
we modify field objectStream with subsequent (Figure 9, Line 3) and thus require
that elements that access this field are added subsequently.

Feature STREAMLINE

layer StreamLine;
refines class Stack {
subsequent ObjectStream objectStream = ...
public void push(Object item) {
Super.push(item);
objectStream.write(this);

Feature BYTEORDER

layer ByteOrder;
refines class Stack {
public void littleEndian() {
objectStream.setByteOrder(LITTLE_ENDIAN);

Figure 9: Using modifier subsequent to prohibit access to field objectStream from all fea-
tures applied before feature STREAMLINE; BYTEORDER may access objectStream only if it is
composed after STREAMLINE.

Another use case for modifier subsequent is in languages that support a
pattern-based selection of extension points such as advice and implicit invoca-
tion [25, 26], which have been discussed recently in the context of FOP [23, 4].
With pattern-based selection, we can extend, for instance, all methods whose
name begins with set. Modifier subsequent can be used to prevent methods from

11

being extended by previous features. It has been shown that, in this way, pro-
grammers can avoid certain kinds of inadvertent interactions [23, 26].

Modifier program

Modifier program broadens the scope of accessing a program element to all
other program elements of all features of the program (previous and subsequent).
This is equivalent to the current situation in feature-oriented languages, in which
programmers have no fine-grained access control regarding to feature-oriented
abstractions. Our motivation to add modifier program is to achieve backward
compatibility with programs written without feature-oriented modifiers. If no
feature-oriented modifier is specified, we use program as the default modifier (like
package in Java).

Discussion

A question that arises is whether the new modifiers are expressive enough
or whether we need an even more fine-grained access control mechanism. The
smallest modularization unit in feature-oriented design is the feature. With our
three feature-oriented modifiers, we are able to precisely control the access on
a per-feature basis: individual, subsequent, or all features. So there is no need
for a more fine-grained or more coarse-grained access.

It would be possible to grant access only to a special feature or a subset of
features by name. We did not consider this possibility so far because of three
reasons. First, in our previous work on feature orientation, we did not encounter
situations in which such a mechanism would have been useful. Second, granting
the access to special features would be a departure from the object-oriented
modifier model. For example, in Java, a programmer cannot declare that a
member is visible only for certain classes or packages, so we do not support
this mechanism at the level of features. Third, we would like to minimize the
coupling between the features’ implementation and their mutual relationships.
Apart from the layer declaration (which is even optional) at the beginning of each
Jak file, there is no information about the actual feature in the program text.
Instead, in languages such as Jak, the link between feature and program text
is implicit and managed externally by the tool infrastructure. We believe that
this separation of concerns (feature implementation vs. feature management)
is one of the reasons of the success of contemporary feature-oriented languages
and tools [3].

4.2. Object-Oriented and Feature-Oriented Modifiers in Concert

The three feature-oriented access modifiers interact with common object-
oriented modifiers in different ways. In Table 2, we illustrate the interplay be-
tween object-oriented and feature-oriented modifiers with respect to the sample
feature-oriented design of Figure 3. For each combination of an object-oriented
modifier and a feature-oriented modifier, the table shows the roles that may ac-
cess the members of role As in our sample design. That is, each cell of Table 2
contains the roles that are allowed to access role As’s members, which have the

12

As H feature ‘ subsequent ‘ program

private A Ag, A3 Ay, Az, Az
A27 A23A3; A17A27A37
package Bo, Bs, B3, B, Bs, Bs,

Cy C3,C3 C1,Cs,C3
A, Ay, As, Ay, As, As,
B, By, Bs, B, By, Bs,
protected o Cy. Cs, C1,Cy, Cs,
Dy D», D3 D1, D2, D3
A23 A25A37 A13A27A37
By, Bs, B3, B, By, Bs,

pUb“C 027 027 C3> CVl7 027 CS;
DQ, D2>D3a DlaDQaD3a
Es E,y, B3 Ey,Ey, E3

Table 2: Overview of the roles that are allowed to access a member that has been introduced
in role As (according to the design shown in Figure 3).

combined modifiers corresponding to the cell’s column and row. For example,
a member of role A, with the modifiers package and feature can be accessed by
the roles Az, Ba, and Cy (first column, second row) because they are located in
the same package and feature; a member of role As modified with private and
program can be accessed by the roles Ay, Ay, and Az (third column, first row)
because they are of the same class.

Looking closer at Table 2, it is interesting to observe that the individual
modifier combinations constitute a lattice with scope inclusion as partial or-
der, ‘public program’ as top element, and ‘private feature’ as bottom element, as
illustrated in Figure 10. The lattice guided us in the development of a cor-
responding type system (see Section 5), which is concerned with the question
whether a member is in the scope of an access. For example, when accessing
a field of an unrelated class (i.e., not from a subclass) introduced in another
package of the same feature, the field must be declared at least public feature
(public subsequent and public program would be sufficient, too).

Finally, since all feature-oriented languages of Table 1 rely on collaboration-
based design, they can be seamlessly enhanced by our modifier model.

5. Implementation and Evaluation

To evaluate and experiment with our model, we have implemented a compiler
that incorporates our access modifier model and we have conducted an empir-
ical study on ten feature-oriented programs exploring the potential of feature-
oriented modifiers in FOP.

13

public
program

least specific

public protected
subsequent program

public protected package
feature subsequent program

protected package private
feature subsequent program

package private
feature subsequent

private
feature

most specific

Figure 10: A lattice formed by modifier combinations.

5.1. Fun

To evaluate and experiment with our model, we implemented a compiler for
a feature-oriented language based on Java called FujL.” FuJir’s syntax is based
on the syntax of FeatureHouse and Jak.® We implemented the FuJI compiler as
an extension of the Java compiler JastAddJ [27], which in turn fully implements
the Java 5 language specification. Specifically, we made three extensions. First,
we extended the grammar of JastAddJ to include the new keywords (feature,
subsequent, and program). Second, we extended the frontend of JastAddJ with
support for features and feature composition (the FUJI compiler expects the
input features in separate directories). Third, we extended the type system of
JastAddJ to implement our access modifier model; the extended type system en-
sures that member accesses respect the rules defined by our model, as explained
in the previous sections. The powerful extension mechanism of JastAddJ (which
is based on aspect weaving) allowed us to implement all extensions modularly.
The compiler with examples and the results of our analysis is available on the
Web.?

For evaluation, we implemented a systematic test application following the
example shown in Figure 3 (available at FuJI’s website). Role Ay declares twelve
fields, each of which is modified by a unique combination of an object-oriented

"Feature-Oriented Java Compiler

8The reason for implementing a new compiler, rather than extending FeatureHouse or Jak,
is that FeatureHouse and Jak do not provide a type system, which is necessary to implement
access control mechanisms.

nttp://www.fosd.de/fuji/

14

http://www.fosd.de/fuji/

and a feature-oriented modifier. Each role, including A, accesses all of the
fields of role A5.19 The Fuir compiler reports errors for all accesses that do
not conform with the specification in Table 2. As the test application covers
all situations shown in Table 2, we are confident that the compiler implements
our specification correctly and completely, although this cannot be a definitive
proof.

5.2. Data of Ten Feature-Oriented Programs

Beside technical correctness and completeness, we evaluate the practicality
of our model. Rather than implementing one or two feature-oriented programs
from scratch using the novel modifiers, we aim at a more realistic and less bi-
ased evaluation. We are interested in the question of whether there is a need
for feature-oriented modifiers in practical FOP. The approach we have taken to
answer this question is to analyze the members and accesses in current (third-
party) feature-oriented programs and to explore whether object-oriented mod-
ifiers alone are sufficient or whether additional feature-oriented modifiers are
necessary.

To determine whether a declared object-oriented modifier is sufficient for
a given member, we analyze all accesses to the member and determine the
most-specific combination of an object-oriented and a feature-oriented modifier
with which all accesses of the member are valid (i.e., the combination that is
bottommost in the lattice shown in Figure 10). If this combination is more
specific than the declared object-oriented modifier,!! this may indicate that the
programmer was not able to define the scope more precisely (see Section 5.3
for a discussion). For example, if we encounter a field which is declared public
but all accesses stem from subclasses introduced by the same feature, then we
know that the most-specific scope is protected feature and the scope chosen by
the developer is less specific.

In our evaluation, we analyzed ten feature-oriented programs including sev-
eral non-trivial programs developed by others (see Table 3). We extended the
Fuut compiler to collect for each member the following information:

e The declared modifier of the member (an object-oriented modifier).

e A list of access scopes, each of which corresponds to an access of the
member and which is most-specific such that the corresponding access is
still valid (a pair of object-oriented and feature-oriented modifiers).

e The minimal modifier of the member, with which all accesses to the mem-
ber are valid (a pair of object-oriented and feature-oriented modifiers).
The minimal modifier is the least upper bound of all access scopes in the
access modifier lattice.

10To be specific, roles of the classes A, B, and D access the fields of A via this; roles of C
and E access the fields of As via new pl.A().

1 The absence of feature-oriented modifiers in the analyzed programs is equivalent to uses
of the modifier program.

15

program name H # lines of code # feature modules description

Berkeley DBT 45000 100 Oracle’s transactional storage engine
EPL2 149 11 arithmetic expression evaluator
GPL3 1929 28 graph and algorithm library
GUIDSL4 11527 29 graphical configuration tool
MobileMedia® 4227 47 multimedia management for phones
Notepad® 1751 13 graphical text editor

PKJab” 3305 8 instant messaging client for Jabber
Prevayler® 5270 6 persistence library

TankWar? 4,845 38 shoot ’em up game

Violet !9 7151 88 graphical model editor

Lrefactored by C. Kistner (U Magdeburg) Sdeveloped by A. Quark (UT Austin)

2developed by R. Lopez-Herrejon (UT Austin) ’developed by P. Wendler (U Passau)
3developed by R. Lopez-Herrejon (UT Austin) 8refactored by J. Liu (UT Austin)
4developed by D. Batory (UT Austin) 9developed by L. Lei et al. (U Magdeburg)
Srefactored by C. Késtner (U Magdeburg) 10refactored by A. Kampasi (UT Austin)

Table 3: Overview of the analyzed programs.

For example, consider a class A with a public field foo, shown in Figure 11
(Line 3), which is accessed once from inside the same role (Line 5) and twice
from another role of the same class but in a subsequent feature (Lines 11 and 13).
In this example, the derived access scopes are: private feature (Line 5), private
subsequent (Line 11), and private subsequent (Line 13). The derived minimal
modifier (with which all three accesses are valid) is private subsequent, so the
corresponding member could be redeclared safely using this modifier.

Feature BASE

1 layer Base;

2 class A {

3 public boolean foo = false;
4 private void bar() {
5 foo = true;

6

7

Feature EXT

8 layer Ext;
9 refines class A {
10 private void foobar() {

11 foo = true;
13 foo = false;
15 }

Figure 11: A class with a public field foo and a method bar that accesses foo (feature BasE),
and a refinement with a method foobar that accesses foo, as well (feature EXT).

In Table 4, we show for each of the ten programs the overall number of
members and accesses and the occurrences of declared modifiers, derived ac-
cess scopes, and derived minimal modifiers. The raw data are available in the
electronic appendix and on FuJI’s website (along with the analyzed programs).

16

5.8. Analysis and Discussion

We analyze and discuss the data with regard to two questions: First, which
declared modifiers, derived access scopes, and derived minimal modifiers occur
most frequently? Second, why did developers not declare more-specific modifiers
in the case this would have been possible?

Access Scopes and Minimal Modifiers

From the data presented in Table 4, we infer that 86.69413.59 % of all
member accesses are from within the same feature as the corresponding mem-
bers (only 10.08+10.49% are from subsequent features and 3.23+3.5% are
from previous features).'> Furthermore, 76.43 &20.42% of the derived mini-
mal modifiers limit the scope of a member access to the same feature (only
14.76 £ 13.32 % limit the scope to subsequent features and 8.81 4+8.09 % to the
entire program). These results show that most accesses occur within individual
features, rather than between different features, and, in many cases, the scope
of the corresponding members can be limited accordingly. So, there is a poten-
tial for information hiding at the level of features, which cannot be expressed
properly by object-oriented modifiers.

Actually, we were surprised that we could not find more features that access
members of previous features, which we expected to be the natural program-
ming style in stepwise refinement (i.e., subsequent features build on previous
features) [2]. In the ten programs, features mainly access their own program
elements (87 %)—that is, they are very cohesive—rather than referring to ele-
ments previously introduced by other features (13 %). So, our results support
the philosophy of viewing features as cohesive units that should be developed
independently [7, 28, 29], rather than viewing features as transformations that
have access to all program elements [30, 31].

Given that not all feature-oriented modifiers appear to be of equal useful-
ness, the question arises whether we really need all of them. Modifier feature
appears to be more useful in the analyzed programs than subsequent and program.
However, we argue that it is too early to answer this question. So, we leave the
modifiers in the model and the implementation, so that time will show which
modifiers are used in practice.

Specificity of Modifiers

Based on the collected data, we computed for each program the fraction
of the minimal modifiers that are more specific than their declared modifiers.
In Table 5, we show the fractions for the analyzed programs. On average,
91.19 +8.09 % of the minimal modifiers are more specific than the corresponding
declared modifiers. This fraction raises the question of why developers did not
declare more-specific modifiers. We can think of three possible reasons:

12We write a & s denoting the average value a and the standard deviation s.

17

‘surerSord uo) JO SIOYIPOUW [RUWITUIW POALIOP Pue ‘sod0ds §$900€ POALIOP ‘SISYIPOUL PAIR[IIP ‘SISSE00R ‘SIOUIAU JO SIOQUINN] :f, d[qR],

0 0 91 6C 0 0 0 0 0 0 wesSoid oiqnd
0 0 €€ (43 0 0 0 0 0 0 juanbasqns oignd
(4 0 L 19 0 0 0 0 0 0 ain3esy d1qnd
0 0 0 0 0 0 0 0 0 0 weiSoud pa3osiosd
0 0 0 0 0 0 0 0 0 0 uanbasqns pajoaloud
0 0 T T 0 0 0 0 0 0 aunjesy payosloid
cT 08 4 02 g 0 Lvy 71 0 0 weigoud agexded sIoyIpow
67 G6 ¢l €c 11 0 19¢ 9¢ 0 0 jusnbasqns a8eyoed
St €9 79 4 11 0 €6 L T 1 aunjesy aSexped | [BUIUIUT 7
T LT eT 4 3 0 44 G 0 0 weiSoid s3eaud
0g L9 91 ST 9 0 26 0¢ 0 0 juanbasqns a3eAud
c0c L1C L6¥ L0€ 1474 0S¢ 08C T o 8 94c € 2in3esy ajenud
0 0 69 (44 0 0 0 0 0 0 weJ3oud d1jqnd
0 0 991 S0¢C 0 0 0 0 0 0 jusnbasqns oijqnd
9T 0 976 916 0 0 0 0 0 0 ain3esy oijqnd
0 0 0 0 0 0 0 0 0 0 wesSoud pa3od304d
0 0 0 0 0 0 0 0 0 0 jusanbasqns pa1oa3o4d
0 0 6 LT 0 0 0 0 0 0 2un1esy padajoud
Gz 78 ST 18 91 0 Gyz g Lz 0 0 weuSoud aFexoed sodoos
c61 €87 T €9 81T qq 0 0898 [431 0 0 juanbasqns a3exed sso00e #
gce 099 CIL 070 T qq 0 R€C 8 CL € 1 9.njesy 3exded
4 86 Gcl €9 4% 0 qg9 LT 0 0 wessoid sreaud
02¢ 9LV 86¢ €61 LLT 0 91¢ G 18 0 0 juanbasqgns a3enud
196 € 899 ¢ OTTTIT | 29901 | 9.9 00 16€ 98 009 LT LL66 ainjesy ajenud
V1 VLT 161 L6T 9¢ [43 IGT T 96 1 66¢ oignd
. o T—_ T gl oo
(08 i 0S¥ 1izé 9z 29 £ET ST 0 €8¢ 1 syeaud | POIRIOOP 7
€ELY 0Cl 6 9IGET ¥CG €T | €26 00L SEVVIT | 6C8 (114 8166 sosseode #
gee 669 1€L ¥es 98 0G¢ 10€¢ L1T 6 VAT SIaquioul #
Ny > o v Q Q & &
S| £ &£ F| £ & §| F| 7| s
8 = & & ¢ & S & &
= M N o~ & o 2] &~
& o a N IS &
g o
& &

18

Q =
q L £ s | .
@ @ g § < N &
3 Q I Q T I B
N ~ N ~ 5 9 ~ A = 2
& Q 2 S S 5 A & 5 2
Q & < < & = q, 2 & S
more-
specific 3257 9 98 | 1832 250 73 481 700 442 321
declared 3257 9 117 | 2301 250 86 534 731 539 335
% || 100.00 | 100.00 | 83.76 | 79.62 | 100.00 | 84.88 | 90.07 | 95.76 | 82.00 | 95.82

Table 5: The fractions of minimal modifiers that are more specific than their corresponding
declared modifiers.

1. Expressiveness: the developer was not able to express the scope more
precisely due to the absence of feature-oriented modifiers.

2. Extensibility: the developer chose the scope deliberately unspecific to
facilitate extensibility [32].

3. Code smell: the developer simply did not care about access control.

The first reason for declaring less-specific modifiers (expressiveness) is sup-
ported by the fact that most accesses occur within individual features, rather
than between different features—a situation that cannot be expressed properly
with object-oriented modifiers. So there is an untapped potential for feature-
oriented modifiers to improve information hiding at the level of features.

The second reason for declaring less-specific modifiers (extensibility) is moti-
vated by software design. If it is known that a program is going to be extended,
developers should prepare the program accordingly. In object-oriented program-
ming, this means that developers sometimes declare less-specific modifiers than
possible (e.g., protected instead of private) to enable subsequent extension. How-
ever, even when looking only at the cases in which the declared object-oriented
modifiers are as specific as possible (and dismissing all cases in which the de-
clared object-oriented modifiers are less specific than possible as intentionally
loosened for extensibility), feature-oriented modifiers can reduce the scope of
members in 97 +4.33 % of the considered cases (37 423.27 % of all cases).

The third reason (code smell) is difficult to recognize in the analyzed pro-
grams. Hence, we choose a conservative approach and consider programs that do
not contain object-oriented modifiers (or only very few modifiers) as programs
in which the developers simply did not care about access control. Fortunately,
only EPL falls in this category (the author of EPL confirmed our suspicion).
This is not too surprising because it is rather small and designed to illustrate
a fundamental problem of object-oriented programming rather than being a
fully-fledged program in its own right. Since EPL is small compared to the
other analyzed programs, we can neglect its effect on our conclusions.

To summarize, even when considering reasons two (extensibility) and three
(code smell), most declared modifiers are too unspecific and can be specialized
by feature-oriented modifiers.

19

5.4. Threats to Validity

There are some threats to construct, internal, and external validity.

Construct Validity

To determine the potential of feature-oriented modifiers, we counted the
number of all declared modifiers and related them to their minimal modifiers.
A minimal modifier is calculated by comparing the corresponding declared mod-
ifier with its list of access scopes. To this end, we process and analyze infor-
mation on references and types provided by the FuJi compiler. That is, the
construct validity of our study relies on the correctness of the FuJI compiler.
Although a correctness proof is certainly outside the scope of the article, our
test application (following the design of Figure 3) makes us confident that our
data are reliable.

Internal Validity

A key idea of our study is to measure the use of object-oriented modifiers and
to draw conclusions about the need for feature-oriented modifiers. In Section 5.3,
we already discussed the soundness of the conclusions one can draw from the fact
that most object-oriented modifiers are less-specific than possible. We discussed
the likeliness of three possible reasons (expressiveness, extensibility, and code
smell) because we lack data to identify the reasons definitively. Hence, a threat
to internal validity emerges from the soundness of our arguments. As said in
Section 5.3, there are good reasons to assume that object-oriented modifiers are
too coarse-grained to control access in feature-oriented design (91 % is a quite
large fraction) but, at the end, missing data pose a threat to validity.

External Validity

Fuut is a feature-oriented extension of the Java programming language.
Other feature-oriented languages are similar, but may differ in their concrete
syntax and may also support other language constructs (e.g., virtual classes). A
threat to external validity emerges from that fact that the results of our study
may be specific to FuJi and may differ significantly for other feature-oriented
languages. Fortunately, our access modifier model relies only on the princi-
ples of collaboration-based design, which abstracts from specific details of the
language. So we are confident that we can generalize our conclusions to other
languages that are based on collaboration-based design. FeatureC+-+ is the
only exception because it is based on C++, and the modifier model of C++ has
a different semantics.

Another issue is to what extent the external validity of our study relies
on the selection of sample programs. Can we generalize to other programs
and application domains? To increase external validity, we collected as many
feature-oriented programs as possible, deliberately excluding our own projects
and artificial examples. Although a larger sample size would increase the exter-
nal validity—ideally including industrial case studies, we argue that the selected
programs represent the state of the art in FOP because they are of substantial

20

size, of different domains, and have been developed by others for different pur-
poses. Furthermore, there are not many more studies on this area—a situation
that has to be changed in the future. Note that the fourth author was involved
in refactoring two of the sample programs (not in the initial development), but
this was well before we began investigating access control.

6. Conclusion

The notion of access control has not gained much attention in feature-
oriented language design, which has led to a suboptimal modularity and expres-
siveness and to unintuitive semantics and inadvertent errors in feature-oriented
programs. Based on our experience with contemporary feature-oriented lan-
guages, we proposed three modifiers specifically targeting feature-oriented lan-
guage mechanisms. We developed an access modifier model that seamlessly
integrates object-oriented and feature-oriented modifiers. The model can serve
as a reference for compilers to avoid inadvertent program behavior and type
errors and to provide expressive means to control access in the face of feature-
oriented abstractions.

We provide an implementation of the model based on a fully-fledged feature-
oriented compiler and found evidence that feature-oriented modifiers can im-
prove the situation in practical FOP. An analysis of ten non-trivial feature-
oriented programs revealed that common object-oriented modifiers are not able
to define the scope of member accesses sufficiently and therefore give away a
potential for information hiding. On average, 91.19 + 8.09 % of all declared mod-
ifiers can be specialized with feature-oriented modifiers. Even when considering
extensibility issues and code smells, the essence of this result remains the same.

A further interesting observation is that features are mainly self-referential
and thus are very cohesive. This observation supports the philosophy of viewing
features as cohesive units that should be developed independently, rather than
viewing features as transformations that have access to all program elements.

In further work, we shall provide further evidence on the practicality and
soundness of our access modifier model. This includes analyzing further pro-
grams with regard to the need of feature-oriented modifiers, using feature-
oriented modifiers systematically in developing feature-oriented programs from
scratch, and interviewing developers about their rationales in using object-
oriented modifiers in existing projects and their expectations of and experiences
with feature-oriented modifiers.

Finally, access control is an important ingredient for feature modularity.
Limiting the scope to certain features aids modular type checking and verifica-
tion in that the compiler can guarantee that certain members cannot be accessed
from outside a feature or set of features. Our model and implementation is a
step in this direction. However, further ingredients are necessary for feature
modularity (e.g., modular type checking and linking [8]), which are outside the
scope of this paper and shall be addressed in further work.

21

Acknowledgments

This work is being supported in part by the German Research Foundation

(DFG), project number AP 206/2-1 and by the Metop Research Center.

References

[1]

[10]

C. Prehofer, Feature-Oriented Programming: A Fresh Look at Objects, in:
Proceedings of the European Conference on Object-Oriented Programming
(ECOOQOP), Vol. 1241 of LNCS, Springer-Verlag, 1997, pp. 419-443.

D. Batory, J. Sarvela, A. Rauschmayer, Scaling Step-Wise Refinement,
IEEE Transactions on Software Engineering (T'SE) 30 (6) (2004) 355-371.

S. Apel, C. Késtner, An Overview of Feature-Oriented Software Develop-
ment, Journal of Object Technology (JOT) 8 (5) (2009) 49-84.

S. Apel, T. Leich, G. Saake, Aspectual Feature Modules, IEEE Transactions
on Software Engineering (TSE) 34 (2) (2008) 162-180.

S. Apel, T. Leich, M. Rosenmiiller, G. Saake, FeatureC++: On the Symbio-
sis of Feature-Oriented and Aspect-Oriented Programming, in: Proceedings
of the International Conference on Generative Programming and Compo-
nent Engineering (GPCE), Vol. 3676 of LNCS, Springer-Verlag, 2005, pp.
125-140.

S. Apel, C. Késtner, C. Lengauer, FeatureHouse: Language-Independent,
Automated Software Composition, in: Proceedings of the International
Conference on Software Engineering (ICSE), IEEE Computer Society, 2009,
pp. 221-231.

R. Lopez-Herrejon, D. Batory, W. Cook, Evaluating Support for Features
in Advanced Modularization Technologies, in: Proceedings of the Euro-
pean Conference on Object-Oriented Programming (ECOOP), Vol. 3586
of LNCS, Springer-Verlag, 2005, pp. 169-194.

D. Hutchins, Pure Subtype Systems: A Type Theory For Extensible Soft-
ware, Ph.D. thesis, School of Informatics, University of Edinburgh (2009).

S. Apel, J. Liebig, C. Kéastner, M. Kuhlemann, T. Leich, An Orthogonal
Access Modifier Model for Feature-Oriented Programming, in: Proceedings
of the International Workshop on Feature-Oriented Software Development
(FOSD), ACM Press, 2009, pp. 26-32.

F. Anfurrutia, O. Diaz, S. Trujillo, On Refining XML Artifacts, in: Pro-
ceedings of International Conference on Web Engineering (ICWE), Vol.
4607 of LNCS, Springer-Verlag, 2007, pp. 473-478.

22

[11]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

S. Apel, C. Kastner, A. Groflinger, C. Lengauer, Feature (De)composition
in Functional Programming, in: Proceedings of the International Confer-
ence on Software Composition (SC), Vol. 5634 of LNCS, Springer-Verlag,
2009, pp. 9-26.

A. Bergel, S. Ducasse, O. Nierstrasz, Classbox/J: Controlling the Scope of
Change in Java, in: Proceedings of the International Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA),
ACM Press, 2005, pp. 177-189.

I. Aracic, V. Gasiunas, M. Mezini, K. Ostermann, An Overview of CaesarJ,
Transactions on Aspect-Oriented Software Development (TAOSD) 1 (1)
(2006) 135-173.

C. Hundt, K. Mehner, C. Pfeiffer, D. Sokenou, Improving Alignment of
Crosscutting Features with Code in Product Line Engineering, Journal of
Object Technology (JOT) — Special Issue: TOOLS EUROPE 2007 6 (9)
(2007) 417-436.

T. Reenskaug, E. Andersen, A. Berre, A. Hurlen, A. Landmark, O. Lehne,
E. Nordhagen, E. Ness-Ulseth, G. Oftedal, A. Skaar, P. Stenslet, OORASS:
Seamless Support for the Creation and Maintenance of Object-Oriented
Systems, Journal of Object-Oriented Programming (JOOP) 5 (6) (1992)
27-41.

M. VanHilst, D. Notkin, Using Role Components in Implement
Collaboration-based Designs, in: Proceedings of the International Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA), ACM Press, 1996, pp. 359-369.

Y. Smaragdakis and D. Batory, Mixin Layers: An Object-Oriented Im-
plementation Technique for Refinements and Collaboration-Based Designs,
ACM Transactions on Software Engineering and Methodology (TOSEM)
11 (2) (2002) 215-255.

S. Apel, C. Kastner, C. Lengauer, Feature Featherweight Java: A Calcu-
lus for Feature-Oriented Programming and Stepwise Refinement, in: Pro-
ceedings of the International Conference on Generative Programming and
Component Engineering (GPCE), ACM Press, 2008, pp. 101-112.

B. Delaware, W. Cook, D. Batory, Fitting the Pieces Together: A Machine-
Checked Model of Safe Composition, in: Proceedings of the International
Symposium on Foundations of Software Engineering (FSE), ACM Press,
2009, pp. 243-252.

S. Apel, D. Hutchins, A Calculus for Uniform Feature Composition, ACM
Transactions on Programming Languages and Systems (TOPLAS) 32 (5)
(2010) Article 19.

23

[21]

[22]

[26]

[28]

S. Apel, C. Kéastner, A. Groflinger, C. Lengauer, Type Safety for Feature-
Oriented Product Lines, Automated Software Engineering—An Interna-
tional Journal 17 (3) (2010) 251-300.

M. Kuhlemann, S. Apel, T. Leich, Streamlining Feature-Oriented Designs,
in: Proceedings of the International Symposium on Software Composition
(SC), Vol. 4829 of LNCS, Springer-Verlag, 2007, pp. 168-175.

R. Lopez-Herrejon, D. Batory, C. Lengauer, A Disciplined Approach to
Aspect Composition, in: Proceedings of the International Symposium on
Partial Evaluation and Semantics-Based Program Manipulation (PEPM),
ACM Press, 2006, pp. 68-77.

D. Batory, Program Refactoring, Program Synthesis, and Model-Driven
Development, in: Proceedings of the International Conference on Compiler
Construction (CC), Vol. 4420 of LNCS, Springer-Verlag, 2007, pp. 156-171.

F. Steimann, T. Pawlitzki, S. Apel, C. Késtner, Types and Modularity for
Implicit Invocation with Implicit Announcement, ACM Transactions on
Software Engineering and Methodology (TOSEM) 20 (1) (2010). Accepted
for publication.

S. Apel, C. Késtner, D. Batory, Program Refactoring using Functional
Aspects, in: Proceedings of the International Conference on Generative
Programming and Component Engineering (GPCE), ACM Press, 2008,
pp. 161-170.

T. Ekman, G. Hedin, The JastAdd Extensible Java Compiler, in: Pro-
ceedings of the International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), ACM Press, 2007, pp.
1-18.

D. Hutchins, Eliminating Distinctions of Class: Using Prototypes to Model
Virtual Classes, in: Proceedings of the International Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA),
ACM Press, 2006, pp. 1-19.

R. Lopez-Herrejon, Understanding Feature Modularity, Ph.D. thesis, De-
partment of Computer Sciences, The University of Texas at Austin (2006).

D. Batory, From Implementation to Theory in Product Synthesis, in: Pro-
ceedings of the International Symposium on Principles of Programming
Languages (POPL), ACM Press, 2007, pp. 135-136.

P. Ebraert, First-Class Change Objects for Feature-Oriented Program-
ming, in: Proceedings of the Working Conference on Reverse Engineering
(WCRE), IEEE Computer Society, 2008, pp. 319-322.

24

[32] P. Bouillon, E. Grofikinsky, F. Steimann, Controlling Accessibility in Agile
Projects with the Access Modifier Modifier, in: Proceedings of the Inter-
national Conference on Objects, Models, Components, Patterns (TOOLS
EUROPE), Vol. 11 of LNBIP, Springer-Verlag, 2008, pp. 41-59.

25

	Introduction
	Feature-Oriented Programming
	Problem Statement & Related Work
	An Orthogonal Access Modifier Model
	Feature-Oriented Modifiers
	Object-Oriented and Feature-Oriented Modifiers in Concert

	Implementation and Evaluation
	Fuji
	Data of Ten Feature-Oriented Programs
	Analysis and Discussion
	Threats to Validity

	Conclusion

