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Abstract

Context: A software product line is a family of related software products,
typically created from a set of common assets. Users select features to derive
a product that fulfills their needs. Users often expect a product to have
specific non-functional properties, such as a small footprint or a bounded
response time. Because a product line may have an exponential number of
products with respect to its features, it is usually not feasible to generate
and measure non-functional properties for each possible product.

Objective: Our overall goal is to derive optimal products with respect to
non-functional requirements by showing customers which features must be
selected.

Method: We propose an approach to predict a product’s non-functional
properties based on the product’s feature selection. We aggregate the in-
fluence of each selected feature on a non-functional property to predict a
product’s properties. We generate and measure a small set of products and,
by comparing measurements, we approximate each feature’s influence on
the non-functional property in question. As a research method, we con-
ducted controlled experiments and evaluated prediction accuracy for the
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non-functional properties footprint and main-memory consumption. But,
in principle, our approach is applicable for all quantifiable non-functional
properties.

Results: With nine software product lines, we demonstrate that our ap-
proach predicts the footprint with an average accuracy of 94 %, and an accu-
racy of over 99 % on average if feature interactions are known. In a further
series of experiments, we predicted main memory consumption of six cus-
tomizable programs and achieved an accuracy of 89 % on average.

Conclusion: Our experiments suggest that, with only few measurements,
it is possible to accurately predict non-functional properties of products of
a product line. Furthermore, we show how already little domain knowledge
can improve predictions and discuss trade-offs between accuracy and required
number of measurements. With this technique, we provide a basis for many
reasoning and product-derivation approaches.

Key words: Non-Functional Properties, Prediction, Measurement,
Software Product Lines, SPL. Conqueror

1. Introduction

A software product line (SPL) is a family of related software products
sharing a common set of assets [1]. Differences and commonalities between
products are typically described in terms of features [2]. Users customize a
product by means of a selection of features that satisfies their functional re-
quirements [3]. With many contemporary implementation mechanisms, one
can automatically generate products based on feature selections. For ex-
ample, we can map features to preprocessor definitions (i.e., #define state-
ments) to specify which features are selected. The preprocessor removes
all code units that belong to not selected features, that is, undefined pre-
processor identifiers. Another way to customize a product’s behavior is to
use program parameters. For example, users can specify command-line pa-
rameters or configuration files to customize a product for their needs (e.g.,
customizing log levels of a web server via a configuration file). Although,
in these examples, variability is evaluated at runtime, we consider also such
products in our work and use uniformly product-line terminology.

In addition to functional requirements, users are also interested in non-
functional properties of a product, such as performance, footprint, and re-
liability. Non-functional properties are especially important in the domain



of embedded and real-time systems [4, 5]. Reducing the resource consump-
tion of a software product can enable the use of cheaper hardware devices
or extend battery live, which can save much money in mass production or
increase user acceptance.! In a product-line setting, a stakeholder may wish
to enforce constraints on non-functional properties (e.g., the footprint may
not exceed the capacity of an embedded device) or select the product that
is best according to some quantifiable property (e.g., the fastest product).
This, however, means that we have to measure many products, until we find
a feature combination that satisfies certain non-functional requirements.

To search for the feature combination that is optimal with regard to a
certain non-functional property, we may have to generate and measure all
products. Even small SPLs with less than a hundred features can already
have millions of products, and industrial-size SPLs can contain thousands
of features [6, 7, 8]. Generating products for all feature selections is thus
not feasible in practice. Consequently, we investigate alternatives based on
heuristics that estimate non-functional properties without generating and
measuring all individual products.

Our goal is to predict non-functional properties of customizable products.
We do so by measuring the influence of each feature on a non-functional
property. We compute a small but suitable set of products, by analyzing
the relationships between features documented in a feature model [2]. Next,
we compile and measure these products and quantify the influence of each
feature from deltas between these products. Finally, we predict a product’s
non-functional properties by adding the quantified influences of all selected
features.

Of course, the predictions will not be exact, because the selection of
one feature may influence non-functional properties of other features (for
example, a feature “global compiler optimization” will affect footprint and
other non-functional properties of other features). Additionally, there may
be a complex mapping from features to implementation assets that can lead
to false approximations. To take such feature interactions into account, we
develop a model in which we can document and incorporate known feature
interactions. We measure the influence of these interactions to improve the

!Discussions among researchers and industry representatives at conferences (like soft-
ware product line conference) and Dagstuhl seminars emphasize the importance of this
problem.



accuracy of our predictions.

Our approach is independent of a particular implementation mechanism
(i.e., we treat an SPL as a black box) and can be applied to different quantifi-
able non-functional properties. To evaluate our approach, we conducted two
experiments, in which we compare predicted against measured non-functional
properties.

For the first experiment, we choose footprint (binary size of a gener-
ated product) and selected nine SPLs of different sizes, languages, varying
implementation techniques, from different domains (e.g., operating systems,
database engines, end-user applications), and from different developers (both
academic and industrial). In the second experiment, we choose the property
main-memory consumption and selected six customizable programs from dif-
ferent domains (e.g., web server, compiler, database engines) and with vary-
ing customization techniques (#ifdef, command-line parameters, configura-
tion files). With a linear number of measurements (i.e., without considering
feature interactions), our predictions have an accuracy of 78.7 % on average
for all SPLs for footprint and an accuracy of 86.4 %, on average, for main-
memory consumption. By exploiting domain knowledge about feature inter-
actions, predictions of footprint improve to 99.8 % for all SPLs and measuring
all pair-wise interactions for main-memory consumption, accuracy improves
to 89 %, on average.

This is a revised and extended version of a previous conference paper [9].
Compared to this earlier paper, we provide more evidence of the generality
of our approach, in particular, by means of additional study of a second non-
functional property. In addition to predicting only footprint in prior work, we
predict main-memory consumption in six different sample programs. More-
over, a subset of four programs can be customized via program parameters
which extend the scope of our approach to a broader range of application
scenarios.

2. Problem Statement

Non-functional properties are diverse, and it is not obvious how we can
interpret and handle measurements of these properties. We concentrate on
properties that can be quantified (i.e., that are measurable). The theory of
measurement defines different levels (nominal, ordinal, interval, and ratio) of
how measured values can be interpreted [10]. Our approach relies on inter-
val and ratio-scale-based measures, because the values of two measurements



reflect differences of the according property.?

To measure the vast majority of non-functional properties, we have to
actually generate and execute a product [11]. A key idea of our approach is to
identify the influence of an individual feature on the product’s non-functional
properties, because it is not clear which feature of a product contributes in
which quantity to a product’s properties. Even worse, a feature’s influence
on non-functional properties may depend on the presence of other features,
such that correlations between measured values and corresponding features
are ambiguous. Hence, determining an ezxact value of how a feature influences
a non-functional property is usually not possible [12].

Problems of approximating a feature’s influence on non-functional prop-
erties are mostly caused by interactions between features. Two types of
feature combinations can cause a feature interaction: (a) features A and B
are present in a product and (b) features A or B. For footprint this means
that we have to include additional code in a product in the first case (i.e., a
piece of code that is required only when features A and B are present). In
the second case, multiple features share a certain piece of code. That is, this
code is present only once in a product no matter how many features require
it.

To illustrate the problems of feature interactions, we use a simple example
that already exhibits measurement problems. In Figure 1, we show the C++
implementation of a linked list with two features: PrintList and PrintEle-
ment. Features are implemented with conditional compilation. To measure
say footprint (measured as the binary size of the compiled product), we first
measure each individual feature. Hence, we measure the footprint of Lines 5
and 6 as well as Line 11 for feature PrintList. We would not measure Lines
8 and 9, because these lines are compiled only for a product that contains
both features PrintList and PrintElement. Hence, if we would predict the
footprint of a product that includes both features, the prediction would be
inaccurate. To predict the footprint correctly, we would have to measure the
influence of the feature interaction (Lines 8-9).

As another example, consider a set of features that use the same resource.
A shared resource may be an external library. We can alter our example

2For some non-functional properties including main-memory consumption, we may
consider only ratio-scale-based measures, because we may need to reason about approxi-
mations.
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class List { R
int numberOfElements; List SPL

Element * head;
#ifdef PrintList

void printList () { o -
cout << numberOfElements; PrintList PrintElement
#ifdef PrintElement
if (this->head != NULL) i
printElement (this->head); Optional —o
#endif
}
#endif

#ifdef PrintElement
void printElement (Element* node){
node->print ();
if (node->hasNext ())
this->printElement (node->getNext ());}
#endif
3

Figure 1: C++ code of a list implementation with two features: PrintList and PrintEle-
ment. We show the feature model in the upper right corner.

to use an external library to log the elements of a list instead of printing
them. To this end, we change the call to cout and method print (in Lines
6 and 15 of Figure 1) to use the external logging library. The library has a
considerably larger binary size than the features itself. When approximating
a feature’s influence on footprint, the predominant part would stem from the
logging library. Because we measure the size of the library for both features,
we would predict the size of a product with both features incorrectly. The
reason is that both features share the same library, which is included only
once in the product, but was measured twice (once for each feature).

3. Non-functional Properties of Features

In this section, we present our approach to approximate the influence
of a feature and feature interactions on a non-functional property. First,
we describe the general concept of our approach. Second, we explain algo-
rithms necessary to extract the approximations of each feature’s influence on
a non-functional property from a (minimal) set of products. We start with
a description of our notation that we use to express configurations, mea-
surements, and approximations of a feature’s influence on a property. For
illustration, we use the property footprint in the examples.



We describe a product P as a set of selected features Fy,....F,: P =
{F1,...F,}. II({Fy,...,F,}) (or short: II(P)) refers to the specific non-
functional property currently being considered. Furthermore, we represent
the approximation of the influence of feature F; on a non-functional property
with TI(F;). Finally, we use operator # to indicate an interaction between
features. For example, we denote the interaction between features F; and Fy
as F1#F, and we treat F1#F, like another feature.

As an underlying data structure and prediction model, we use feature
models (as shown in Figure 1) [2]. A feature model specifies all valid feature
combinations and thus all configurations that can be generated.It has a hier-
archical structure beginning with a root node, which represents the domain
concept. Features can be mandatory (required in all products when the par-
ent feature is selected) or optional (the user can decide to select this feature).
Furthermore, we can specify an or relationship between features, which de-
notes that when the parent feature is selected we have to select at least one
child feature of the or relationship. Similarly, we specify alternative groups
with the only difference that we have to select exactly one child feature. We
explain in the next section how these relationships affect the approximation
of a feature’s influence on non-functional properties.

3.1. Approzximation Process

The general idea of approximating a feature’s influence on a non-functional
property is to measure the delta between two products that differ only in the
presence or absence of this feature. We interpret the delta of two products
as the approximation of the added (or removed) feature’s influence.

Let us assume we measure two products of the list SPL that differ only
in the presence of feature PrintList: {base} and {base, PrintList}.> We
can approximate the influence of feature PrintList II( PrintList) as the delta
between both products:

II( PrintList) = I1({base, PrintList}) — I1({base})

In Figure 2, we illustrate the approach of approximating a feature’s influ-
ence on non-functional properties for SPLs and customizable programs that
support an automated product generation. Using a feature model, we de-
termine a small, but suitable set of products (Figure 2b). In an automated

3Feature base represents the code that is present in every product.
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process, we generate and measure each product of this set. Based on these
measurements, we compute the delta between two products and use this value
as the approximation for a feature (Figure 2c). This means, to enable for
each feature the computation of the delta between two products, we would
need 2n measurements altogether for n features. By using the values of pre-
vious measurements, we can reduce the number of required measurements to
n+ 1.

Furthermore, as an optional initial step (Figure 2a), we allow stakehold-
ers to define feature interactions in the corresponding feature model [13].4
Still in an automated process, for each feature interaction, we add a sin-
gle product to the set of products and measure its influence. That is, we
scale the number of measurements to improve the quality of the prediction.
We compute the actual influence of a feature interaction by using the delta
between non-functional properties of the measured product and predicted
non-functional properties of the same product. For example, if we know
the existence of the feature interaction PrintList# PrintElement, we might
predict II({ PrintList, PrintElement}) = 220 KB, whereas the measured foot-
print is 200 KB. Hence, we would assign the difference between interaction
and prediction (-20 KB) to the interaction PrintList# PrintElement as its
influence on footprint.

3.2. Approximating Non-functional Properties per Feature

In the following, we describe our approach to compute approximations
of a feature’s non-functional properties for the most common relationships
between features [2, 3]. In Figure 3, we show a feature model of a database
management (DBMS) SPL. We use this SPL as a running example through-
out the remaining paper. As we explained previously, we need two products
per feature to measure the delta of these products. One product in which
the feature is present, called feature product, and another product, called
delta product, in which the feature is missing. We summarize all products
in Table 1 that we need to approximate each feature’s influence on footprint
and describe step by step how we determine the feature’s influence depending
on the relationship in the feature model.

Note that there are SPLs that always require to select some features to
derive a valid product (e.g., we may always must choose between alternative

4In a parallel line of research, we developed an approach that automatically detects
feature interactions for the property performance [14].
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Figure 2: The process of computing approximations of non-functional properties for fea-
tures and feature interactions.

features). In such a case, we cannot determine a product that differs only
in these features, because we always have to select them. To overcome this
problem, our first task is to measure the influence of an initial feature set on
a non-functional property. This initial feature set acts as the root feature for
all features that have no parent feature. Since there is no product with fewer
features, the delta product is the empty set for which the non-functional
property is zero. Hence, we interpret the influence of the initial feature set
on a non-functional property as the measured value of the corresponding

Feature ‘ Feature Product II ‘ Delta Product II

Base P; ={Base} 420 [0 0

Encryption | P2 ={Base, Encryption, RSA} 730 | Py ={Base} 420
RSA P> ={Base, Encryption, RSA} 730 | P2 ={Base, Encryption, RSA} 730
Index P4 ={Base, Index, Hash} 570 | Py ={Base} 420
Btree P3 ={Base, Index, Btree} 740 | P1 ={Base} 420
Hash P4 ={Base, Index, Hash} 570 | P3 ={Base, Index, Btree} 740
InMemory | Ps ={Base, InMemory, Encryption, RSA} 610 | P, ={Base, Encryption, RSA} 730
Transactions | P¢ ={Base, Transactions, Logging, 2PC} 995 | P; ={Base} 420
Logging Ps ={Base, Transactions, Logging, 2PC} 995 | P; ={Base, Transactions, 2PC} 885
2PC Ps ={Base, Transactions, Logging, 2PC} 995 | Ps ={Base, Transactions, Logging} 845

Table 1: Set of products to approximate the influence of each feature. All measured values
are in KB.



optional —0

O @)
| Transactions | | Base | Index | | Encryption | mandatory ——@
alternative /0\
| Logging | | 2PC | |InMemory || Btree | | Hash | RSA or /‘\
<

requires

Figure 3: Sample DBMS product line. The root denotes the concept. 2PC: two phase
commit protocol.

product. For example, feature base must always be selected in our sample
SPL (see Figure 3):

Type Feature Feature Product  Delta Product Result
Initial B II(P) = 420KB I1(0) = 0KB Base\;;)
nitla ase 1) — - ;420KB

(1) Optional. In an optional relationship, it is not required to select the child
feature. Hence, we generate a product that contains only the parent feature.”
Additionally, we need a second product with the optional child feature. In
our sample SPL, feature Encryption is an optional feature. Since it has no
parent feature, the initial feature set is considered as the root feature and
acts as the parent feature. Based on the computed product set of Table 1,
we measure the following products:

Type Feature Feature Product Delta Product Result
Encryption
Encryption II(P) =730KB II(P;) = 420KB Ijmjl@

O
Encryption

With these measurements we compute the influence of feature Encryp-
tion:

50f course, we have to include all necessary features to derive a valid product, e.g., all
mandatory features.
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[I( Encryption) = II(Py) —II(P)
730 KB — 420 KB
= 310KB

where P, represents the product that we measure for Encryptions’ parent
feature (which is the initial product set in this case).

(2) Mandatory. A mandatory relationship enforces that whenever the parent
feature is selected, we must also select its child feature. As a consequence,
we cannot measure the parent feature’s influence on a property without mea-
suring the influence also of the child feature. Hence, we set the value of the
child feature to zero and the value of the parent to the sum of both influences.
When a stakeholder selects the parent feature during product configuration,
we show already the aggregated value of both features. This way, it is easy
to see the implications of a feature selection for a stakeholder, because she
usually selects features starting from the root node.

In our example, when selecting feature Encryption, we must also select
its child feature RSA. Hence, we set the value of feature RSA to zero and
the value of feature Encryption to the sum of both features.

Type Feature Feature Product  Delta Product Result

RSA |
RSA  II(P;) =T730KB II(P) = 730 KB %;E;I(,B)}

We compute the value for a mandatory relationship as follows:

M(RSA) = TI(Py)—TI(Py)
= 730KB - 730KB
0KB

(3) Alternative. In an alternative relationship, we cannot select the parent
feature of the relationship individually, but measure its value always in combi-
nation with its child features. Here, there is no unambiguous feature product

11



for the parent feature, because we can measure this feature in multiple ways
depending on which alternative feature we additionally selected. As a design
decision, we use the product as the feature product of the parent feature that
has the minimum measured binary size. This way, we can assign a minimum
value to the parent feature that increases the footprint of a product by at
least this respective value. If we would choose another feature product, we
have to assign a negative footprint to at least one child feature (which has
the minimum measured footprint). This may be unintuitive during configu-
ration. It depends on the property and the initial value if we either subtract
(using the maximum) or add (using the minimum) a feature’s non-functional
properties. After having assigned a value to the parent feature, we use its
feature product as the delta product for all of its child features.

The features Btree and Hash are alternative features with feature Index
as their parent feature (see Figure 3). To approximate their influences, we
need the following three measurements:

Type Feature Feature Product  Delta Product Result
Index
Index TII(P;) =570KB II(P;) = 420 KB %

Btree |
Btree II(P3) =740KB  II(P4) = 570KB qs
L
Hash
Hash II(Py) =570KB  II(P;) = 570KB = okB

In Table 1, we see that we require a generated product per feature in
the alternative group. In our example, we require two products P3 ={Base,
Index, Btree} and Py ={Base, Indez, Hash}. To compute the value of feature
Indezx, as always, we need the measured product of the parent (or initial
feature set): P; ={Base}. We use the following equations:

[I(Index) = Min(II(Ps),I1(FPy)) — (P)
Min(740 KB, 570 KB) — 420 KB
570KB — 420KB

150 KB

II(Btree) = TI(Ps)—1I(Py)

12



= T40KB - 570KB

= 170KB

T(Hash) = TI(P;)—TI(P;)
— 570KB —570KB
= O0KB

(4) OR. In contrast to an alternative relationship, in an OR relationship,
we can select multiple child features. This raises the problem that we need
to determine the influence of the parent feature of the relationship. For ex-
ample, if we do not know the influence of feature Transactions, we would
aggregate its influence twice for a product’s prediction that contains its two
child features Logging and 2PC. Hence, we have to determine the approxima-
tion of the parent feature (e.g., feature Transactions) in an OR relationship
rather than using the minimal measured product. To retrieve the value of
the parent feature (Transactions), we need an additional measurement for
the OR relationship in comparison to the alternative relationship. In this
measurement, we create a product that contains two child features of the
OR group (e.g., P¢ ={P6Base, Transactions, Logging, 2PC} in Table 1).

Type Feature Feature Product Delta Product Result

Transactions |
Transactions II(Ps) =995KB II(P;) = 420 KB I:I

(315K
~

Transactions

Logging
ﬁ‘/‘\/’

Logging II(Ps) = 995 KB TI(P;) = 885 KB

2PC II(Ps) = 995 KB II(Ps) = 845 KB T

With this additional measurement, we are able to compute the influence
of feature Transactions and the remaining features of its group using the
following equations:

I(Logging) = TI(Fs) — IL(P7)
= 995KB — 885 KB
= 110KB
II(2PC) = TII(F) — II(P3)

13



= 995KB - 845KB

= 150KB

II( Transactions) = TI(Pg) — II(Logging) — I1(P;)
= 845KB — 110KB — 420
= 315KB

(5) Requires. Finally, we also consider cross-tree constraints in the feature
model. The ezcludes constraint does not change the computation of a fea-
ture’s non-functional properties, because it restricts only the number of fea-
tures and we already measure a product with a minimal number of features.
In contrast, the requires constraint prohibits the measurement of a single
feature. For example, we cannot measure feature InMemory without feature
RSA. So, our approach is to measure first the product that includes the tar-
get of the requires constraint (i.e., feature RSA with product P, is the target
of feature InMemory). Then, we measure the product that includes both
features Ps ={Base, InMemory, Encryption, RSA}.

Type Feature Feature Product Delta Product Result

IInMemoryI | RSA | InMemgr
" requires ¥ InMemory II(P5) =610KB II(P) = 730 KB 120K

The problem of a cross-tree constraint is that we can have an overlapping set
of features. That is, we subtract the influence of all parent features from the
current feature and additionally subtract the influence of the required feature
and its parent feature. When these parent features overlap (e.g., in the case
of Base), it leads to the situation that we may subtract the influence of a
feature twice. In our example, Base is such a feature, because it acts as the
root feature (it is member of the initial feature set). Thus, we must identify
the set of overlapping features S = Fy, ..., F,, first and to omit subtracting
them twice. With the following step, we determine the approximation of
feature InMemory where S = Base:

TI(InMemory) II(Ps) — TI(Py) — TI(P,) + TI(S)
610KB — 420 KB — 730 KB + 420 KB

= —120KB

We visualize the result of our computations in Figure 4. We are aware of
that there might be cycles in a feature model such that each feature of the

14
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Figure 4: Feature model after approximating the influence of each feature on footprint.

cycle cannot be measured without any other feature of the cycle. Hence, ap-
proximations of individual features in a cycle cannot be computed. However,
this is not necessary, because in each product either all features of a cycle are
present or none. Therefore, the solution in this case is to transform the fea-
ture model into an alternative representation using atomic feature sets [15].
This way, these cycle features are composed as a single atomic feature and
we can use our approach again.

3.3. Computing the Product Set for Measurement

Measurements can be time consuming and expensive. This is the reason
why we aim at further scaling the number of necessary measurements from
2n to n 4+ 1 by reusing already executed measurements. To reach this goal,
we use the hierarchical structure of feature models that allows us to reuse
products already defined for the parent feature.

Since a feature model has a hierarchical form, every feature has a parent
feature or the parent is the concept node. In the last case, we use the initial
feature set as a root feature. Beginning with the root feature, we traverse the
feature tree and add for each feature a single product to the product set that
(a) contains the current feature, (b) has the minimal number of features, and
(c) is valid. For example, when reaching feature Encryption of our sample
SPL, we add product P, ={Base, Encryption, RSA} to the product set.
The delta product of this feature is the product of either the parent feature
or the initial feature set. Hence, each newly determined product can use
the previously defined product (e.g., the one for the parent) to compute the
delta of its non-functional properties. An exception for this rule is the or

15



relationship in which we have to measure an additional product to determine
the influence of the parent feature of the or group (as we explained before).
Furthermore, we have to measure an additional product per defined feature
interaction, which we explain in Section 3.4.

Although the feature model of Figure 4 has ten features®, we need to
measure only eight configurations, because we reuse already measured con-
figurations and we save a measurement due to the mandatory feature RSA
and another measurement because of the alternative constraint between Btree
and Hash. Feature groups (i.e., alternative and or groups) require the selec-
tion of (at least) one additional feature, but not the measurement of addi-
tional products. Hence, we use the same configuration for feature Index and
Btree. Feature InMemory represents an interesting case, because it defines
a requires constraint to feature RSA. Hence, the delta configuration for this
feature must already include the required feature RSA and its parent feature
Encryption, because we need two configurations that differ only in feature
InMemory.

3.4. Measuring Feature Interactions

As we explained previously, feature interactions may affect the approx-
imation of a feature’s non-functional properties. That is, we approximate
different values for a feature depending on the selection of other features,
which can cause inaccurate predictions. For example, to approximate the
influence of feature Encryption with II( Encryption) = 310 KB, we used the
following two products: P, ={Base, Encryption, RSA} and P, ={DBase}.
However, we may also use products Py ={Base, Encryption, RSA, Trans-
actions, Logging} and Py ={Base, Transactions, Logging} and compute a
different delta: II(Encryption) = 350 KB. Since the only differing feature
is Encryption”, there is a feature interaction that influences the measured
non-functional property.

If feature interactions are not known or should not be taken into account,
a pure feature-wise measurement approach is used, that is, we ignore feature
interactions and only estimate non-functional properties of individual fea-
tures. Unfortunately, this is sometimes not sufficient, for example, if there
is a complex mapping between features and implementation assets. In this

6The concept node does not represent a feature.
TOf course, also feature RSA is a differing feature, but as a mandatory feature, we
always measure its influence together with feature Encryption.
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case, a feature’s approximation would take into account non-functional prop-
erties of several implementation assets that however are also related to other
features. Hence, a single approximation for a feature is not sufficient.

Fortunately, it is often an easy task to identify such feature interactions for
some non-functional properties, such as footprint. We can use three different
sources to identify feature interactions by: (a) using the mapping between
domain features and implementation assets, (b) analyzing the source code
(e.g., searching for nested #ifdefs as a common indication of simple imple-
mentation interactions), and (c) using domain knowledge. In our evaluation
(Section 4), we use our knowledge of the mapping from domain features to
implementation units for the Violet SPL, we analyze the source code of Berke-
ley DB, Prevayler, and SQLite, and we asked a domain expert for the Linux
kernel to identify feature interactions. In the case that no domain knowledge
is available, it can be worthwhile to simply assume the existence of a feature
interaction between each pair of features in an SPL. To approximate the
influence of a feature interaction, we choose a suitable product, measure it,
and compare this value against what we predict for this product; the differ-
ence of measurement and prediction is the influence of the interaction. We
summarize the different approaches next.

Feature-wise measurement (FW). Feature-wise measurement means that we
do not consider feature interactions. We only approximate the influence of
features and nothing more. That is, we generate a product for each feature.
The complexity is O(n), in which n is the number of features of an SPL. This
approach should be used for very large SPLs and is most accurate if there
is a one-to-one mapping between features and implementation assets, such
as in feature-oriented programming [16]. Still, in other cases, the results
of the measurement are useful if we are interested in more or less rough
predictions for a product’s non-functional properties (e.g., if a stakeholder is
only interested in a qualitative comparison of non-functional properties from
a set of desired products).

Interaction-wise measurement (IW). For the interaction-wise approach, we
measure not only each feature in the feature model, but also all known fea-
ture interactions. For each interaction, we create a product that contains the
features that interact. This way, we have to measure O(n + k) products, in
which n is the number of features and k is the number of defined interac-
tions. If £ = 0, the interaction-wise approach is identical to the feature-wise
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approach. Measuring all interactions improves accuracy. Especially, when
an SPL contains a large number of features, domain knowledge can help to
identify which of them interact. This approach results in a solid prediction
base.

Pair-wise measurement (PW). With pair-wise measurement, we automati-
cally detect all pair-wise feature interactions (i.e., an interaction in which
exactly two features participate). That is, we measure n(n — 1)/2 + n prod-
ucts. The approach results in a substantially increased product set to mea-
sure, compared to the feature-wise measurement: O(n) vs. O(n?). Note that
there are also k-wise measurements possible to measure feature interactions
in which exactly k features participate (k-th order feature interaction). How-
ever, they usually require a large number of additional measurements, and it
is only reasonable to measure them, when we know from domain knowledge
that there are such interactions.

3.5. Tool Support: SPL Conqueror

We developed the tool SPL Congueror® to manage and automate the pro-
cess of determining and measuring products and to approximate a feature’s
influence on non-functional properties [17]. The application of SPL Con-
queror provides two major benefits compared to a manual approach. First,
SPL Conqueror realizes an automated measurement and approximation pro-
cess that does not require any user interaction (e.g., the measurement process
can run over night without monitoring). Second, based on the results of the
automated measurement and approximation process, it predicts a product’s
non-functional properties almost instantly.

SPL Conqueror maintains a feature model of the given SPL or customiz-
able program. We use SPL Conqueror to determine valid configurations that
have to be measured. To support any programming language and compo-
sition technique, we abstract from specific implementation techniques and
consider a customizable program or SPL as a black box. All customizable
programs have in common that they need to know the configuration in a
special format and they have to be executed with this given configuration.
The measurement process has three steps: (1) generate a configuration in
the application-specific format, (2) trigger the generation or execution of the

8http://fosd.de/SPLConqueror
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product, and (3) execute a user-defined measurement program, which exe-
cutes the application, measures its non-functional properties, and writes the
results in a XML format that can be read by SPL Conqueror.

Each step must be defined in SPL. Conqueror such that the whole mea-
surement process can be automated. SPL Conqueror needs to know in which
format a configuration must be generated. For example for preprocessor-
based customization, we generate a flags.h file, which contains preprocessor
statements (e.g., #define HAVE ENCRYPTION to compile Berkeley DB with
encryption support). The remaining task (one time per SPL) is to manually
include this flags.h file in the compilation process (e.g., in the makefile).
We support a wide array of customization techniques, but further techniques
can be included if necessary:

e Preprocessor-based customization is supported via an automated gen-
eration of a user-defined header file, which includes the definition of
preprocessor flags corresponding to selected features.

e FeatureHouse is a language-independent composition tool based on
feature-oriented programming [18]. It stores configurations in an ex-
pression file, in which the selected features are listed.

e AHEAD is a composition tool suite for programs and other artifacts
based on feature-oriented programming [19]. The configuration mech-
anism is similar to FeatureHouse.

e FeatureC++ generates C++ programs based on feature-oriented pro-
gramming [20] and uses also expression files with a slightly changed
syntax.

e Configuration files are used in many programs, such as the Apache
web server and the Rar compression library. To use this method with
SPL Conqueror, a user specifies the name and path of the configuration
file as well as how a selected customization option is defined by the cor-
responding program. Basically, we define the value for these key-value
pairs in the feature model and generate the according configuration file.

e Command-line options represent a common way to customize a pro-
gram. In this case, triggering the generation is the process of executing
a program with the generated set of command-line parameters, which
are also derived as key-value pairs from the feature model. With this
technique, we measure only runtime properties.
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4. Evaluation

Since our approach only predicts non-functional properties and cannot
provide precise results, we evaluated accuracy of our approximations with two
series of experiments. The first series of experiments address measurement
and prediction of the property footprint (binary size of a program) and the
second series of experiment concentrates on the main memory consumption.
We use the goal-question-metric approach to evaluation goals and research
questions [21].

We demonstrate that our predictions are sufficiently accurate for many
real-world scenarios, in which we want to constrain the configuration space
or select a nearly-optimal product regarding some non-functional property.
We provide online the raw material of measurements for each program. We
refer the interested reader to our Web site for more detailed information and
for downloading our tool:
http://fosd.de/SPLConqueror

4.1. Ezxperiment Quverview

We analyze the prediction of a product’s footprint and main-memory
consumption for the purpose of evaluation with respect to accuracy from the
point of view of the vendor /customer in the context of SPLs and customizable
programs. Since our approach is customer-centered, we calculate a fault
rate of our prediction as the relative difference between predicted and actual
property: W x 100. As discussed in Section 3.4, we developed
three approaches to quantify the influence of a feature on a non-functional
property. These approaches differ in accuracy and measurement effort. To

rate these alternatives, we define the following research questions:

e Q1: What is the average fault rate of the feature-wise measurement
approach?

e Q2: What is the average fault rate of the interaction-wise measurement
approach (only for footprint experiments, see below)?

e Q3: What is the average fault rate of the pair-wise measurement ap-
proach?

e Q4: How do the three approaches scale in terms of number of mea-
surements compared to a brute-force approach?
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In the following, we describe the experimental design that we use to
answer the research questions in both experimental series.

Ezperimental Design. The experiment is divided into two steps: (i) creating
the prediction model and (ii) predicting a sample product’s footprint and
main-memory consumption. In the first step, we build a prediction model,
i.e., a feature model with approximations. Since we have three approaches,
we build three different predictions models according to the description given
in Section 3.1. That is, we measure the feature product and the delta product
and compute the approximations according our formula given in Section 3.2.
We report the measurement effort for creating these models in terms of num-
ber of measurements. For the interaction-wise prediction model, we measure
the influence of known interactions. To determine interactions (when pos-
sible), we analyze the source code of the used SPLs to gain the knowledge
which interactions exists. With a self-written tool, we detect nested #ifdef
statements in SPLs based on preprocessors (cfg. Table 3). For compositional
approaches, we search for the existence of documented structure interaction
modules (e.g., derivatives [22]). For the pair-wise approach, we specify be-
tween each pair of features a feature interaction in our model and measure
its influence: comparing measurement and prediction of a product with this
interaction.

The second step is the main step of evaluating accuracies of predictions.
We measure products for the properties footprint and main-memory con-
sumption and compare these measurements against our predictions for the
three different approaches. For large SPLs, in which the measurement of all
products is not feasible in reasonable time, we choose 100 random products.
For all other SPLs, we measure all products. We created the random prod-
ucts as follows: For each feature, we randomly decide whether to include or
not include it. If the resulting feature selection is not valid according to the
feature model, we start over.

Variables. The experiment has a single independent variable: configuration
(shown in Table 2). A configuration is the set of selected features. Hence,
it specifies the functionality of a program and subsequently affects the pro-
gram’s non-functional properties. Furthermore, a configuration is the basis
for our prediction model. That is, we compute the prediction for a non-
functional property by adding the influences of all features participating in
the configuration.
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Name Type Class Scale Type Unit Range

Configuration indep. flags, etc. nominal ~ N.A. 2%,
Fault rate dep. |meas“;gg:ﬁ;£ 22?“”0"' * 100 ratio % 0-o00
Accuracy dep. 100 — Fault rate ratio %  -o0—100

Table 2: Description of experiment variables. Indep: independent; dep: dependent; F:
number of features.

The dependent variable fault rate describes the difference between the
predicted and measured property of a program. To compute footprint, we
need the two intermediate dependent variables measurement and prediction,
whereas the configuration influences both variables. To set the fault rate
into perspective for the footprint property, we provide the highest and low-
est measured footprint in Table 3. Note that the fault rate requires careful
interpretation, and a base product or a feature with overproportional influ-
ence on the property may distort the figure. We cannot provide a relative
fault rate corresponding to some base or minimal product, because it is not
clear what the base or minimal product is (we would need to measure all
products in the first place). In this work, when discussing about accuracy,
we refer to the dependent variable accuracy, which we compute according to
the formula given in Table 2.

Analysis Procedure. We analyze the fault rate visually using boz plots [23]
and Quantile-Quantile (Q-Q) plots. A box plot plots the median as a line
within the box and the quartiles as lines as the boundary of the box, so
that 50% of all measurements are inside the box. Whiskers describe the
distribution of the remaining measurements (see Table 4).

A Q-Q plot is often used to compare two data distributions by plotting
their quantiles against each other. That is, a point (z;,y;) on the plot refers
to the i-th data point of first distribution (z-coordinate) and to the i-th data
point of the second distribution (y-coordinate). If both distributions are
similar then x is equal to y and the point lies on the diagonal line y = .
We use this plot to compare for the same configurations predicted versus
measured properties. For a perfect prediction, all dots would lie on the
diagonal line. We visualize each configuration as a dot on the plot.

In addition to the visual analysis, we compute the average fault rate
(arithmetic mean) per SPL and per measurement technique (i.e., feature-
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wise, interaction-wise, and pair-wise). To this end, we compute for each
sample product P the fault rate, sum them up, and divide the result by the
number of measurements:

AvgFaultRate = 1 zn: |measurement(P;) — prediction(F;)|
n

x 100 1
— measurement (P;) (1)
Furthermore, we compute the standard deviation in percent of all measure-
ments per SPL and per measurement approach to quantify the scattering of

predictions around the average fault rate.

4.2. Predicting Footprint

First, we conducted an experiment to predict footprint (binary size) of a
compiled product. We selected footprint for several reasons:

e Although it may appear trivial, footprint is quite difficult to predict.
As for performance, feature interactions can have an immense effect:
Crosscutting features can significantly influence the footprint of many
other features. Interactions due to shared libraries, nested #ifdefs (code
is only included when two or more features are selected), or possible
compiler optimizations make footprint difficult to predict.

e We can measure footprint quickly and without measurement bias, which
is important for a large-scale evaluation with multiple SPLs as ours.
We can easily reproduce values, and we exclude noise and confounding
influences, such as system load, which easily can bias benchmarks. In
addition, since we need to automate a high number of measurements
(not only for products used to approximate values per feature, which a
normal user of our approach would do, but, in addition, also for refer-
ence products to compare predicted and actual size), it comes in handy
that measuring footprint is quick.

e Finally, since we are not domain experts for all SPLs, it is difficult
to evaluate the influence of domain knowledge to recognize possible
interactions. For footprint, many implementation approaches give us
a chance of using heuristics to detect possible interactions (e.g., by
searching for nested #ifdefs); hence, we can still provide insight into
the benefits of the interaction-wise approach on different SPLs.
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Experimental Material. As experimental units for our footprint prediction,
we selected nine existing SPLs with very different characteristics to cover a
broad spectrum of scenarios. In Table 3, we provide an overview of the SPLs:
We selected SPLs of different sizes (2500 to 13 million lines of code, 5 to 100
features), implemented with different languages (C, C++, and Java) and dif-
ferent variability mechanisms (conditional compilation and feature-oriented
programming), from different domains (e.g., operating systems, database en-
gines, end-user applications), and from different developers (both academic
and industrial). Although very different SPLs are used, the main technical
commonality is that, in all SPLs, we can automatically generate and compile
products for a given feature selection.

Features are either explicitly given by an already existing feature model
(i.e., LinkedList, Prevaylor, ZipMe, PKJab, SensorNetwork, Violet) or de-
rived from documentation. For SQLite and Berkeley, we analyze the doc-
umentation to identify features. The document specifies preprocessor flags
to turn functions on and off. We extracted this information and created a
corresponding feature model. The configuration is given as preprocessor flags
to generate the according program.

From Linux, due to the huge configuration space, we considered only a
subset of 25 features, selected as representative by a domain expert. The
domain expert selected the following features, which cover both modular fea-
tures, such as drivers, as well as crosscutting features : DEBUG_BUGVERBOSE, IN-
LINE_SPIN_LOCK, OPTIMIZE_INLINING, CC_OPTIMIZE_FOR_SIZE, MODULE_UNLOAD, FRAME-
_POINTER, MODULE_SRCVERSION, DNOTIFY, INOTIFY_USER, FIRMWARE_IN_KERNEL, SND-
_VERBOSE_PROCFS, POWER_SUPPLY_DEBUG, PCNET32, NF_CONNTRACK TPV6, NLS_ISO8859-
_15, NO_HZ, NET_POLL_CONTROLLER, PRINTK_TIME, SATA NV, SC520_WDT, KPROBES_SANITY-
_TEST, 12C_DEBUG_ALGO, CHR.DEV_SCH. Among the 25 features were some fea-
tures that we knew would interact by changing the footprint (as the evalu-
ated non-functional property) of other features (e.g., opriMizE_INLINING and
cc.opTiMizE-FOR_SIZE both apply global optimizations).

Ezperiment Procedure. We compiled all C-based programs with GCC and
with -O2 optimization, which performs all compiler optimizations that do
not involve a size-speed trade-off. Since footprint measurements are not
influenced by the used hardware and we kept the same compiler for all mea-
surements, we could parallelize the footprint measurements on three systems.

Deviations occurred in the experiment for SQLite. It was not possible to
measure all variants that are valid with respect to the feature model. In these
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Size in KB
Product line  Domain Lang. Techn. Feat. Products LOC Min* Max*

LinkedList Component Java Comp. 18 492 2595 4.4 10.5
Prevayler Database Java CC 5 24 4030 87 169
ZipMe Compression Java CC 8 104 4874 79 99
PKJab Messenger  Java Comp. 11 72 5016 39 161
SensorNetwork Simulation C++ Comp. 26 3240 7303 19 875
Violet UML editor Java Comp. 100 10%0 19379 6.3 185
Berkeley DB Database C CcC 8 256 209682 1800 2740
SQLite Database C CC 85 102 305191 166 200
Linux kernel™ OS C CC 25 3-107 13005842 11245 13829

* Minimal and maximal size of large SPLs may not be exact, because we cannot measure
all products. We list the smallest and largest measured value.

T We use only a subset of 25 features of the Linux kernel selected by a domain expert.
CC: conditional compilation, Comp.: composition approach.

Table 3: Overview of the SPLs used in the evaluation of footprint prediction.

cases, we run into compilation errors, because of undocumented dependencies
between features (compilation flags). However, we could perform all feature-
wise measurements to approximate for each feature its influence on footprint.
The effect of these errors is that we could neither measure each pair-wise
interaction and nor each known interaction. That is, the FW prediction
model is complete, but the other prediction models lack some interactions.
Hence, our predictions might be more accurate if we could determine the
influence of these interactions. However, considering the huge configuration
space of SQLite, the few failed configurations are neglectable.

4.2.1. Results

In Table 4, we summarize the results of our footprint measurements and
predictions for all SPLs. To put the results into perspective, we additionally
show the effort of a brute-force approach. Referring to our research question
Q1 (what is the average fault rate of the feature-wise approach), our pre-
dictions are usually quite accurate even for the feature-wise approach. The
fault rate is 21.3 %, on average, for all SPLs and 5.5 % without Violet; an
accuracy, on average, of 78.3% and 94.5 % respectively.

Predictions based on more measurements are even better. For Q2 (fault
rate of interaction-wise approach), we identify a fault rate of 0.18 %, on av-
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erage, (i.e., an accuracy of 99.8% on average). However, we identified an
exception of this rule for the Violet SPL, which we discuss below. That is,
for pair-wise measurements (Q3) the fault rate raises to 80.5 %, on average,
over all SPLs, but is at 0.23 % without Violet. Nevertheless, even predic-
tions based on feature-wise measurements usually only exhibit a fault rate
of a few percent, which can be reduced to less than one percent with more
measurements (by defining feature interactions).

To answer Q4, we show in Table 4 the absolute number of measurements
we performed to infer approximations of a feature’s footprint and its per-
centage, compared to the number of all possible products (brute force). In
summary, we needed to measure only a small subset of all products. Espe-
cially the feature-wise approach scales linearly with the number of features,
and not with the number of products. Although the interaction-wise and
pair-wise approach requires a higher number of measurements, the relative
number is below one percent for large SPLs, such as Violet, Berkeley DB,
Linux. Due to parallelization, footprint measurements can be completed in
a feasible amount of time.

4.2.2. Discussion

Feature-Wise Interaction-Wise Pair-Wise
Avg. Dev.: 1.9 % Avg. Dev.: 0.5 % Avg. Dev.: 0 %
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Figure 5: Q-Q plot: Measured and predicted footprint in KB of Berkeley DB (compiled
as static link library) using different approaches.

Let us have a closer look at Berkeley DB, Violet, and the Linux ker-
nel, because their results show interesting points for further investigations.
Berkeley DB is an SPL that makes exhaustive use of nested #ifdefs. This
means, it is often the case that a certain feature combination requires addi-
tional code, which increases the footprint for this configuration. In Figure 5,

26



Effort Fault Rate (in %)

Program Appr.  # Measurements Distribution Mean+Std
LinkedList FW 11 2% (L 0.9+ 0.9
W 13 3% [ 0.7+ 0.7
PW 88 18% [ 0.2+ 0.2
BF 492 100% 6 4 2 0 2 4 &  _
Prevayler FW 5 21 % I 0.1+ 0.1
W 7 20% | 0+ 0
PW 17 70 % | 0£0
BF 24 100% 6 4 2 0 2 4 &  _
ZipMe FW 8 8% N 0.6+ 0.6
W 10 10% [ 0.2+ 0.3
PW 21 20 % [ 0.3+ 0.5
BF 104 100% 6 4 2 0 2 4 &  _
PKJab FW 8 1% | 0+ 0
W 8 1% | 0+ 0
PW 36 50 % | 0+ 0
BF 72 100% 6 4 2 0 2 4 &  _
SNW FW 26 1% I+ 0.5+ 1
W 34 1% I 0.3+ 0.5
PW 252 8% I 0.2+ 0.6
BF 3240 100% 6 4 2 0 2 4 &  _
Violet FW 80 0% 186.7+ 34.4
W 2115 0% 0+ 0
PW 5229 0% b 722.5+ 362
BF 1020 100% 6 4 2 0 2 4 &  _
Berkeley ~ FW 9 4% W 1.9+ 2.2
IW 15 6% [ 0.5+ 0.8
PW 33 13% | 0+ 0
BF 256 100% 6 4 2 0 2 4 &  _
SQLite FW 85 0% : 0+ 0
W 146 0% | 0+ 0
PW 3306 0% | 0.1+ 0
BF 1023 100% 6 4 2 0 2 4 &  _
Linux FW 25 0% [I¥ 0.4+ 0.3
IW 207 0% U} 0.4+ 0.3
PW 326 0% (- 0.3+ 0.2
BF 3.107 100% 6 4 2 0 2 4 &  _

Table 4: Fault rates in percent of footprint predictions of all SPLs using the approaches
(Appr.): feature-wise (FW), interaction-wise (IW), pair-wise (PW), brute force (BF).
Mean: mean fault rate of predictions, Std: standard deviation of predictions.
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we show the results of our different approaches and emphasize the different
prediction patterns of the three approaches. Although we only measured
9 products of Berkeley DB for the feature-wise approach, we have an average
fault rate of about 1.9% for all 256 products. We often predict a footprint
that is too low, because we did not measure these feature interactions that
include additional code in a product (nested #ifdef). Hence, for larger prod-
ucts containing an increasing number of features that depend on each other,
the fault rate increases.

To improve the quality of the measurement, we analyzed the source code
of Berkeley DB to identify such (syntactic) feature interactions. With a self-
written tool, we identified 6 cases of nested #ifdefs. These #ifdefs cause fea-
ture interactions, for which we measured 6 additional products. Considering
these known feature interactions, the average fault rate is reduced to 0.5 %.
Thus, by measuring only 15 products of Berkeley DB, we can almost predict
the footprint of all 256 products with a high accuracy (99.5% on average).
Finally, we applied the pair-wise approach to Berkeley DB and measured 37
additional products. This eliminated faults almost entirely (maximum fault
rate of 0.1%), as illustrated in Figure 5.

For Violet, we observed the largest fault rates (cf. Table 4). The reason
is a complex mapping between (some) features and implementation assets.
That is, an individual feature may map to multiple implementation assets
and a single implementation asset may be required by multiple features.
Hence, when measuring such a feature, the corresponding product contains
several implementation assets that are also present when measuring another
feature’s product. Therefore, predicting the footprint of a product that in-
cludes multiple features with an overlapping set of implementation assets is
inaccurate, because we consider the footprint of the implementation assets
multiple times. The pair-wise approach is even worse, because more than
two features map to the same code. Furthermore, we did not use thresholds
(e.g., limiting the size of a feature interaction to the sum of the size of the
participating features) to limit the influence of interactions (as we would do
for practical use) to gain insights in the nature of feature interactions. Hence,
when predicting a product containing three features, we aggregate three times
the approximation of pair-wise feature interactions, though only two times
would be correct. If more features interact, the inaccuracy increases, which
is an interesting insight about feature interactions. Fortunately, the mapping
that causes the problems can easily be analyzed in order to automatically de-
fine appropriate feature interactions. Hence, with additional measurements,
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we can easily reduce the fault rate to under 1% (see Table 4, Violet IW).

For Linux, we expected large fault rates regarding the 100 randomly gen-
erated products, because all Linux features affect the size of other features.
We were surprised that we still achieved a quite precise prediction even with
the feature-wise approach, partially, because the features had a weaker effect
than expected. We slightly improved the accuracy with the interaction-wise
approach, because we defined feature interactions between more than two
features (i.e., we define an interaction between every feature and the features
OPTIMIZE_INLINING and CC_OPTIMIZE_FOR_SIZE).

In summary, the first part of the evaluation shows that, at least for foot-
print, our prediction model provides good approximations of the actual non-
functional property with few measurements. Next, we evaluate if our observa-
tions hold for a further non-functional property: main-memory consumption.

4.8. Predicting Main-Memory Consumption

In the second series of experiment, we predict main-memory consump-
tion (peak memory) of customizable programs. We selected main-memory
consumption for the following reasons:

e Main-memory consumption is a property that emerges at runtime.
That is, it is not a static property, such as footprint, but a dynamic
one, which can substantially vary depending on which features and how
many features are selected. We expect that predicting main-memory
consumption is a challenging task, because we expect many feature
interactions.

e Measurement bias for main-memory consumption occurs, but is usually
very low. We wanted to explore how accurate predictions are when
measurement bias occurs. That is, we evaluate if our approach is still
feasible for non-functional properties in which measurements contain
noise and may be subject to confounding influences.

e Finally, we chose main-memory consumption, because we are able to
automate the measurement procedure for main-memory consumption
performing a large number of measurements in a reasonable time.

Experimental Material. To evaluate prediction of main-memory consump-
tion, we initially selected seven existing sample systems (see Table 5). We
use fresh sample programs, because we measure a different characteristic
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Program Domain Lang. Techn. Feat. Products LOC

Curl Data transfer C CpP 13 768 52341
LLVM Compiler C Cp 11 1024 47549
x264 Video Encoding C CP 16 1152 45743
Wget Data transfer C CPp 16 5120 34880
Berkeley DB Database C CC 18 2560 209 682
SQLite Database C CcC 39 3932160 305191
RAR Compression ~ C++ CP 38 500000 N/A

Table 5: Overview of sample programs used to predict main-memory consumption. CC:=
conditional compilation; CP: command-line parameter.

compared to footprint, which requires different measurement techniques. For
example, footprint is not interesting for products that are customized via pro-
gram parameters, because their sizes stay unchanged. Instead, we require a
benchmark to measure the runtime behavior, which again is hard to define for
a complex system (e.g., a single benchmark to measure the full Linux kernel).
Since benchmarks are often used and important in the database domain, we
selected Berkeley DB and SQLite. These systems represent SPLs for which
products are generated using conditional compilation. Note that feature
models of both SPLs differ to the models we used for footprint prediction,
because we included features that are likely to change memory consumption
(e.g., different page sizes) and excluded features that are not executed by
the benchmark we used. As additional programs, we selected Curl, LLVM,
x264, RAR, and Wget; programs that users can customize via program pa-
rameters. We selected these programs to demonstrate that our approach
can be applied to both black-box SPLs and customizable programs (i.e., for
which neither source code nor domain knowledge is available). We deliber-
ately include many different domains, such as video encryption, compilers,
and data transfer. Furthermore, these programs are well documented so that
we could easily create feature models for them. Finally, all sample systems
are industrial-strength real-world applications.

Ezxperiment Procedure. In contrast to footprint, we face two additional chal-
lenges. First, when measuring a runtime property, we have to execute a
benchmark application, which we discuss shortly. Second, we face measure-
ment bias; that is, measuring the same product several times may result in
different values. To overcome measurement bias, we measure each product
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three to ten times depending on the SPLs. We use this number of repe-
titions, because of two reasons. First, for all sample programs (with the
exception of RAR), the standard deviation of measuring a single product is
less than 1% of the arithmetic mean, which is sufficient for our studies. Sec-
ond, increasing the number of measurements per product would substantially
increase the time needed for this evaluation. Therefore, we decided to include
more programs in the evaluation and reduce the number of repetitions per
measurement instead of reducing the standard deviation to, say 0.1 %, and
measuring a single product hundred times. From these measurements, we
compute the arithmetic mean and use it for our subsequent computations.

We use standard benchmarks (if available) for all sample programs, be-

cause self-developed benchmarks would bias the outcome of the measure-
ments. Furthermore, standard benchmarks are created to simulate a com-
mon workload that is used in praxis, which is our intended goal. To measure
the maximum required memory when performing a benchmark, we select the
Linux standard program time. We used the following benchmarks:

e We use Oracle’s standard benchmark for Berkeley DB. Similarly, we
execute a benchmark script provided by SQLite to run a typical work-
load.

e LLVM is a modular compiler infrastructure. For our benchmarks, we
use the opt-tool that provides different compile-time optimizations. We
measure the main-memory LLVM needs to compile its standard test
suite in several configurations (e.g., inline functions and combine re-
dundant instructions).

e x264 is a command-line tool to encode video streams into H.264 and
MPEG-4 AVC format. We measure the main-memory needed to encode
the trailer of the cartoon Sintel (735 MB), often used as a standard
benchmark for video-encoding projects.

e Curl and Wget are applications to transfer data over the Internet. As
we found no standard benchmark, we download Apache’s user manual
which contains static HTML pages, CSS files and pictures. Due to the
manual’s folder structure, we can use several features of both programs
(e.g., recursive download) to measure significant effects on memory
consumption.

We measured main-memory consumption with the following systems, but
measure all individual configurations of each sample program on the same
system: AMD Athlon64 2.2GHz, 2GB RAM, Debian GNU /Linux 7; AMD Athlon64
Dual Core @2.0GHz, 2GB RAM, Debian GNU/Linux 7; Intel Core2 Quad @2.4GHz,-
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8GB RAM, Debian GNU /Linux 7.

Dewviations. Early during our measurements of RAR, we identified huge mea-
surement biases. Measurements of the same configuration deviated by 50 to
100 percent. This behavior was present with the Windows and Linux ver-
sion of RAR. A possible reason may be that the algorithms in RAR are not
deterministic. As a result, we were unable to approximate the influence of a
single feature and thus discarded this program. For all other customizable
programs, the measurement bias is less than one percent.

4.3.1. Results

In Table 6, we summarize the fault rates of predicting main-memory
consumption for the sample programs. We observe that our approach of
predicting memory consumption is feasible for many programs. The feature-
wise approach has an average fault rate of 13.6 % for all systems (Q1). For
Wget and x264 it exhibits a high fault rate. Feature interactions have a cru-
cial influence on the memory consumption. This is different to the footprint
study in which, for most SPLs, fault rate is below 2 %. This suggests that
some non-functional properties are affected stronger by feature interactions
than others, since we could largely exclude bias as a cause.

Using the pair-wise approach (Q3), we see that fault rate usually decreases
(again with the exception of Wget and LLVM, which we discuss in the fol-
lowing); the average fault rate is 11 % for all programs and 0.9 % without
Wget and LLVM. This means that our assumption of measuring the influ-
ence of each pair of features on a property improves accuracy of predictions.
However, we have to keep in mind that this improvement requires additional
measurements.

Referring to our research question Q4, we depict the number of required
measurements for the two approaches in Table 6. The feature-wise approach
usually requires to measure one percent of all products. For customizable
programs with a large number of products (e.g., SQLite), we save even more
measurements in relation to measuring all individual products. This demon-
strates the scalability of our approach. Also for pair-wise measurements, we
need to measure less than 10 % of all products. Furthermore, for SQLite, we
need to measure only 317 products which is 0.008 % of all possible products.

4.3.2. Discussion
We observed a high fault rate for Wget and LLVM. A closer look at the
distribution of the fault rates shows that the median of all fault rates is closer
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| Effort Fault Rate (in %)

Program Appr. ‘ # Measurements Distribution Mean+Std
Curl FW 1n 1% | 0.4+ 0.6
PW 56 7% | 0.1+ 0.2
BF 768 100% | -30 10 0 10 20 30 ~
LLVM FW 1n 1% el 98,84 26.3
PW 56 6% 1 4314505
BF 1024 100% 30 10 0 10 20 30 B
X264 FW 12 1% [ 979+478
I
PW 6 6% | 1.9+ 5
BF 1152 100 % 30 10 0 10 20 30 _
Wet FW 4 0% L 18.6+ 24.9
PW 91 2% [ F=1 206+ 506
BF 5120 100 % -éO —f‘lO 6 1‘0 Zb 3‘0 _
BerkeleyDB ~ FW 15 1% L 144 1.3
PW 98 4% [ 1.4+ 1.3
BF 2560 100 % *éO —Z‘lO 6 1‘0 Zb 3‘0 _
SQLite FW 2% 0% L 44+ 3.8
1
PW 317 0% i 0.3+ 1.8
BF 3932160 100%| % | -10 0 10 20 30

Table 6: Fault rates in percent of predicting main-memory consumption of all SPLs using
the approaches (Appr.): feature-wise (FW), pair-wise (PW), brute force (BF). Mean:
arithmetic mean fault rate of predictions, Std: standard deviation of prediction fault
rates.

to zero than in the feature-wise approach (see boxplots in Table 6). That is,
more predictions are accurate, but a few outlier predictions exhibit a very
high fault rate (i.e., over 75 %), which leads to a higher arithmetic mean fault
rate. This high fault rate is similar to our observations for predicting foot-
print of Violet’s products. In Violet, we could improve prediction accuracy
significantly when using domain knowledge (i.e., the mapping from features
to implementations). Unfortunately, we do not have the necessary knowledge
for these two programs to show how this would affect accuracy.

We believe higher-order feature interactions are very plausible for LLVM;
we hypothesize that they can be explained as follows. Each LLVM feature
toggles a different optimization phase during compilation; each optimization
might act differently on a code fragment, depending on how and whether
previous optimizations have transformed it. For instance, function inlining
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enables other optimizations to operate on longer code fragments; depending
on the size of code fragments and on the possibilities for optimizations, fur-
ther optimization might trigger. To evaluate our assumptions, we used the
documentation to manually define feature interactions. Overall, we measured
129 products of LLVM, which is 12.6 % percent of all products. Although
we are no domain experts, our predictions significantly improved to an av-
erage fault rate of 11 %, which is an improvement of 22 % compared to the
pair-wise approach and 14 % compared to the feature-wise approach.
We discuss feature interactions and general observations in Section 4.5.

4.4. Summary

We summarize the evaluation of predicting footprint and main-memory
consumption in Table 7. We answer the research questions in terms of aver-
age fault rates (for Q1-Q3) and measurement effort relative to a brute-force
approach (Q4). We can see that, for many sample programs, our approach
provides a high accuracy of predictions. We also observe that feature in-
teractions play a crucial role for the accuracy. This is the cause why our
predictions for Violet, LLVM, and Wget are inaccurate; for that reason we
provide the fault rates with and without these programs.

Measurement effort is relatively high for programs with a limited cus-
tomizability compared to a brute-force approach, but absolutely small in
terms of number of measurements. For example, although we measure 70 %
of all products of Prevayler for the pair-wise approach, these are only 17 mea-
surements in total. The scalability is demonstrated when observing number
of measurements for large SPLs, such as SQLite. Here, each approach re-
quires less than 1% of all configurations and has a fault rate for footprint
less than 1 %.

Table 7 shows that more measurements provide more accurate predic-
tions, with some exceptions. These exceptions, however, could be easily fixed
with domain knowledge. A further result is that one of nine programs for
footprint and two of six programs for main-memory consumption exhibit a
high fault rate. Although the number of these programs is too small to know
how often such exceptions occur, it indicates that in three-quarters of all pro-
grams a simple feature-wise technique including a pair-wise measurement is
sufficient and, for the rest, a more sophisticated feature-interaction-detection
approach or domain knowledge is needed to improve prediction accuracy.
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Fault rate Q4: Effort

Experiment Q1 Q2 Q3 FW IW PW
Footprint 21.3% 0.1% 80% 50% 6.6% 20%
without Violet 55% 0.2% 0.2% 58% 75% 22%
Main Memory 13.6% N/A 11% 0.6% N/A 41%

without LLVM & Wget  85% N/A 09%  07% N/A 42%

Table 7: Overview of research questions and experiment results. Effort means measure-
ment effort. Q1-4 refer to the research questions given in the experiment description.

4.5. Discussion

Next to the results of the evaluation, we discuss three important obser-
vations: using benchmarks, handling feature interactions, and number of
measurements.

4.5.1. Benchmarks

For our second series of experiments, we had to execute benchmarks to
measure the runtime behavior of a program. We measured main-memory con-
sumption with standard benchmarks. So, we can predict memory consump-
tion for other configurations only with respect to this particular workload.
It is not our goal to predict non-functional properties completely indepen-
dently of the workload. Instead, we provide an end-user solution in which
customers perform only few measurements with their workload within their
own environment. We argue that our predictions are more accurate regard-
ing a product’s properties for a specific application scenario than a synthetic
benchmark, which uses a standardized workload and not one actually used.

4.5.2. Feature Interactions

The results have shown that the existence of feature interactions that
influence a non-functional property can cause high fault rates. We proposed
two approaches to address this problem. First, we use domain knowledge
to manually specify which features we expect to interact. Second, we in-
corporate all potential pair-wise interactions between pairs of features by
measuring additional products. In most cases, both approaches yield more
accurate predictions, because interactions with a large influence on a prop-
erty are identified. However, when higher-order interactions (i.e., interactions
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between more than two features) exist and we are not aware of them, our
predictions will be less accurate.

In a parallel line of research, we proposed an approach to automatically
detect such non-functional feature interactions for performance [14]. The
idea is to find which features interact at all and then search combinations of
these interacting features that cause an observable feature interaction. Since
finding such a combination requires a high effort, we propose three heuristics
to find a sweet spot between measurement effort and accuracy of predictions.
However, this is a different approach and goes beyond the scope of this paper.

4.5.3. Number of Measurements

The results have shown that the feature-wise approach is a good initial
approximation of a product’s non-functional properties. However, if domain
knowledge is available, we suggest always using it as it can significantly im-
prove accuracy with only few additional measurements. Additionally, com-
plex mappings or unknown feature interactions can cause large fault rates
making predictions less accurate.

If domain knowledge is not available, it is difficult to decide whether in-
vestment in more measurements is worth the effort. For some non-functional
properties, such as footprint, it might be feasible to extract information about
interactions from the source code. Sometimes other sources may be available.

At this point, the measurements are often already sufficiently accurate
to use them during product derivation — our initial goal — for example, to
rule out products that obviously do not fulfill the required constraints or to
determine a set of possible candidates for the optimal product.

Finally, if domain knowledge is not available, pair-wise measurements are
a good strategy to increase accuracy of predictions at cost of an increased
effort for measurements (from O(n) to O(n?)). We recommend it only if
there is either no domain knowledge available or to combine it with the
interaction-wise approach, when the number of features is acceptably small.

We illustrate the trade-off between measurement effort and prediction
fault rate in Figure 6. In general, the accuracy increases (i.e., the fault rate
decreases) with additional measurements, but a stakeholder must be aware
of the fact that too many measurements render the approach infeasible. For
example, if we want to measure all 8000 features of the Linux kernel [7]
(we considered only 25 in our evaluation) with the pair-wise approach, we
would need about 64 million measurements (which, extrapolating from our
experiments, would take roughly 2 years to measure on a cluster of 1000
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computers). In contrast, the feature-wise approach requires the measurement
of only about 8000 products (which could be realistically done in one day
using a cluster of 100 computers). For our approach, balancing between
desired accuracy and investment in measurements is essential.

Fault rate

n = number of features
k = number of known feature interactions

# of measurements

0 \ ! |
n n+k n? n’+k

Feat.-wise Int.-wise Pair-wise Pair-Wise + Int.-wise

A\

Figure 6: Conceptual relation between number of measurements and fault rate of predic-
tions.

4.6. Threats to Validity

Construct Validity. A common threat to validity is that the experiment ob-
jects are not clearly defined. In our experiment, we want to know and com-
pare the accuracy of the different measurement approaches. For this purpose,
we defined Equation 1, in which we specify how the fault rate is calculated.
Using this definition, we can compare and rate the accuracy of the different
approaches.

An incorrect choice of benchmarks represents another threat to construct
validity. To minimize this threat, we use standard benchmarks delivered by
vendors or used in the respective community if possible. Our aim was to
not develop our own benchmark to avoid an uncommon application behavior
and, therefore, flaw the experiment design. In case of Wget, we could not
find any standardized benchmark, which leaves room for a validity threat.
We chose to download the Apache manual as a benchmark, because there
is a large spectrum of common use cases (e.g., large files, many small files,
nested folders, and pictures).

Conclusion Validity. The reliability of measures strongly affects the conclu-
sion validity of experiments. In our first experiment, we use footprint, defined
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as binary size of the generated program. For this measure, we can accurately
determine the true size of programs using OS functions either by aggregat-
ing the size of all class files of a Java program or by determining the size
of the executable in a case of a C/C++ program. Regarding main-memory
consumption, we use the GNU/Linux tool time and depend therefore on its
reliability. It measures the maximum resident set size of the process during
its lifetime in KB. Since we measure only peak memory and not the average
consumption over time, our measurements are not affected by page swapping
of the OS or other influential factors that can affect validity of measurement.
Furthermore, we repeated measurements and identified that the differences
of several runs with the same configurations are below one percent.

Internal Validity. For SPLs with many features and for the main-memory
evaluation, we only sampled 100 products to compare prediction and mea-
sured property, because we cannot possibly generate and measure all prod-
ucts (exponential with the number of features) in reasonable time — this is
exactly the motivation for our approach. We are aware of our evaluation leav-
ing room for outliers, but we believe that 100 samples provide a reasonable
number.

When measuring main-memory consumption, we have to deal with mea-
surement bias. We repeated each measurement three to ten times and use the
average of these measurements to compute a feature’ influence and for our
evaluation. With the exception of RAR, we observed only small deviations
when measuring the same product multiple times in our six customizable pro-
grams (below one percent), which indicates that the measurement procedure
is reliable.

In our footprint evaluation, we observed high fault rates for Violet. These
fault rates were caused by complex mappings between features and implemen-
tation units. As we have shown, when this mapping is known, we can easily
compute which configurations have to be additionally measured to achieve
accurate predictions. Hence, the real problem is when we have a complex
mapping between features and implementation units and this mapping is not
known to us. So, the question is this the rule or exception in real-world ap-
plications?” We believe that unknown complex mappings are the exception.
Considering SPLs and customizable programs implemented with preproces-
sor, we almost always have a direct mapping between features and prepro-
cessor flags, because we have to know these flags in order to generate the
desired program. Since most of the customizable real-world programs today
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are based on preprocessors, this is already a strong argument. Furthermore,
new programming paradigms, such as aspect-oriented and feature-oriented
programming aim at a direct one-to-one mapping between features and im-
plementation units. The general idea is to model features at the domain level
and implement a feature accordingly [24]. Although Violet is implemented
with feature-oriented programming, the mapping problem is an improper
modeling or implementation of the functionality. Finally, complex mappings
also occur for component-based software development. Here, however, we
always need the mapping between features and components to be able to
assemble this components together [25]. Hence, we believe that there is in
most cases either the mapping known to be able to generate a program or
the mapping is one-to-one.

External Validity. Although we use a large variety of different SPLs, we are
aware that the results of our evaluations are not automatically transferable to
all other SPLs and all kinds of customizable programs. We selected real-world
SPLs and customizable programs from different domains, having different
sizes, and using varying implementation techniques. Our used SPLs have
feature models with a typical structure and number of constraints (according
to the criteria in [26]). We did not evaluate SPLs with an unusual, possibly
degenerated feature model, which might influence the computation of the
product set (cf. Section 3.3). Thus, we cannot generalize our results to such
product lines.

We use non-functional properties in which measurements bias are below
one percent. We cannot yet judge our approach for properties that exhibit
different behaviors for the same workload within the same environment. That
is, if the measurement of the same product yields different results also the
predicted product can have heavily changing values of a non-functional prop-
erty. We do not address this issue in this article and leave it for future work.

Finally, we cannot generalize our evaluation to non-functional properties
other than footprint and main-memory consumption. However, we argue
that — similar to performance and many other non-functional properties —
footprint and main-memory consumption are subject to many internal and
external influences. These influences have a crucial impact on the applicabil-
ity of our approach, an impact which we could handle for these two proper-
ties. In this article, we want to convey that the approach of approximating
non-functional properties per features is realistic at all.
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5. Related Work

Many product-derivation approaches for SPLs have been proposed in the
past [27, 28, 29]. However, most do not allow a user to specify non-functional
constraints or to derive a product with desired non-functional properties. Re-
search in this area focuses on reducing the complexity of the configuration
process and supporting the user with tools during feature selection. Never-
theless, some approaches also allow a user to optimize the feature selection
for a specific non-functional property. Benavides and others presented a
technique based on CSP solvers to find an optimal product [30]. The solver
evaluates values attached to features in the feature model, and then com-
putes an optimal configuration for a small number of features. Their studies
show that with an increasing number of features the computation time grows
exponentially. White and others [31, 32] enable users to define constraints
on non-functional properties to derive a product with desired non-functional
properties. They propose a solution based on filtered Cartesian flattening to
approximate a nearly optimal product for even large scale feature models.

A recent approach by Roos-Frantz and others focus also on quality at-
tributes in SPLs [33]. In their work, they provide means to model quality
attributes directly in a variability model, so that users can perform reasoning
techniques to identify specification anomalies and to find configurations that
satisfy given quality constraints. The verification is realized with a constraint
programming solver within their tool FaMa-OVM.

In contrast to our approach, the approaches of Benavides and others,
White and others, and Roos-Frantz and others do not consider the measure-
ment and computation of a feature’s non-functional properties. Hence, our
approach can provide concrete quality data that is needed to parameterize
their models. A combination of these techniques is feasible.

Only a few approaches apply measurements of non-functional properties
to SPLs. Zubrow and Chastek proposed measures for SPLs that evaluate
the development effort for an SPL [34]. Lopez-Herrejon and Apel express
the complexity of an SPL in terms of variation points with a dedicated met-
ric [35]. Apel and Beyer analyze the cohesion of features and the relationship
to other ones at the level of source code [36]. Cohesion indicators may be
used to enrich domain knowledge such that we can document possible feature
interactions in our model.

An approach close to our work is the measurement of the binary size of
an aspect-oriented SPL [37]. The authors compiled aspects in distinct files
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and measured the binary size. The footprint of different products can then
be computed. Another related approach for optimizing non-functional prop-
erties was developed in the COMQUAD project [38]. The project focuses on
techniques for tracing and adapting non-functional properties in component-
based systems. The approach requires a dedicated component model, which
is an extension of Enterprise JavaBeans and CORBA Components and relies
on AOP as implementation technique. In contrast to these approaches, we
consider a wide variety of properties and address the exponential number
of products that occur during the derivation process. Furthermore, we pro-
pose an implementation-independent and language-independent approach,
not restricted to aspects. Additionally, we maintain a product-line model to
explicitly address feature interactions which is not supported by others.

Sincero and others [12] propose to estimate a product’s non-functional
properties based on a knowledge base consisting of measurements of already
produced products. Their aim is to find a correlation between feature se-
lection and measurement. This way, they can give information about how a
feature influences a non-functional property during configuration. In contrast
to our approach, they do not save actually measured feature’s non-functional
properties, but a qualitative statement of how a feature affects a property.
When it comes to product derivation, they do not present an expected value
for a product’s properties, as we do, but can show with a slider whether a
feature selection improves a property such as performance or not.

Feature Interactions. There is a large body of research on automated detec-
tion of feature interactions (e.g., see Nhlabatsi and others [39] and Calder
and others [40] for surveys). Some approaches detect feature interactions
using specifications of features [41, 42, 43, 44]. In a parallel line of research,
we propose to use heuristics to find feature-interactions automatically [14].
However, how feature interactions can be detected is not the focus of this
paper; we only present two approaches that can be easily applied and build
natural extensions to the pure feature-wise measurement.

6. Conclusion

To customize programs and derive products of a software product line,
customers select features according to our requirements. However, it is of-
ten not known how a feature selection affects non-functional properties of
the resulting program. We presented an approach to predict non-functional
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properties of customized and derived programs based on a feature selection
without generating and measuring them. To this end, we approximate the
influence of each feature on a non-functional property. The key idea is to pro-
duce two products that differ in a single feature such that we can interpret the
delta in the products’ properties as the approximation of the corresponding
feature. We propose three different approaches to measure approximations
of features and feature interactions: feature-wise measurement, interaction-
wise measurement, and pair-wise measurement. These approaches vary from
linear to quadratic complexity in terms of the number of features in an SPL.

In a first series of experiments, in which we compare predicted with actual
footprints in different SPLs, we achieve an accuracy of 98 % on average.
Especially, the approach that measures known interactions between features
achieves a high accuracy with a small number of measurements.

In a second series of experiments, we demonstrated the generality of our
approach with respect to other non-functional properties. We compared the
predicted with actual maximum main-memory consumption in six different
sample programs and SPLs. Although memory consumption is subject to
measurement bias, we achieve an accuracy of 89 % for pair-wise measurement.

In future work, we plan to generalize our approach such that we can
predict non-functional properties of products with varying workloads.
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