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Abstract

FeatureIDE is an open-source framework for feature-oriented software de-
velopment (FOSD) based on Eclipse. FOSD is a paradigm for construction,
customization, and synthesis of software systems. Code artifacts are mapped
to features and a customized software system can be generated given a selec-
tion of features. The set of software systems that can be generated is called
a software product line (SPL). FeatureIDE supports several FOSD imple-
mentation techniques such as feature-oriented programming, aspect-oriented
programming, delta-oriented programming, and preprocessors. All phases of
FOSD are supported in FeatureIDE, namely domain analysis, requirements
analysis, domain implementation, and software generation.

Keywords: Feature-oriented software development, software product lines,
feature modeling, feature-oriented programming, aspect-oriented
programming, delta-oriented programming, preprocessors, tool support

1. Introduction

Feature-oriented software development (FOSD) is a paradigm for the
construction, customization, and synthesis of software systems (Apel and
Kästner, 2009). A feature is a prominent or distinctive user-visible aspect,
quality, or characteristic of a software system (Kang et al., 1990). The ba-
sic idea of FOSD is to decompose software systems into features in order
to provide configuration options and to facilitate the generation of software
systems based on a selection of features. A software product line (SPL) de-
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notes the set of software systems that can be generated from a given set of
features (Czarnecki and Eisenecker, 2000).

FeatureIDE is an Eclipse-based framework to support FOSD. The main
focus of FeatureIDE is to cover the whole development process and to incor-
porate tools for the implementation of SPLs into an integrated development
environment (IDE). FeatureIDE’s architecture eases the development of tool
support for existing and new languages for FOSD and thus reducing the effort
to tryout new languages and concepts.

Currently, the development of FeatureIDE focuses on teaching and re-
search. FeatureIDE is used in software engineering lectures in Austin, Magde-
burg, Marburg, Namur, Passau, Santa Cruz, and Torino. Before we imple-
mented FeatureIDE, our students had to learn how to use several command-
line tools each with different parameters and output, whereas our students
are often used to work with modern IDEs such as Eclipse. With FeatureIDE,
we provide a coherent user interface and automate tasks which previously re-
quired complex tool chains. We envision that FeatureIDE can also be used
productively in future and serve as an open-source alternative to commercial
product-line tools (pure::systems, 2010; Big Lever Software Inc., 2010).

FeatureIDE supports several implementation techniques for FOSD and
others can be integrated with low costs. The user interface for different im-
plementation techniques is almost identical. Hence, FeatureIDE is especially
qualified for teaching and to compare SPL implementation techniques with
respect to their applicability for the development of SPLs.

FeatureIDE underwent several changes since the initial development in
2004. In 2005, we presented a prototypical version of FeatureIDE (Leich
et al., 2005). At that time, FeatureIDE was just a front-end for the pro-
gramming language Jak of the AHEAD tool suite (Batory, 2006). The de-
velopment of this tool support was costly for a research language, but we
earned positive feedback from other universities using FeatureIDE for teach-
ing. Hence, we made this effort reusable for the FOSD implementation tools
FeatureHouse (Apel et al., 2009) and FeatureC++ (Apel et al., 2005), and
presented FeatureIDE as a tool framework for FOSD (Kästner et al., 2009).

We present recent developments of FeatureIDE such as improved us-
ability, new functionalities, and the newly integrated FOSD languages As-
pectJ (Kiczales et al., 2001), DeltaJ (Schaefer et al., 2010), Antenna (Pleu-
mann et al., 2011), and Munge (Munge Development Team, 2011). Fur-
thermore, we discuss the effort of extending FeatureIDE and describe how
FeatureIDE is implemented and tested, while reporting pitfalls and oppor-
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tunities interesting for other academic tool builders. Developers of Eclipse
plug-ins get insights, as we share our lessons learned with FeatureIDE.

2. Feature-Oriented Software Development

FOSD can be used to plan and implement SPLs (referred to as domain
engineering) as well as to select features and generate customized programs
(application engineering). FeatureIDE supports the FOSD process and we
distinguish between the following four phases.

1. Domain analysis. The aim is to capture the variabilities and common-
alities of a software-system domain, which results in a feature model.

2. Domain implementation. Implementing all software-systems of the do-
main at the same time, while mapping code assets to features.

3. Requirements analysis. Requirements are mapped to the features of
the domain and features needed for a customized software system are
selected, resulting in a configuration.

4. Software generation (or composition). A software system is automati-
cally built given a configuration and the domain implementation.

Domain implementation and software generation highly depend on each
other. An SPL implementation technique describes how features are mapped
to implementation artifacts and how to generate customized software sys-
tems. In this section, we introduce feature models, configurations, and SPL
implementation techniques currently supported by FeatureIDE.

2.1. Feature Modeling and Configuration

In SPLs, not all combinations of features are considered valid and lead to
useful software systems. A feature model defines the valid combinations of
features in a domain (Kang et al., 1990). Feature models have a hierarchical
structure, whereas each feature can have subfeatures (Czarnecki and Eise-
necker, 2000). The graphical representation of a feature model is a feature
diagram and an example is shown in Figure 1. Connections between a feature
and its group of subfeatures are distinguished as and -, or -, and alternative-
groups (Batory, 2005). The children of and -groups can be either mandatory
or optional. A feature is abstract, if it is not mapped to implementation arti-
facts and concrete otherwise (Thüm et al., 2011). A feature model may also
have cross-tree constraints to define dependencies which cannot be expressed
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Figure 1: A simple feature model modeling an SPL of Hello World programs. The fea-
tures Hello and World are mandatory and simply print the features name. The features
Wonderful and Beautiful are alternatives, but not required. This SPL contains three valid
Hello World programs.

otherwise. A cross-tree constraint is a propositional formula over the set of
features and usually shown below the feature diagram.

Feature models are a common notion for variability and their semantics
is as follows: the selection of a feature implies the selection of its parent
feature. Furthermore, if a feature is selected, all mandatory subfeatures of
an and -group must be selected. In or -groups, at least one subfeature must be
selected and in alternative-groups, exactly one subfeature has to be selected.
Finally, all cross-tree constraints must be fulfilled.

A configuration is a subset of all features defined in the feature model. A
configuration is valid if the combination of features is allowed by the feature
model (i.e., if it fulfills the semantics of groups and all cross-tree constraints).
Otherwise, the configuration is called invalid.

2.2. SPL Implementation Techniques

There are several techniques to implement SPLs in FOSD. The main
goal is to provide a mapping between features and source code, to enable
automatic generation of software systems for a given configuration. SPL
implementation techniques are very diverse, but they are usually based on a
certain language (e.g., Java or C++) to which we refer to as host language.

Feature-oriented programming. Prehofer (1997) proposed feature-oriented
programming as an extension to object-oriented programming. Classes are
decomposed into feature modules each implementing a certain feature. A
feature module may contain methods and fields of several classes. Feature
modules can be composed to a program based on a given configuration and
an order of the features.
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class HelloWorld { Hello
void print() {

System.out.print("Hello");
}
static void main(String[] args) {

new HelloWorld().print();
}

}

class HelloWorld { Wonderful
void print() {

original();
System.out.print(" wonderful");

}
}

//similar to feature above Beautiful

class HelloWorld { World
void print() {

original();
System.out.print(" world!");

}
}

(a) Feature-oriented programming

core Hello { Hello
class HelloWorld {
void print() {

System.out.print("Hello");
}
static void main(String[] args) {

new HelloWorld().print();
} } }

delta Wonderful when Wonderful Wonderful
modifies class HelloWorld {
modifies void print() {

original();
System.out.print(" wonderful");

} } }

//similar to feature above Beautiful

delta World when World World
modifies class HelloWorld {
modifies void print() {

original();
System.out.print(" world!");

} } }

(b) Delta-oriented programming

Figure 2: The SPL HelloWorld implemented with feature-oriented programming and
delta-oriented programming.

In Figure 2(a), we present an example implementation of SPL HelloWorld
modeled in Figure 1. Feature Hello consists of a standard Java program
with a method printing Hello. All other features refine this method to
print further words by specifying a class and method with the same name.
The keyword original() is specific to feature-oriented programming and
indicates a call to the previous, selected feature.

Feature-oriented programming was initially introduced for Java and in-
tended for object-oriented programming. Batory (2006) and Apel et al.
(2009) applied feature-oriented programming also to software artifacts which
are not object-oriented according to the principle of uniformity. The princi-
ple states that all artifacts building up a software system should be composed
in the same way including documentations, specifications, or models.

Delta-oriented programming. Similarly, Schaefer et al. (2010) proposed delta-
oriented programming. In delta-oriented programming, there is a core module
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which is a standard application written in the host language (such as Java or
C++) and a set of delta modules. A delta module can add, but also remove
fields, methods, and classes. Furthermore, it can change the super class
of an existing class. Each delta module has an application condition (i.e.,
a propositional formula over the features). Given a configuration, a core
module, and a set of delta modules, a composer identifies the delta modules
with a fulfilled application condition and applies them to the core module to
generate a software system.

In Figure 2(b), we exemplify a delta-oriented implementation of our
running example showing the syntactical differences compared to feature-
oriented programming. The core module contains the standard Java pro-
gram to print Hello. Then, we have three delta modules modifying method
print(). In this example, classes and methods are only modified, but could
be added and removed using the keywords adds and removes. Application
conditions are given for each delta module after the keyword when and can
contain feature names or logical Java expressions built from feature names.

Aspect-oriented programming. Aspect-oriented programming provides a meta
language to transform existing object-oriented programs (Kiczales et al.,
1997). A join point is a specific position in the control flow of an object-
oriented program. Pointcuts specify a set of join points and an advice is
a piece of code that shall be injected at a pointcut. An aspect may define
pointcuts and advices to inject code in programs of a certain host language.
By applying a subset from a set of implemented aspects, different software
systems can be generated. In FeatureIDE, we assume that each feature at
the feature model corresponds to an aspect with the same name, but we are
aware that more complicated mappings are reasonable (Apel et al., 2006).

In Figure 3(a), we give an aspect-oriented implementation of our running
example. Again, feature Hello consists of a standard Java program and every
further feature consists of an aspect altering the method print(). This is
achieved by defining an advice and a pointcut. The definition of a pointcut
requires several new keywords such as after() and call. Keyword call

specifies that whenever a method is called with the given signature, then the
advice is executed. Keyword after() indicates that the advice is executed
after the method call.

Preprocessors. Another technique for SPL implementation are preprocessors
(Kästner, 2010). Special preprocessor directives with an application condition
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class HelloWorld { Hello
void print() {

System.out.print("Hello");
}
static void main(String[] args) {

new HelloWorld().print();
} }

aspect Wonderful { Wonderful
after(): call(∗ HelloWorld.print()) {

System.out.print(" wonderful");
} }

//similar to feature above Beautiful

aspect World { World
after(): call(∗ HelloWorld.print()) {

System.out.print(" world!");
} }

(a) Aspect-oriented programming

class HelloWorld {
void print() {
//#if Hello
System.out.print("Hello");
//#endif
//#if Beautiful
System.out.print(" beautiful");
//#endif
//#if Wonderful

//@ System.out.print(" wonderful");
//#endif
//#if World
System.out.print(" world!");
//#endif

}
static void main(String[] args) {
new HelloWorld().print();

}
}

(b) Preprocessor directives

Figure 3: The SPL HelloWorld implemented with aspect-oriented programming and pre-
processor directives.

are inserted in comments of a program in an arbitrary host language. Given
a certain configuration, the preprocessor will then remove or comment out
parts annotated with a false application condition.

In Figure 3(b), we give the implementation of our running example. A
block belonging to a feature is started with #if and ended with #endif.
Given that the features Hello, Beautiful, and World are selected, a prepro-
cessor can remove the code belonging to feature Wonderful or comment it
out as shown in our example.

3. Problem Statement

As shown, FOSD provides several techniques for the implementation of
SPLs. But, each technique comes with advantages and disadvantages, and
there is no consensus on the best technique. SPL implementation techniques
are usually proposed together with a tool enabling the development of SPLs
with the respective technique.

Comparison of SPL implementation techniques is fundamental for re-
search on FOSD and teaching of FOSD. For research, large case studies
must be established with each technique to assess strengths and weaknesses.
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For teaching, a low learning curve is necessary to teach several techniques
and their basics. Both, large case studies and a low learning curve make
sophisticated tool support indispensable.

SPL implementation techniques are often only supported by command-
line tools or do not support all phases of FOSD. Command-line tools are
hard-to-use for beginners, especially if several of them, with different param-
eters each, are needed to compare SPL implementation techniques. Further-
more, it is hard to develop large-scale case studies without helpful support
of an IDE such as code completion, code navigation, or code visualizations.
Usually, those tools only support software generation and further phases like
domain analysis, requirements analysis, and domain implementation are not
considered. Clearly, not every new implementation technique in FOSD re-
search can be supported by a commercial-quality IDE built from scratch.

The objective of FeatureIDE is to reduce the tool building effort for new
and existing SPL implementation techniques by providing domain analysis,
requirements analysis, domain implementation, and software generation in
an extensible framework. The idea is to reuse views, editors, and structures
as much as possible between different SPL implementation techniques. Es-
pecially domain analysis and requirements analysis have good opportunities
for reuse, as they are almost identical for all techniques.

4. Related Tools

Feature modeling and configuration. There are many tools for feature mod-
eling with graphical or textual notations. Many of these tools also support
developers in creating a valid configuration. The two main commercial prod-
ucts for this purpose are pure::variants (pure::systems, 2010) and Gears (Big
Lever Software Inc., 2010). In open source development, especially KCon-
fig (Zippel and contributors, 2011) and CDL (Veer and Dallaway, 2011) are
well known. Both provide a textual modeling notation and a configuration
editor that checks for valid configuration and, to some degree, helps resolv-
ing conflicts. KConfig is most prominently used for Linux, whereas CDL is
primarily known from the operating system eCos (Berger et al., 2010).

In addition, several academic tools exist. In GUIDSL, a feature model is
written as a grammar and the tool allows to create and save configurations
using a generated form (Batory, 2005). The focus of GUIDSL is to provide ex-
planations, why a certain feature cannot or has to be selected. The Software
Product Line Online Tools (SPLOT) is a website providing a feature model
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editor as a tree view, a configuration editor with decision propagation, auto-
mated analysis on feature models, and example feature models (Mendonca
et al., 2009). In contrast, the FAMA framework focuses on the comparison
of different solvers for the automated analysis of feature models (Benavides
et al., 2007). The feature models in FAMA may also contain numerical con-
straints and optimal configurations can be derived. Numerical constraints
are also allowed in the Feature Modeling Plug-In (FMP) (Antkiewicz and
Czarnecki, 2004). FMP provides tree views for creating feature models, con-
figurations, and partial configurations in the process of staged configuration.
S2T2 Configurator is a tool supporting users in creating valid configurations
by providing visual explanations derived from a satisfiability solver (Botter-
weck et al., 2009). FeatureIDE provides similar facilities.

Feature-oriented programming. The AHEAD tool suite provides several tools
for feature-oriented programming (Batory, 2006). In AHEAD, the syntax
of the host languages Java 1.4, XML, and JavaCC are extended by new
keywords to support feature-oriented programming. AHEAD provides dif-
ferent composers as command-line tools. Similarly, FeatureC++ extends
the syntax of C++ by new keywords and feature-oriented C++ files can
be composed using command-line tools (Apel et al., 2005). FeatureHouse
is a language-independent approach to create and compose feature-oriented
files (Apel et al., 2009). Currently, FeatureHouse can compose Java 1.5, C#,
C, Haskell, JavaCC, Alloy, and UML. All three tools take a list of features as
a configuration and have no support to decide whether the configuration is
valid. As we show later, FeatureIDE integrates all these tools in Eclipse and
connects feature-oriented programming to feature model and configurations.

Delta-oriented programming. As delta-oriented programming is a young SPL
implementation technique; there is only one tool namely DeltaJ (Schaefer
et al., 2010). DeltaJ is an Eclipse plug-in based on the Xtext Framework and
already provides an editor for core modules and delta modules, an outline
view, a content assist and shows errors while typing. Currently, DeltaJ is
based on a subset of Java (e.g., static methods are not included in the syntax).
In DeltaJ, support for feature models is missing and configurations are given
as a simple list of features directly in the core module. As we will show, we
extended FeatureIDE for DeltaJ.

Aspect-oriented programming. AspectJ (Kiczales et al., 2001) is a widely used
aspect-oriented language with mature tool support by the AspectJ Develop-
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ment Tools (AJDT) (Colyer et al., 2004). AspectJ is compatible with Java
1.6 and AJDT comes with several views and a sophisticated AspectJ editor.
AJDT can be used to develop SPLs, but the creation of customized software
systems requires some effort, as the user needs to remove undesired aspects
from the build path manually. With the AspectJ extension for FeatureIDE,
we integrate aspects seamlessly into FOSD.

Preprocessors. Conditional compilation with preprocessors, such as #ifdef
and #endif of the C preprocessor CPP (GCC Development Team, 2011),
is a common means to implement compile-time variability. By mapping
features to preprocessor macros, we can realize the vision of FOSD. Pre-
processors exist for languages beyond C: Antenna (Pleumann et al., 2011)
and Munge (Munge Development Team, 2011) are preprocessors for Java.
Also the commercial product line tools pure::variants (pure::systems, 2010)
and Gears (Big Lever Software Inc., 2010) provide configurable general pur-
pose preprocessors that can be used with multiple languages. In addition
to lexical preprocessors that process token streams, there are also several
disciplined syntactic preprocessors, that process structures. Examples are
CIDE (Kästner et al., 2008) and the tag-and-prune approach (Boucher et al.,
2010), that map features to code structures, or fmp2rsm (Czarnecki and
Antkiewicz, 2005) and FeatureMapper (Heidenreich et al., 2008) that map
features to elements of graphical models. With FeatureIDE, we integrate An-
tenna and Munge into the FOSD process. Furthermore, CIDE reuses parts
of the FeatureIDE infrastructure.

Integration of FOSD phases. Most tools discussed so far focus either on the
feature modeling side or on the implementation side. However, some tools
also bridge all phases similar to FeatureIDE. Pure::variants (pure::systems,
2010) and Gears (Big Lever Software Inc., 2010) allow a sophisticated map-
ping between features and code fragments and can be used to run prepro-
cessors or specific compilers. In principle, they are open for extension, but
their closed-source nature hinders experimentations in a research setting and
limits it to predefined extension points.

Kbuild (Berger et al., 2010) and CDL (Veer and Dallaway, 2011) pro-
vide open-source infrastructures to map features to files and preprocessor
macros. Based on script languages, they could also encode other mappings,
but currently they are strongly associated with Linux and eCos and their
implementation techniques.
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Figure 4: The graphical feature model editor of FeatureIDE. Features including possible
children can be moved using drag-and-drop. Other editing functionality such as feature
creation or renaming can be found in the context menu.

5. FeatureIDE: Tool Support for FOSD

FeatureIDE supports all phases of FOSD: domain analysis, requirements
analysis, domain implementation, and software generation. The following
sections describe how FeatureIDE supports each of these phases and the
integration of all phases.

5.1. Domain Analysis in FeatureIDE

Typically, the domain analysis results in a feature model which documents
the features of a domain and their dependencies. In FeatureIDE, a feature
model can be constructed graphically by adding and removing features in
a graphical editor (see Figure 4). In our experience, feature models can
heavily change over time and thus, we also allow to move a feature including
its subfeatures to a new parent feature.

The feature models created with FeatureIDE are stored in an XML format
and the user can edit the feature model graphically and textually simulta-
neously. For integration with other feature modeling tools, we also provide

11



Figure 5: The editor for cross-tree constraints has a content assist and checks the syntax
on the fly. If the syntax is correct, the semantics is validated. The editor can detect dead
features caused by this constraint, as well as tautologies or contradictions.

export and import functionality for GUIDSL (Batory, 2005), Feature Model-
ing Plug-In (Antkiewicz and Czarnecki, 2004), S.P.L.O.T. (Mendonca et al.,
2009), and SPLConqueror (Siegmund et al., 2008). FeatureIDE can be ex-
tended for new import and export formats, because only a reader and writer
from our internal representation must be implemented. Feature models can
also be stored in several graphics formats or printed to a PDF file.

A feature model may also contain cross-tree constraints. For this purpose,
FeatureIDE provides a constraint editor in which constraints can be created
or edited. The editor is enriched with a content assist for convenient handling
as well as syntactic and semantic validity checks (see Figure 5). For example,
these checks can detect mismatching brackets, dead features, false optional
features, unsatisfiable constraints, and redundant constraints.

Feature models evolve over time (e.g., by adding new features or con-
straints) and can get unnecessary complex. Refactorings can be used to
improve the readability by simplifying constraints, by removing features not
occurring in any configuration, or by reorganizing the structure of the feature
model (Thüm et al., 2009). FeatureIDE supports refactoring feature models
using the feature model edit view. This view can classify whether the edit
since the last saved version is a refactoring (the valid configurations do not
change), a specialization (configurations became invalid), a generalization
(configurations became valid), or an arbitrary edit.
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FeatureIDE provides the first feature model editor supporting abstract
features (i.e., features that do not belong to implementation artifacts). The
distinction between abstract and concrete features is necessary for automated
analysis and reasoning on the set of program variants which can be generated
from a certain domain implementation and feature model (Thüm et al., 2011).

5.2. Requirements Analysis in FeatureIDE

Requirements analysis is supported within FeatureIDE by a configuration
editor. The editor gets the feature model from domain analysis as input and
offers configuration choices. The user can select required features and save
the selection of features in a configuration file. Multiple configurations can
be created and one configuration is marked to be the current configuration
for which FeatureIDE composes and compiles source code.

The configuration editor supports developers in creating valid configura-
tions. The editor indicates whether a configuration is valid in the current
configuration step. Moreover, only configuration choices are given that ex-
ist according to the feature model (i.e., it propagates decisions) (Mendonça,
2009). For instance, a mandatory feature in the feature model cannot be
eliminated and two alternative features cannot be selected at the same time.
Features for which the selection cannot be changed in the current state are
grayed out. Additionally, features whose selection or elimination turns an
invalid configuration into a valid one are marked with a different color (see
left editor in Figure 6), to support the user in creating valid configurations.

FeatureIDE also provides an extended configuration editor (see right ed-
itor in Figure 6). In the simple configuration editor, each feature can have
four states: manually selected, automatically selected, automatically elimi-
nated, and undecided. When saving the editor, all undecided features are
considered as eliminated. Contrary, the extended configuration editor allows
an additional state: manually eliminated. Depending on the feature model, a
manual elimination may cause automatic selection and elimination of many
other features (Mendonça, 2009). For instance, eliminating a feature means
that none of its subfeatures can be selected anymore.

5.3. Domain Implementation in FeatureIDE

Given the features specified during domain analysis, the user can im-
plement the domain. Domain implementation comprises the implementa-
tion of the desired software systems with a mapping between implemen-
tation artifacts and features. The mapping is necessary to automatically
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Figure 6: On the left side, the configuration editor shows an invalid configuration and some
highlighted features. Selecting one of the green features results in a valid configuration.
On the right side, the advanced configuration editor is shown, in which features can be
eliminated to reduce the remaining configuration options.

generate a software system based on a selection of features. How this
mapping is realized, depends on the specific SPL implementation tech-
nique and language. FeatureIDE currently supports seven SPL implementa-
tion tools: AHEAD (Batory, 2006), FeatureHouse (Apel et al., 2009), Fea-
tureC++ (Apel et al., 2005), DeltaJ (Schaefer et al., 2010), AspectJ (Colyer
et al., 2004), Munge (Munge Development Team, 2011), and Antenna (Pleu-
mann et al., 2011).

The support for domain implementation differs between the tools. For
aspect-oriented and delta-oriented programming external Eclipse plug-ins ex-
ist already, but with no support for domain analysis and requirements anal-
ysis. For feature-oriented programming and the preprocessors Antenna and
Munge no external plug-ins exist and thus FeatureIDE needs to provide tool
support for all stages. We give an overview of the tool support for the seven
tools regarding domain implementation and software generation in Table 1.
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Syntax Highlighting PL PL PL PL PL P P
Content Assist F F P P P P P

Outline View F F F F F P P

Collaboration Outline PL PL PL PL PL
Collaboration Diagram PL PL PL PL PL

On-the-fly Error Checking P P P P
Error Propagation P P P P P P

Table 1: FeatureIDE supports SPL implementation tools with varying functionality. P
indicates that a functionality is only provided for one product at a time, F for one a
feature, and PL indicates that the functionality covers the entire SPL.

Editors with Syntax Highlighting and Content Assist. SPL implementation
techniques usually rely on a host language such as Java or C, and build the
new concepts on top of it. We were able to reuse editors of host languages
for AHEAD, FeatureHouse, FeatureC++, Munge, and Antenna. For DeltaJ
and AspectJ, editors are provided by external plug-ins. Syntax highlighting
is available for all languages, whereas for Munge and Antenna there is no
syntax highlighting for code not selected in the current configuration. For
AHEAD, FeatureHouse, and FeatureC++ syntax highlighting is available
for all features except the new keywords such as original (see Figure 7). A
content assist is also available for all implementation techniques. For AHEAD
and FeatureHouse the content assist only proposes methods introduced in the
currently edited feature (see Figure 7), while for all other implementation
techniques the whole code of the current configuration is available.

Outline View and Collaboration Outline. For Munge and Antenna, the out-
line view of Eclipse contains methods and fields of a class, but only those se-
lected by the current configuration. For all remaining techniques, the Eclipse
outline provided by host language plug-ins does only show the content of the
currently edited feature (see Figure 7). FeatureIDE provides another view
for the development of SPLs. The collaboration outline contains all members
of all features, providing an easy navigation and overview (see Figure 7).
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Figure 7: FeatureIDE reuses the standard Java editor (left editor) for the development of
FeatureHouse source files. Content assist and the Eclipse outline (top view) provide data
from the current feature only. Contrary, the collaboration outline (bottom view) shows
also class members introduced in other features and enables easy navigation.

Collaboration Diagram. FeatureIDE supports domain implementation with
an additional view. In FOSD, the standard means to visualize the map-
ping between features and code artifacts is a collaboration diagram (Apel,
2007). Basically, a collaboration diagram is a table where rows represent
features and columns represent classes (see Figure 8). For feature-oriented
programming, a cell represents a role (i.e., the fields and methods a feature
introduces to a certain class). For other SPL implementation techniques, we
provide similar mappings (e.g., for a preprocessor a cell contains all prepro-
cessor directives containing a feature in a certain class). Especially useful for
large projects is that the collaboration diagram can be filtered to show only
subsets of classes or features.

On-the-fly Error Checking. On-the-fly error checking is the ability to check
the source code for errors while the user is editing the code (i.e., the user
does not need to save a file to get compiler errors). Checking errors on-the-
fly strongly relies on incremental compilation, where only changed files or
only parts of files are recompiled. On-the-fly error checking is supported for
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Figure 8: A collaboration diagram is a table where rows represent features and columns
represent classes. Each cell is a role and may add certain fields and methods to a class,
which are displayed in tool tips. The collaboration diagram can be filtered by features
and classes.

FeatureC++, DeltaJ, AspectJ, and Antenna. This functionality is developed
for DeltaJ and AspectJ in external plug-ins. For FeatureC++ and Antenna,
FeatureIDE is able to reuse on-the-fly error checking from the host language
plug-in, namely C/C++ Development Tooling (CDT ) and Java Development
Tools (JDT ). The reuse is possible as Antenna works in-place and JDT does
not need to know about the code generation and as C++ allows to specify
the initial location of source code. But in all cases, errors are just reported
for the current configuration and not the entire SPL.

5.4. Software Generation in FeatureIDE

We described how FeatureIDE supports domain analysis, requirements
analysis, and domain implementation. Using the feature model, a valid con-
figuration, and implementation artifacts, software systems can be automat-
ically generated within FeatureIDE. The build process is realized as usual
for Eclipse; the build can be triggered on demand or if the automatic build
option is enabled, the source files are composed and compiled whenever one
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of the source files changes. For compatibility towards host-language develop-
ment tools, FeatureIDE only composes files to a special folder. This folder is
then used as the input folder for the compiler of the host-language. Hence,
all build options like build path or build parameters can be configured as
known from host-language development tools (e.g., JDT or CDT).

The integration of existing composition tools in FeatureIDE is diverse.
The AHEAD tool suite, FeatureHouse, and Munge are integrated as Java
libraries. FeatureC++ is included using operating system specific executa-
bles. Contrary, AspectJ and DeltaJ exist as separate Eclipse plug-ins and
are installed independently.

Error Propagation. In FeatureIDE, the reuse of existing Eclipse plug-ins for
compilation has proven to be successful. For example, if an error in AspectJ
code exists, AJDT will generate an error marker at the correct position (i.e.,
where it occurred). Usually, error markers from the host language compiler
will appear at generated files, but this is not the position where the error
should be fixed.

Error propagation is the ability to locate the source of an error for which
only the position in the generated code is known. The preprocessors Munge
and Antenna come with a useful property regarding error propagation: when
preprocessing the code, the tools do not remove line breaks. Hence, the line
numbers are identical and error markers can easily be relocated. FeatureC++
supports the error propagation by itself: the C++ compiler supports the C
preprocessor and FeatureC++ generates preprocessor code helping the C++
compiler to find the origin of an error.

The error propagation for all other languages is more complicated.
AHEAD provides annotations in the composed Java code helping to identify
the origin of certain source code lines. Figure 9 illustrates a Java compiler
error added as an error marker at the correct line of the Jak source file. We
extended FeatureHouse to support error propagation within FeatureIDE. Er-
ror propagation for DeltaJ is not yet implemented and part of future work.

Execution of Software Systems. Generated software can be started within
FeatureIDE as known from host-language plug-ins. Similarly as for compila-
tion, FeatureIDE focuses on compatibility with other plug-ins and tools. Run
configurations can be created and used as usual, with full support for param-
eters and environment configuration. In FeatureIDE, compiled programs can
be executed for all integrated languages.
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Figure 9: Compiler errors created by the Java Development Tools (right editor) are prop-
agated to the original source file (left editor).

Generation and Compilation of all Products. In FeatureIDE, all sources are
generated and compiled in background for one particular configuration only.
But, any valid configuration may actually contain compiler errors such as
dangling method references. FeatureIDE provides two options to uncover
such errors. First, the user can trigger the automatic generation and com-
pilation of all products (i.e., all valid configurations). The generation of all
products is usually only applicable to smaller SPLs, because the number of
products might be exponential in the number of features. Second, the user
can trigger the automatic generation and compilation for all manually cre-
ated configurations. The latter option can be used to detect all compiler
errors in configurations delivered to customers.

5.5. Integration of All Phases in FeatureIDE

FeatureIDE not only provides support for each phase of FOSD, it also sup-
ports dependencies between particular phases. When changing the feature
model, all configurations are checked for validity. Similarly, when features
are renamed, the change is propagated to configurations and the domain
implementation. Furthermore, when editing feature model and configura-
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tions simultaneously, FeatureIDE synchronizes changes. When referencing
features in the domain implementation, FeatureIDE checks that features do
exist. Finally, for preprocessors, FeatureIDE analyses whether application
conditions are tautologies or contradictions according to the feature model.

To summarize, FeatureIDE supports domain analysis using a graphical
feature model editor with inconsistency detection. Requirements analysis is
supported by an configuration editor with decision propagation. FeatureIDE
facilitates seven languages for domain implementation with syntax highlight-
ing, content assist, and an outline view. For most languages, a collaboration
diagram, a feature outline, on-the-fly error checking, and error propagation
is available. Finally, FeatureIDE integrates all phases of FOSD.

6. Implementation and Usage

In this section, we share implementation details relevant to developers
who want to extend FeatureIDE or integrate it in other tools. We describe
the overall architecture of FeatureIDE and the connection to other academic
tools. We briefly discuss how FeatureIDE can be extended. Finally, we share
our experiences regarding development effort.

6.1. FeatureIDE’s Architecture

FeatureIDE’s architecture underwent several changes since its initial de-
velopment as a front-end for AHEAD. We continuously improved the archi-
tecture of FeatureIDE to achieve a high reuse in the development of tool
support for FOSD. High reuse was especially necessary to realize our vision
of an IDE for several FOSD languages.

We achieved software reuse by implementing FeatureIDE itself using
FOSD. FeatureIDE consists of several Eclipse features which can be chosen
optionally to generate different IDEs (e.g., an IDE with support for feature-
oriented programming and preprocessors). In Figure 10, we show a feature
diagram specifying the dependencies between FeatureIDE’s features.1

The FeatureIDE framework is split into feature FeatureModeling realizing
feature modeling and configuration functionality and the remaining frame-
work represented by feature FeatureIDE including creation wizards, collabo-
ration diagram, collaboration outline, and an extensible FeatureIDE project

1In Eclipse terminology, a feature is a bundle of one or more Eclipse plug-ins that can
be installed independently by users.
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Figure 10: A feature model specifying the features of FeatureIDE and their valid combi-
nations. FeatureIDE extensions require the FeatureIDE framework which itself requires
the feature FeatureModeling. The latter was outsourced from FeatureIDE that it can be
reused in other Eclipse plug-ins such as CIDE, FAMILIAR, ExtendedFM, and MoSoPo-
LiTe. FeatureIDE extensions also rely on external Eclipse plug-ins such as JDT, CDT,
AJDT, and the DeltaJEclipsePlugin.

builder. Currently, there are seven FeatureIDE extensions namely AHEAD,
FeatureHouse, FeatureC++, DeltaJ, AspectJ, Munge, and Antenna.

As in most product lines, there are dependencies between the features of
FeatureIDE. First, feature FeatureIDE requires feature FeatureModeling as
FeatureIDE relies on domain and requirements analysis. Second, every Fea-
tureIDE extension requires the FeatureIDE framework. Third, FeatureIDE
requires at least one extension to support all phases of FOSD. Otherwise, the
IDE could not be used for domain implementation and software generation.

Furthermore, FeatureIDE has dependencies to external Eclipse features
and plug-ins. These dependencies are described in the cross-tree constraints
below the feature diagram in Figure 10. The FeatureIDE extensions AHEAD,
FeatureHouse, Munge, and Antenna require JDT (e.g., the Java editor and
builder). Equivalently, the feature FeatureC++ requires CDT, AspectJ re-
quires AJDT, and DeltaJ is based on the DeltaJEclipsePlugin.

Besides the FeatureIDE extensions presented in this paper, parts of Fea-
tureIDE were reused in other tools for SPLs or are currently being integrated
in other tools:

• CIDE is an IDE for the development of SPLs using virtual separation
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of concerns (Kästner et al., 2008). Virtual separation of concerns is
similar to preprocessors, but code fragments are annotated with colors
and in a disciplined way.

• FAMILIAR is a domain-specific language that can be used to define,
manipulate, and merge feature models (Acher et al., 2011). A tool
for FAMILIAR provides support for feature model analysis based on
FeatureIDE.

• ∆-MontiArc is a language for delta modeling of software architectures
developed in Aachen and recently integrated into FeatureIDE as an
extension (Haber et al., 2011).

• The feature modeling in FeatureIDE is extended in Passau to handle
feature attributes and to provide reasoning based on pseudo-boolean
satisfiability (Henneberg, 2011).

• The MoSo-PoLiTe framework for model-based and combinatorial test-
ing of SPLs is currently based on a commercial tool and is going to use
FeatureModeling in the future as a non-commercial alternative (Oster
et al., 2010, 2011).

6.2. Extending FeatureIDE

FeatureIDE is open-source and published under General Public License.
We encourage others to use and extend it. Currently, all sources are avail-
able in via Apache Subversion (SVN), but we are planning to migrate to a
distributed revision control system to ease the development for third-parties.

As Eclipse, FeatureIDE is built as a framework. That is, there are ex-
plicit extension points, where other plug-ins can contribute. Currently, we
have extension points to integrate new composers and to provide extensions
for feature model editor and configuration editor. We constantly improve
extension points based on the needs of third-party extensions and our own
extensions. But, FeatureIDE may also be reused by instantiating and using
classes from our plug-ins as done in CIDE or FAMILIAR.

For example, if you want to extend FeatureIDE by a further SPL im-
plementation technique, you have to create a new Eclipse plug-in extend-
ing a single extension point named de.ovgu.featureide.core.composers.
We provide an abstract class ComposerExtensionClass as a default imple-
mentation of a composer. The abstract class provides default behavior for
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extensions, but you should at least implement the method performFull-

Build(f,c) generating or composing the source code for a given configu-
ration c into the folder f. If you want to provide a collaboration diagram
for your extension, you should implement method buildFSTModel() storing
the data into a structure given by the FeatureIDE framework. A detailed
description containing all technical steps can be found on our website.2

6.3. Development Effort

We describe the development effort required to implement FeatureIDE,
so that others can better predict the effort needed to integrate new languages
and tools into FeatureIDE. The initial development of FeatureIDE was very
costly. From 2004 to 2008, we just worked on the integration of AHEAD into
Eclipse. But it turned out that the integration of further languages was much
faster, because we could reuse much of our effort. From 2009 to 2011, we
integrated six further extensions into FeatureIDE with the same amount of
developers. The reduced costs resulted from well-designed extension points
within the FeatureIDE framework and high reuse potential between different
FOSD tools. We give some measures in terms of code size and concrete time
effort needed to develop FeatureIDE extensions.

Size of FeatureIDE Extensions. We argue that the integration of SPL imple-
mentation tools requires only a low development effort compared to the effort
to develop FeatureIDE. A common measure for the development effort are
the lines of code (LOC); we illustrate the LOC for each FeatureIDE extension
and the FeatureIDE framework in Figure 11. The FeatureIDE framework is
split into the parts realizing the feature modeling and configuration function-
ality and the remaining framework including creation wizards, collaboration
diagram, and an extensible FeatureIDE project builder. The FeatureIDE
framework has a total of 37,756 LOC.3 In contrast, all seven extensions sum
up to only 5,406 LOC. The smallest extension is DeltaJ with 1% and the
largest FeatureHouse with 5% of the framework’s size.

All FeatureIDE extensions require a similar effort to integrate the com-
poser; between 372 LOC for Munge and 711 LOC for AHEAD. Error prop-
agation required the most effort for FeatureHouse (529 LOC) and AHEAD

2http://www.fosd.de/featureide
3All LOC measures were retrieved with the Eclipse plug-in Metrics.
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Figure 11: The code size of the FeatureIDE framework (the two lower bars) is much higher
than that of the seven FeatureIDE extensions (i.e., a large part of the functionality can
be reused by each FeatureIDE extension). For example, the support for feature modeling,
deriving valid configurations, the synchronization between feature models and configura-
tions, constraint creation, feature renaming, the visual components of the collaboration
view, and generic file creation wizards can be reused.

(305 LOC); for other extension it was simple (Munge), not necessary (As-
pectJ, Antenna, FeatureC++), or is not yet implemented (DeltaJ) as ex-
plained in Section 5.4. Providing the data for the collaboration diagram re-
quired the most effort for FeatureHouse (642 LOC), is not yet implemented
for (AspectJ and DeltaJ), and was simple for all other extensions.

These results show that the effort needed to extend FeatureIDE for a SPL
implementation tool is low compared to the framework’s size. Furthermore,
other SPL implementation techniques than feature-oriented programming fit
good into the FeatureIDE framework.

Development Time. In general, we did not measure the time needed for
programming certain functionalities of FeatureIDE. But, we can share the
concrete development time to integrate Antenna, because it was developed
separately in a student project. Two undergraduate students integrated An-
tenna within four days (72 man hours). Both students had some experience
with Java programming, worked with Eclipse as an end-user before, and
participated in a two day tutorial about SVN, Eclipse programming, and
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FeatureIDE in advance. Writing an IDE for Antenna from scratch would
have taken months regarding to our experience with AHEAD.

7. Lessons Learned

The development of FeatureIDE was not always straightforward. We
want to share our lessons learned that may be helpful for other academic
tool builders especially for tools based on Eclipse. You might want to skip
this section, if you are not interested in tool building issues.

Getting Started with Eclipse. Writing your first Eclipse plug-in is not a trivial
task. Clearly, there are good examples for editors, views, and menu entries
which provide a good starting point. But, when further extensions are needed
it is hard to find the right extension point.

Writing Eclipse plug-ins is different from standard Java programming.
The most obvious difference is probably the Hollywood principle stating
’don’t call us, we’ll call you’. In the first place it is not easy to understand
when plug-ins are loaded and certain code is executed. Using IFile instead
of Java’s class File is unfamiliar, but really worth to use. If your choice is to
write Eclipse plug-ins, plan some time for learning rudimentary concepts.

Frameworks in general and Eclipse in particular require a lot of work that
is invisible for end-users. For example, we decided to base our feature model
editor on the Graphical Editing Framework and it took almost 100 hours to
get the first features drawn on screen. This can be frustrating and developers
should try to make small steps to get fast results. In our example, we should
have started with an editor that simply prints all feature names into one
large box instead of designing and implementing all parts of the model first.

Teaching Eclipse Programming. Some of our early student projects were not
successful in writing Eclipse plug-ins, because of the steep learning curve.
Then, we decided to give more guidance in terms of tutorials and applied
techniques from extreme programming. Students reported that pair pro-
gramming especially helped dealing with the steep learning curve of Eclipse
and many errors were prevented up-front. Furthermore, we made good expe-
riences with daily stand-up meetings in which students were asked to report
progress, problems they face, and their plan for the next day (see Figure 12a).

Motivation is crucial when learning to write Eclipse plug-ins. Our most
successful strategy to motivate students was to use story cards splitting their
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(a) Stand-up meetings (b) Story cards

Figure 12: Techniques from extreme programming that are useful when teaching the
development of Eclipse plug-ins.

overall task into small tasks (see Figure 12b). Our experience is that extend-
ing an existing plug-in is easier if students start with simple tasks that can
be resolved by adding or changing less than a dozen lines. When students
solved a story card and we approved that their implementation, they were
allowed to work on the next story card which was usually harder to resolve.
We pinned all story cards at a white board giving an overview on the progress
and motivating each team to be faster than other teams.

Nightly Builds and Testing. Revision control systems as SVN are crucial
for collaborative development of Eclipse plug-ins, but they do not prevent
developers from improper commits. We decided to take advantage of nightly
builds using the build server TeamCity. Build servers are useful for frequent
releases on demand, since they fully automate building and publishing.

The development team changed several times since 2004. When we
reached about 10 KLOC, we faced several problems with side-effects. Espe-
cially new developers had problems to understand all consequences of their
changes and thus missed to manually test some of FeatureIDE’s relevant
functionality. In November 2010, we decided to write automated tests solely,
which turned out to be inefficient. Developers can hardly write tests for code
they are not familiar with. Even code that is written by the developer him-
self or herself months ago requires a high effort to identify and write valuable
tests. Hence, tests should be written in parallel to code changes or even in
advance, because writing tests for unfamiliar code is very unproductive.
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In our experience, automated regression tests are crucial for the develop-
ment of Eclipse plug-ins in particular and software projects with changing
development teams in general. The introduction of automated functional
tests turned out to be especially useful for developers new to FeatureIDE,
but also when altering complex algorithms. Our experience is that auto-
mated tests save human resources and make FeatureIDE more stable. We
recommend to run tests in a fixed schedule (e.g., on a build server) to detect
side-effects immediately.

Integrating Libraries and Tools in Eclipse. The integration of Java libraries
or command-line programs into Eclipse plug-ins is not always straight for-
ward. We encountered problems regarding system exits in AHEAD and
unclosed writers in FeatureHouse.

Including a Java library containing a method call System.exit() into
an Eclipse plug-in is dangerous, because reaching this command terminates
the Java virtual machine and thus kills Eclipse. Basically, there are two
ways to deal with this problem. First, remove all system exits and replace
them by Java runtime exceptions. This should be done automatically to
ease the integration of library updates. We used feature-oriented program-
ming to refine methods containing system exits and another option is aspect-
oriented programming. Second, one can use the library as a command-line
program. But then, Java classes of this library cannot be reused and the
data has to transferred to the Eclipse plug-in somehow (e.g., by printing on
the command-line). The first option is probably easier in most cases.

When a program accesses the file system, it usually uses readers and
writers to process a byte stream. A common mistake is to not close a stream
after it has been used. For programs used from command line this is often
no problem as references to the files are removed when the program and
the virtual machine terminate. But in Eclipse all writers need to be closed
properly. Otherwise certain files are still blocked for modification. Besides
correcting the tool to be integrated, it may also an option to run the tool
using another virtual machine.

Tool Support for Code Generation. The builder concept in Eclipse is useful
for code generation tools, because existing builders can be reused for compi-
lation. Code generation means that certain input files are used to generate
source code files, which in turn can be compiled. Eclipse builders are called
for Eclipse projects based on Eclipse natures and several builders can be
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used by adding several natures to a particular project. For code generation,
only a new builder needs to be implemented that transforms certain input
files into source files. The directory containing the generated source files can
then be set as input for an existing builder compiling the sources. Thus, it is
not necessary to re-implement features such as incremental compilation for
languages already supported in Eclipse.

The compatibility towards host-language plug-ins was not always given
within FeatureIDE. Our strategy in the first place was to compile source code
after generation with a manual call of a compiler. The problem was that
dialogs for run configurations had to be reimplemented with all support for
libraries and execution parameters. Furthermore, we started implementing
incremental compilation for AHEAD, but dismissed the plan as it involves
the complex implementation of language-specific type systems. The idea
to let host-language plug-ins compile the sources generated by FeatureIDE
solved all these issues as the plug-ins’ functionality can be fully reused.

8. Conclusion and Future Work

FeatureIDE is an open-source framework for FOSD. It integrates sev-
eral tools for the development of SPLs and has shown good reuse oppor-
tunities. FeatureIDE supports all phases of FOSD; namely domain anal-
ysis, requirements analysis, domain implementation, and software genera-
tion. Currently, FeatureIDE supports feature-oriented programming with
AHEAD/Jak, FeatureHouse, and FeatureC++, delta-oriented programming
with DeltaJ, aspect-oriented programming with AspectJ, and the preproces-
sors Munge and Antenna. We showed that new SPL implementation tools
can be integrated with low effort.

Since 2007, we and others utilize FeatureIDE in lectures for practical ex-
periences with different SPL implementation techniques. The feedback from
students and researches helped us to improve the usability of FeatureIDE
throughout the years. In the last five years, we received support requests
from more than 35 different cities from 17 countries, which motivates us to
continue the development on FeatureIDE in terms of new functionality as
well as improved usability.

In future work, we intend to extend FeatureIDE with error propagation
for DeltaJ and collaboration diagrams for DeltaJ and AspectJ. The domain
knowledge from the feature model can lead to more specific and thus more
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helpful content-assists, outline views, or error markers. For instance, an er-
ror message may not only indicate that a referenced method does not exist,
but could also list features which provide this method. We are currently im-
plementing product-line–aware type checking for FeatureHouse. In Passau,
FeatureIDE is currently extended to support quality attributes in domain
analysis and requirements analysis. Another interesting topic for investiga-
tion is the combination of several SPL implementation techniques. Finally,
we hope that other researchers will continue extending FeatureIDE (e.g., for
AspectC++, AspectC#, Hyper/J, or the C preprocessor).

Acknowledgments

We like to thank Marko Rosenmüller for comments on an earlier draft
of this paper. FeatureIDE is supported by the METOP GmbH. We like to
thank all current and former contributors: Constanze Adler, Sven Apel, Don
Batory, Christian Becker, Stephan Besecke, David Broneske, Tom Brosch,
Alexander Dreiling, Janet Feigenspan, Christoph Giesel, David Halm, Sebas-
tian Henneberg, Marcus Kamieth, Stephan Kauschka, Dariusz Krolikowski,
Maik Lampe, Laura Marnitz, Cyrill Meier, Marcus Leich, Melanie Pflaume,
Eric Schubert, Hannes Smuracsky, Torsten Stöter, Patrick Sulkowski, Patrick
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Thüm, T., Batory, D., Kästner, C., 2009. Reasoning about Edits to Fea-
ture Models. In: Proc. Int’l Conf. Software Engineering (ICSE). IEEE,
Washington, DC, USA, pp. 254–264.
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