
On the Modularity of Feature Interactions

Chang Hwan Peter Kim
Department of Computer Sciences
The University of Texas at Austin

chpkim@cs.utexas.edu

 Christian Kästner
School of Computer Science

University of Magdeburg, Germany
kaestner@iti.cs.uni-magdeburg.de

Don Batory
Department of Computer Sciences
The University of Texas at Austin

batory@cs.utexas.edu

Abstract
Feature modules are the building blocks of programs in software
product lines (SPLs). A foundational assumption of feature-based
program synthesis is that features are composed in a predefined
sequence called a natural order. Recent work on virtual separation
of concerns reveals a new model of feature interactions that shows
that feature modules can be quantized as compositions of smaller
modules called derivatives. We present this model and examine
some of its consequences, namely, that (1) a given program can be
reconstructed by composing features in any order, and (2) the con-
tents of a feature module (as expressed as a composition of deriva-
tives) is determined automatically by a feature order. We show that
different orders allow one to adjust the contents of a feature module
to isolate and study the impact of interactions that a feature has with
other features. We also show the utility of generalizing safe compo-
sition (SC), a basic analysis of SPLs that verifies program type-
safety, to demonstrate that every legal composition of derivatives
(and thus any composition order of features) produces a type-safe
program, which is a much stronger SC property.

Categories and Subject Descriptors D.2.11 Software Architectures:
Languages (e.g., description, interconnection, definition)

General Terms Design

Keywords: derivatives, feature interactions, feature oriented soft-
ware development, lifters, safe composition .

1. Introduction
Software product lines (SPLs) is a paradigm for the systematic and
efficient creation of products. Features are increments in functional-
ity that differentiate programs in an SPL. Feature Oriented Soft-
ware Development (FOSD) is the study of feature modularity and
the synthesis of programs in SPLs by composing feature modules
[2][6][11]. A foundational assumption of FOSD, here called natural
order, is that features are composed in a fixed and predefined
sequence [5].

Natural order originates from layered designs and incremental
development. Starting with a simple program, there is a natural pro-
gression in which more functionality is added by leveraging previ-
ously implemented functionality. Each increment is a feature, and a

natural order is the sequence in which features are composed. Natu-
ral order permeates results in FOSD. For example, feature models
can be defined as GenVoca grammars [5]: tokens are features and
sentences define the products of an SPL as ordered compositions of
features [7].

We and others have noticed that refactoring legacy applications into
a composition of features reveals curious results [3]. Namely, when
two or more people decompose the same legacy application using
the same set of features, the resulting feature modules are always
different. That is, the module for feature F in one decomposition
can be quite different from the module for F in another decomposi-
tion. This can be explained, in part, by features having slightly dif-
ferent meanings, which is to be expected when features have
informal definitions. But this is not the full explanation.

Looking closer, we discovered that different decompositions fre-
quently composed features in different orders. That is, the same
program P has multiple decompositions, e.g., P=A•B•C and
P=C’•B’•A’, where corresponding feature modules (A and A’, B
and B’, and C and C’) are different but seem “natural” as they cap-
tured similar concerns. The contents of a feature module in one
decomposition are scattered and tangled in feature modules of other
decompositions (e.g., the contents of A are scattered among A’, B’,
C’), a phenomenon known as the “Tyranny of Dominant Decompo-
sition” and Multi-Dimensional Separation of Concerns (MDSoC)
[22]. This raises intriguing questions: why are there multiple fea-
ture decomposition/composition orders in a domain and not just one
canonical order? And more challenging: can we automatically
translate the definition of feature modules of one order into the fea-
ture modules of another?

We need to clarify an important point: it is well-known the order in
which feature modules are composed matters: different programs
can result and consequently, performance and behavior may
change. Our results do not change this: we are studying a different
problem. Given two (or more) decompositions of exactly the same
program P=A•B•C and P=C’•B’•A’, where typically A≠A’, B≠B’,
and C≠C’, this paper explains this phenomenon and shows how a
set of feature modules {A,B,C} of one composition can be auto-
matically translated into feature modules {A’,B’,C’} of another.

Our research requires models of feature interactions, where feature
modules are quantized as compositions of smaller modules called
lifters [21] or derivatives [17]. Existing models of feature interac-
tions assume a natural order, and unfortunately cannot be used to
answer our challenge questions. However, recent work on virtual
separation of concerns [12] reveals a new model of feature interac-
tions that can. In this paper, we present the Tree Model (TM) of fea-
ture interactions that allows us answer the questions posed above.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
GPCE’08, October 19–23, 2008, Nashville, Tennessee, USA.
Copyright © 2008 ACM 978-1-60558-267-2/08/10. . . $5.00

The Tree Model is quite different from its predecessors, and will
likely impact many areas of FOSD research. One particular area is
safe composition (SC), a basic analysis of SPLs that proves that
every legal composition of feature modules produces a type-safe
program [24]. We generalize SC to show that every legal composi-
tion of derivatives also produces a type-safe program. Doing so
shows that any composition order of features is type-safe, a much
stronger SC property. We also extend SC to check whether or not a
layered design is being used. We begin by describing a tool that is
at the center of our work.

2. CIDE
FOSD has historically focussed on language support to define and
compose feature modules [2][6][18][19]. These languages, which
are centered on collaboration-based designs [23], have worked
well in building feature-based SPLs from scratch. However,
another common way to create an SPL is to refactor a legacy appli-
cation into a composition of features modules. This process, called
Feature Oriented Refactoring (FOR) [17], has exposed the need
for significant tool support. Manually identifying the code of a fea-
ture in a legacy application and extracting the code into a module
is a tedious, error-prone, and exhausting process.

Kästner, et al. have proposed
Colored Integrated Develop-
ment Environments (CIDEs)
to provide this support [12].
Instead of making feature
modularity an issue of pro-
gramming languages, CIDE
makes it a tool problem. That
is, rather than extending a lan-
guage with constructs to
define and compose feature
modules, the CIDE approach
leaves languages as they are
and allows programmers to
paint their code. All code that
is painted “blue” belongs to
the Blue feature; all code that
is painted “gray” belongs to
the Gray feature, and so on.
Gray code that appears inside
blue code indicates a struc-
tural feature interaction —
how the Gray feature changes the code of the Blue feature. Such
is an example of a 1-way or 1st-order interaction. More generally,
an n-way (or nth-order) interaction appears as the nesting of n dif-
ferent colors. Note our emphasis is not on run-time (semantic)
interactions of features [8], but rather on static (syntactic) interac-
tions that affect a feature’s code.

Consider a buffer that can be restored and logged (Figure 1). The
Buffer class, added by the BUFFER feature, has clear color. The
code added by the RESTORE feature is painted blue, and the code
added by the LOG feature is painted gray. The interaction of the
LOG feature with the RESTORE feature is indicated by nesting gray
inside blue: LOG changes the method restore(), added to
BUFFER by RESTORE, by logging its calls (see in Figure 1).

In CIDE, variants of a painted program can be created by eliminat-
ing features and their code. For example, a basic buffer is produced
by eliminating RESTORE (blue) and LOG (gray) code. A restorable
buffer is produced by eliminating the LOG (gray) code. And a
logged buffer is produced by eliminating RESTORE (blue) code.
Note that when the restore() method is eliminated, all of its
code — no matter what nested colors are present — is removed.

In effect, CIDE allows programmers to separate concerns virtually
using different colors — in its current form, CIDE has no modules
(i.e. concrete representation or implementation of the concerns).
But it is not hard to imagine adding editor-based views that collect
all code fragments with a single color, for example, to form a vir-
tual module. Recent work shows that language modules (such as
AHEAD [6], AspectJ [15]) can be automatically projected [13].
Although projecting concrete modules is not essential for our
paper, the ability to view and compose modules (concrete or vir-
tual) is indeed useful. One possible translation of Figure 1 into
AHEAD modules is shown in Figure 2. The Super.m() construct
used in Figure 2b-c means substitute the prior definition of method
m(); this is how method refinements are declared in AHEAD [6].
In this example, the feature modules must be composed in the
order buffer, then restore, and then log to reproduce the buffer
program of Figure 1. In this paper, we differentiate features, in
UPPERCASE, from their modules, in lowercase. We explain later
how to derive editor-based and language-based modules.

The effect of coloring is similar to
preprocessing — if a color or fea-
ture is not selected, its code is elim-
inated. This orientation provides an
intriguing, if not classical (sysgen)
way to implement SPLs. Rather
than composing separate feature
modules, all modules are pre-com-
posed into a single program, and
particular programs of an SPL are
produced by projection. Among the
attractions of CIDE is that the
source of a program cannot be col-
ored arbitrarily (e.g., one cannot
color ½ of an identifier or an arbi-
trary code fragment). Instead, only
selected nodes of an Abstract Syn-
tax Tree (AST) can be colored, so
that removing a feature still yields
an AST that satisfies the grammar
of the given language [14].

The fact that CIDE represents an
SPL as a single, general program,
rather than as separate composable
feature modules, means that the
variability and commonality of the
SPL must be expressible though
the grammar of the base language.
In CIDE’s current form, an SPL
must be encoded as a syntactically-
valid Java program, which can rep-

class Logger {
static void

log(int i)
{…}

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Legend: RESTORE LOGBUFFER

class Buffer {
int buf;
int back;

void set(int b) {
Logger.log(buf);
back = buf;
buf = b;

}

void restore() {
Logger.log(buf);
buf = back;

}
}

Figure 1. A Logged,
Restorable Buffer

class Buffer {
int buf;

void set(int b)
{ buf=b; }

}

refines class Buffer {
int back;

void set(int b) {
 back=buf;
Super.set(b);

}

void restore()
{ buf = back; }

}

refines class Buffer {
void set(int b) {
 Logger.log(buf);
Super.set(b);

}

void restore() {
 Logger.log(buf);
Super.restore();

}
}

class Logger {
static void log(int i)
{ ... }

}

(a) buffer

(b) restore

(c) log
Figure 2. A Set of AHEAD

Modules for Figure 1

resent optional features easily but not necessarily alternative fea-
tures (e.g. that introduce multiple variables of the same name but
different types). A better understanding of how to express not only
alternatives but variability in general will help improve CIDE rep-
resent SPLs, but we believe that the idea of projecting programs
from a generic SPL representation is scalable.

There are various ways in which artifacts can be colored. The orig-
inal version of CIDE [12] has rules for coloring that do not corre-
spond to feature modules that can be defined in feature-based
languages [2][6][18][19]. We modified CIDE to make the coloring
correspond to feature-based languages. The actual differences
between [12] and our version [16] in this respect are detailed in
Section 5. For now, the only externally-visible property that we
have changed is that every piece of code in a painted program is
assigned to precisely one feature and is given that feature’s color.
With this clarification, we now present a general model of feature
interactions that is implemented in our version, but is suitable for
all versions of CIDE.

3. A Tree Model of Feature Interactions
A structural feature interaction represents how one feature alters
the code of another feature [17][21]. We saw that CIDE indicates
feature interactions by a nesting of colors. A painted program can
be represented by a tree of interactions, henceforth called a deriva-
tive tree or simply “tree”.1 Each node of a tree represents a deriva-
tive and the tree is rooted by the empty program (denoted by 0). If
there are k features, there are k arcs leaving each node in the tree,
one arc per feature. The arc for feature F from node z terminates at
derivative f\z, which means that the derivative f\z encapsulates
the changes that feature F makes to z, where z is a derivative or 0.
Note that the changes encapsulated within f\z may be scattered
throughout a program; they need not be localized within a single
method, class, or package.

In general, there is a straightforward 1-1 mapping of nested colors
in a painted program to derivatives in a derivative tree. For exam-
ple, the 3rd-order derivative x\y\z is denoted in CIDE by any
code colored by feature X that is inside code colored by feature Y,
which is inside code colored by feature Z.

The first two levels of a tree with three features (B, L, R) is shown
in Figure 3. Note that the name of every derivative (with the
exception of the root) ends in \0. We economize the notation by
dropping “\0” from all derivative names henceforth in this paper.

Each child derivative, pointed to by an arrow, changes its parent
and must be composed after the parent, hence the arrow direction.
Other dependencies, such as one derivative referencing a definition
in another derivative, exist and can also impose ordering con-
straints. However, such dependencies are considered independent
of a derivative tree.

By equating B with BUFFER, L with LOG, and R with RESTORE,
Figure 3 is the derivative tree of our buffer program of Figure 1. In
general, if there are k features, there are kn nodes in a tree at level
n. This exponential nature is a consequence of features being able
to interact in any combination. Although there are theoretically
huge numbers of derivatives, almost all are empty. There is an
important special case: A feature does not interact or change itself.
This means that any derivative whose name includes two or more
references to the same feature (e.g., l\l, l\r\l, r\l\l, l\l\l)
we equate with the identity function or null refinement or empty
code (all of which are to us interchangeable). A consequence is
that derivative trees with k features have at most k levels and
1+k+(k)(k-1)+(k)(k-1)(k-2)+...+k! derivatives.

Each derivative has a traceability link between it and AST nodes of
the corresponding colored code fragments. For example, there is a
mapping between Figure 3 and Figure 1 in that the derivative b
(i.e. b\0) has traceability links to AST nodes colored “clear”, i.e.
those in lines 1, 2, 5, 8, 9, and 15 in Figure 1. And the derivative l
to those colored gray in lines 17-21, the derivative l\b to those
colored gray\clear in line 6, etc. Again, a vast number of deriva-
tives have no associated code. The tree that is pruned of all such
empty derivatives (except 0) is shown in Figure 4, which is consid-
erably smaller than a full tree with all derivatives.

To get a sense for actual derivative trees, we
studied the Graph Product Line (GPL) and
other SPLs used in AHEAD Tool Suite (ATS)
[4] (Figure 5). GPL is a product-line that
implements a family of graph algorithms.
jak2java, jampack, mixin, mmatrix,
and unmixin are product-lines within ATS
that produce tools to manipulate Jak files
(Jak is a superset of Java). bali2jak,
bali2javacc, bali2layer, and balicomposer are tool prod-
uct-lines that transform and compose AHEAD grammar specifica-
tions [26]. Their source code, as well as the CIDE implementation
and other software tailored to this paper, can be found in [16].

Instead of manually coloring these product-lines, we wrote a trans-
lator to automatically convert their composition of AHEAD fea-
ture modules into an equivalent CIDE representation.2 For these
SPLs, very few derivatives are non-empty, approximately twice
the number of features. The maximum level of color nesting is at

1. This is one of several models that were developed by Kästner and
Batory during Kästner’s 2006-2007 visit to The University of Texas at
Austin.

0

r\0l\0b\0

r\r\0l\r\0b\r\0r\l\0l\l\0b\l\0r\b\0l\b\0b\b\0

Figure 3. A Tree Model of the Buffer Program
2. The translator smashes AHEAD feature modules into feature-annotated
Java files, which are then colored accordingly. The “smashing” was not
easy as we had anticipated, as we had to inline chained Super calls (that
represent refinements) to accurately nest colors. We used Eclipse JDT
refactoring API in our translator to inline chained method calls. The API
was not able to inline method calls whose methods exit in the middle of the
method body, and we had to manually restructure these method bodies.
Fortunately, these cases did not arise often.

Figure 4. Pruned
Derivative Tree

0

b l

l\b r\b

l\r\b

most 3 and the average number of levels is about 1.5. Legacy
applications that were not designed with feature modularity in
mind may have many more and higher-order derivatives.

4. Mapping Trees to Programs
The code corresponding to a derivative can be represented as an
editor-based module (view) or a language-based module. An edi-
tor-based view could be a window that gathers a derivative’s code
fragments together and that allows them to be analyzed and edited,
although in our modified version of CIDE, it is simply a mecha-
nism that provides navigation from a selected derivative to the
original code fragments. A language module, such as an AHEAD
module, could also express the code of a derivative. For example,
for our buffer program of Figure 1, b (lines 1, 2, 5, 8, 9, 15) and l
(lines 17-21) can be represented as class introductions, the “ideal”
AHEAD modules for which are shown in Figure 6a-b. We explain
later why we use the word “ideal”; for now it is sufficient to know
that “ideal” means “simplest”. Also, l\b (line 6), r\b (lines 3, 7,
11, 13 and 14), and l\r\b (line 12) can be represented by the
“ideal” AHEAD modules in Figure 6c-e. We do not yet have a
mechanism for projecting colored code fragments as AHEAD
modules in our version of CIDE. Both editor-based and language-
based representations should be equivalent, but as we will see later,
they are not identical.

4.1 Composing Derivatives
Given that derivatives are modules (virtual or concrete), we can
reconstruct a painted program incrementally by composing deriva-
tives and observing the following rules:

• A parent derivative must always be composed before the
derivative of any of its children, and

• Children of a parent can be composed in any order.

The justification of these two rules are straightforward in CIDE.
The first rule reflects the nesting of colors: the outer color (i.e., the
parent or base derivative) must be present before the changes of
inner or nested colors (i.e., child or refinement modules) can be
applied. The second rule follows from our modified CIDE coloring
rule that every piece of code has exactly one color. This means that
the changes made to a parent derivative by different features are

disjoint. Stated differently, the refinements made by child deriva-
tives of a parent derivative are commutative.

Derivatives normally reference the introductions (methods, vari-
ables) of other derivatives. As a final rule, the resulting program
must be type-safe. In this section, we concentrate only on observ-
ing the first two rules. In Section 5 when we discuss safe composi-
tion, we verify the final rule.

To reproduce a program from its derivative tree, we compose
derivatives of the tree obeying the above two rules. We can do this
using a reduction, or a topological sort (parents before children), of
tree nodes. Three of many possible reductions of the tree of
Figure 4 are shown below as AHEAD expressions (i.e., composi-
tions of derivatives) that synthesize the buffer program P of
Figure 1:

P = l • l\r\b • r\b • l\b • b (1)

P = l\r\b • l\b • l • r\b • b (2)

P = l\r\b • r\b • l\b • b • l (3)

where • denotes the composition operation. (1) is derived from a
left-to-right-depth-first reduction of the tree. (2) and (3) are
derived by an algorithm we present in the next section. All of these
expressions are equivalent (meaning they synthesize program P).

4.2 Composing Derivatives to Form Features
In practice, derivatives are too small to work with and to compose
individually. We want to deal with modules that implement whole
features. We know from prior work on feature interactions that fea-
ture modules are compositions of derivatives [17][21]. In this sec-
tion, we show how a traversal of a derivative tree, which covers a
subset of all possible reductions, yields an expression for each fea-
ture module, and that the derivatives found in a particular feature
module are determined by the order in which the features are com-
posed. We first illustrate some examples.

Figure 7 depicts several stepwise development (SWD) construc-
tions of the buffer program. Consider the feature expression

Figure 5. Size Characteristics of the SPLs Studied

Lines of
code

Number of
Features

Number of
Derivatives

Maximum
Level

Average
Level

GPL 1,713 17 27 3 1.67

jak2java 40,126 16 27 3 1.74

jampack 39,259 19 33 2 1.82

mixin 36,950 15 26 2 1.81

mmatrix 36,738 11 16 2 1.69

unmixin 35,817 10 14 2 1.64

bali2jak 14,780 9 15 3 1.47

bali2javacc 15,469 9 17 3 1.47

bali2layer 15,136 10 16 2 1.31

balicomposer 13,351 8 16 3 1.56

a) b
b) l c) l\b

d) r\b

e) l\r\b

Figure 6. Derivative Modules of the Buffer Program

class Buffer {
int buf;

void set(int b){
buf = b;

}
}

class Logger {
static void
log(int i)

{…}
}

refines class Buffer {
void set(int b) {
Logger.log(buf);
Super(int).set(b);

}
}

refines class Buffer {
int back;

void set(int b) {
back = buf;
Super(int).set(b);

}

void restore() {
buf = back;

}
}

refines class Buffer {
void restore() {
Logger.log(buf);
Super().restore();

}
}

LOG•RESTORE•BUFFER. When we add a feature, we add deriva-
tives that are colored with that feature. Therefore, when we add
BUFFER, only b derivative of Figure 6a appears, as shown in
Figure 7a. Then, when we add RESTORE, r\b is added, as shown
in Figure 7b. Finally, when LOG is added, the remaining derivatives
l, l\b, and l\r\b are added, yielding the complete buffer pro-
gram of Figure 7c. This composition of derivatives equals equation
(2), which was defined previously:

P = LOG • RESTORE • BUFFER
= log2 • restore2 • buffer2
= (l\r\b • l\b • l) • (r\b) • (b)// See (2)

where the derivative expressions for the modules buffer2,
restore2, and log2 are parenthesized. We index feature modules
to distinguish them from other definitions that arise later from dif-
ferent feature composition orders. The “ideal” AHEAD source
code for these modules was presented in Figure 2 (sans subscripts).
They were synthesized by evaluating the above parenthesized
expressions using the derivative modules of Figure 6.

Now consider a feature expression with a different order,
RESTORE•BUFFER•LOG. When we start with the LOG feature, we
have a problem: we can’t add all the derivatives colored LOG
because Buffer.set(int) and Buffer.restore() have not
yet been introduced. So we just add what we can, which is the l
derivative (Figure 7d). When the BUFFER feature is added, we can
add l\b and b (Figure 7e). Finally, when the RESTORE feature is
added, we add r\b and l\r\b, completing the buffer program
(Figure 7c). This composition of derivatives equals equation (3):

P = RESTORE • BUFFER • LOG
= restore3 • buffer3 • log3
= (l\r\b • r\b) • (l\b • b) • (l) // See (3)

where the derivative expressions for modules buffer3,
restore3, and log3 are shown in parenthesis. The “ideal”
AHEAD source code of these modules are given in Figure 8a-c.
They were derived by evaluating the above expressions using the
derivative modules of Figure 6.

Note: Here is the issue of “ideal” modules: AHEAD, like
other collaboration-based languages, uses wrappers to extend
methods. Wrappers, like advice in AOP, identify the target of
a transformation in relative terms, i.e. “around” a method as it
appears at the time the transformation is applied. So when
two wrappers extend the same method, just as two pieces of
advice affect the same join point, the order of application may
change the outcome. For example, l\b (Figure 6c) and r\b
(Figure 6d) both wrap Buffer.set(int). If r\b is applied
before l\b, logging occurs before restoration, which is what
we want. However, if l\b is applied first as in (3), logging
occurs after restoration, which is not the output of CIDE.

For the buffer example, this permutation of statements is
insignificant, but the issue is important in general as CIDE has
no concept of wrappers; it is preprocessor. A nested colored
code fragment is analogous to method inlining, which are
transformations that inline calls to hook methods.
Consequently, to equate AHEAD wrapper and CIDE
preprocessor effects, derivatives must be made commutative
by having each wrapper target a unique hook method. The
Buffer.set() method, for example, would need an artificial
hook method for logging, followed by another for restoration.
These hooks will then be wrapped by buffer3 and
restore3, respectively. Although the requirement of hook
methods is not a big issue in this small example, it may

a) BUFFER

d) LOG

f) RESTORE•LOG

e) BUFFER•LOG

b) RESTORE•BUFFER

Figure 7. Different Stepwise Developments
of the Buffer Program in CIDE

class Buffer {
int buf;

void set(int b)
{
buf = b;

}
}

class Logger {
static void

log(int i)
{…}

}

class Buffer {
int buf;
int back;

void set(int b){
back = buf;
buf = b;

}

void restore(){
buf = back;

}
}

class Logger {
static void

log(int i)
{…}

}

class Logger {
static void

log(int i){…}
}

class Buffer {
int buf;

void set(int b) {
Logger.log(buf);
buf = b;

}
}

class Logger {
static void

log(int i){…}
}

class Buffer {
int buf;
int back;

void set(int b) {
Logger.log(buf);
back = buf;
buf = b;

}

void restore() {
Logger.log(buf);
buf = back;

}
}

c) Buffer Program

class Buffer {
int buf;

void set(int b) {
Logger.log(buf);
buf=b;

}
}

class Logger {
static void log(int i)
{...}

}

// empty

class Buffer {
int buf;
int back;

void set(int b) {
Logger.log(buf);
back=buf;
buf=b;

}

void restore() {
Logger.log(buf);
buf=back;

}
}

refines class Buffer {
int back;

void set(int b) {
back=buf;
Super(int).set(b);

}

void restore() {
Logger.log(buf);
buf=back;

}
}

(a) log3 and log4

(d) restore4

(e) buffer4 (c) restore3

(b) buffer3

Figure 8. AHEAD Modules

prevent an export of larger painted programs into
understandable modules. Thus, when we say “ideal” modules,
we mean modules without artificial hook methods. Addressing
the mismatch between painting (preprocessor) and wrapper
effects is a subject of future work. This disparity does not
affect the technical results in this paper, but it may make
generated AHEAD or AspectJ modules inscrutable.
Ultimately we think there should not be a difference between
CIDE “modules” and language-based modules. Showing how
this could be done is another subject for future work.

In the feature expression RESTORE•BUFFER•LOG above, the fact
that BUFFER feature is able to appear after LOG feature, even
though LOG changes BUFFER (l\b), is important because in previ-
ous models of FOSD, a feature could only change features defined
previously. In the new model of FOSD based on tree of deriva-
tives, a feature can change another feature regardless of the posi-
tion, but the effect of the change (e.g. l\b) is only apparent when
the last feature (BUFFER) of all the features involved in the deriva-
tive (LOG and BUFFER) appears, hence the reason l\b is packaged
in buffer3. Although the utility of introducing LOG before
BUFFER may not be apparent at this point, it will become clear in
section 4.3.2.

Finally, consider a third feature expression,
BUFFER•RESTORE•LOG. The development of the buffer program
begins with the LOG feature (Figure 7d). Then the RESTORE feature
is added (Figure 7f), but notice that nothing changes. The reason,
as in the previous example, is that r\b can’t be added because the
Buffer class (which is added by BUFFER) does not exist yet.
Later, in Figure 7c, when BUFFER is added, the buffer class
appears with all of its changes. The composition of derivatives is:

P = BUFFER • RESTORE • LOG
= buffer4 • restore4 • log4
= (l\r\b • r\b • l\b • b) • (id) • (l)

where id is the identity function (null refinement or empty mod-
ule) and the derivative expression for the modules buffer4,
restore4, and log4 are in parenthesis. The “ideal” AHEAD
source code for these modules is presented in Figure 8a,d,e. They
were derived by evaluating the above expressions using the deriva-
tive modules of Figure 6.

All feature composition orders yield the buffer program in
Figure 1, but each order induces a different expression for each
feature module (e.g. buffer2 ≠ buffer3 ≠ buffer4). An intui-
tive, general, and efficient algorithm, called the Feature Module
Composition Algorithm (FMCA), for computing feature modules
given a feature composition order and a derivative tree, is listed in
Figure 9. The algorithm traverses a derivative tree depth-first and
assigns each derivative to the module of the latest feature whose
symbol appears in the derivative’s path. This is because we can
only add a derivative (code with nested color) after all the features
in its path (i.e., parent colored code) have appeared. The result of a
traversal is a set of derivative expressions, one per feature, that
defines how the module for that feature for that feature order can
be synthesized.3

In principle, we have partial answers to the challenge problems
stated in the Introduction, namely (1) For a given program, fea-
tures can be composed in arbitrary orders. (2) It is possible using
FMCA to automatically convert feature modules created by one
composition order into feature modules of another. And (3) the fact
that derivatives may appear in different feature modules for differ-
ent orders explains the scattering and tangling of code noted in the
Introduction.

The derivative tree is clearly the central structure behind all this.
But questions remain: what is FMCA actually doing? Is there a
benefit to multiple orders? What is a natural order? And how do
we verify compositions of derivatives yield type-safe programs?

4.3 Perspective
4.3.1 Commuting Diagrams
Taking a step back, what we have
been doing in previous sections is
exploring an avenue of program
synthesis that is described by a fun-
damental concept in mathematics
called a commuting diagram [20]. It
is a diagram of objects and mor-
phisms (or in our case, functions)
such that, when picking two
objects, one can follow any path
from one object to another through
the diagram and obtain the same
result by composition. The diagram
of Figure 10a is said to commute if
g2•f1=f2•g1.

All feature composition orders that produce the buffer program (P)
is captured by a 3-dimensional commuting diagram (Figure 10b).
Each object of the diagram represents a program, and each arrow
represents a feature module (a.k.a. function or transformation) that
implements the BUFFER, RESTORE, or LOG feature. Any path from
the empty program 0 to the buffer program P defines a unique
composition order of the BUFFER, RESTORE, and LOG features. Dif-
ferent paths compose different feature modules. In general, a pro-

3. FMCA guarantees that each derivative is assigned to precisely one fea-
ture module, every parent derivative is composed before any of its child
derivatives, where parent and child derivatives need not be in the same
module. Child derivatives can appear in feature modules that are composed
after the feature module containing the parent.

Figure 9. Feature Module Composition Algorithm (FMCA)

1 void computeModules(Derivative root, Expr ex)
2 {
3 for(Derivative d:root.depthFirstTraversal())
4 {
5 for(Feature f: ex.lastToFirstFeatures())
6 {
7 if (f in d.path())
8 {
9 f.module().add(d);
10 break;
11 }
12 }
13 }
14 }

f1

g1

f2

g2

b1

b2

b3

b4

l1 l2

l3
l4

r1 r2

r3 r4

(a)

(b)

Figure 10. Commuting
Diagrams

0

P

gram that is produced by composing n features would be
represented as an n-dimensional commuting diagram.

FMCA is an algorithm that computes the arrows of such a diagram
given a tree model of an SPL and a feature composition order.
Each node in a derivative tree is a derivative (a “small arrow”);
FMCA composes these small arrows to produce the composite
arrows (feature modules) of Figure 10b.

4.3.2 On the Benefits of Multiple Orders
Of the SWD constructions of Figure 7, only
LOG•RESTORE•BUFFER seems to be “natural” as it corresponds to a
typical layered design a programmer might use for creating the
buffer program. Other constructions are unorthodox, especially
BUFFER•RESTORE•LOG becausethe restore4 module is empty!
But allowing these unorthodox orders, as well as natural orders,
has benefits. Suppose we want to understand how the BUFFER fea-
ture interacts with other features in the buffer program. We would
use a construction that places BUFFER as the final feature, such as
the unorthodox BUFFER•RESTORE•LOG, as BUFFER collects the
changes that it makes (i.e., b) to previously defined features as well
as the changes made to BUFFER (i.e., l\b, r\b, and l\r\b) by
previously defined features. Because each derivative has traceabil-
ity links to its code fragments, BUFFER localizes the code frag-
ments of lines 1-15 into an editor-based view or a language-based
module, buffer4 of Figure 8e (consisting of derivative modules of
Figure 6a,c,d,e).

On the other hand, with the “natural” construction
LOG•RESTORE•BUFFER, BUFFER only localizes changes to 0, i.e.
b\0 (AST nodes of the basic, not full-fledged, Buffer class). But
this composition order is beneficial to understand LOG’s interac-
tions with other features, as the log module collects LOG’s changes
to previous features (l, l\b, and l\r\b) and changes from the pre-
vious features to it (although LOG isn’t changed by any feature in
our example).

In general, if we want to understand how feature F interacts with
features Xn…X1, we use the expression F•Xn•…•X1 to obtain the
module f for F. Module f consists of all the changes or refine-
ments that F makes to Xn…X1 as well as the changes made to F by
Xn…X1. We call this localization — the ability of a feature to local-
ize the effects to and from previously defined concerns/features.
Allowing multiple composition orders, or perspectives, is useful
because it enables us, by simply changing the position of a feature
in a composition order, to understand how that feature localizes its
interactions with other features of interest. Localization is a mani-
festation of MDSoC.

Orders can be evaluated in ways other than localization, such as
their naturalness. In Section 6, we return to the idea of natural
orders.

5. Generalizing Safe Composition
Safe composition (SC) is a basic analysis of SPLs that proves that
every legal composition of feature modules produces a type-safe
program. In this section, we generalize SC in [24] to show that
every legal composition of derivatives produces a type-safe pro-

gram. Doing so shows that any composition order of features is
type-safe, a much stronger SC property.

The version of CIDE that we used required the color of a method
call to be the same as the color of the method [12] (that is, a feature
introduces a method and all calls to that method). This offers a
form of safe composition: all compositions of features will trivially
yield a type-safe program. The coloring of Figure 1 is an example.

While this approach to coloring has merits, it is inconsistent with
layered designs in general, and collaboration-based languages in
particular, such as Scala [19], AHEAD [6], and Jx [18], where it is
common for one layer (feature, collaboration) to introduce a
method and subsequent layers to call that method. That is, it is
common for method calls and method definitions (as well as refer-
ences and definitions in general) to have different colors. We mod-
ified CIDE to allow common layer definitions and thus the results
that we report in this paper are consistent with prior work in
FOSD.4

Given this modification to coloring, the need for SC becomes evi-
dent. If a feature F calls a method that is only defined by feature G,
then there should be no program in the SPL that has feature F and
not G. If there is such a program, the SPL fails to be type-safe as
one of its programs references a non-existent member. To verify
that no such program exists in an SPL, feature models are used.

A feature model FM defines the set of all legal combinations of fea-
tures; each legal combination defines a program in an SPL. It is an
and-or tree where terminals represent primitive features and non-
terminals represent compound features [9]. Prior work has shown
how to convert a FM into a propositional formula φFM [7] or a richer
formalism like first-order logic [27]. Czarnecki et al. observed that
to verify no program in an SPL has property R (equivalently, all
programs satisfy ¬R), it suffices to show that the following formula
is unsatisfiable [10]:

φFM ∧ R

Thus, to verify that there is no product with feature F and not G, we
need to verify that the formula (φFM ∧ (F∧¬G)) is unsatisfiable.
The answer can be determined efficiently using a SAT solver
[7][27]. In general, SC reveals inconsistencies between feature
models and implementations, but cannot point out whether it is the
feature model or the implementation (or both) that needs repair.

5.1 SC with Derivatives
Prior work on SC examined a code base of feature modules to
extract a set of implementation constraints expressed as proposi-
tional formulas whose terms are feature names. Simple constraints
such as F⇒G that should be satisfied by all programs in an SPL
arise from the following sources:

• Method refinements (feature module of F refines a member
defined in feature module of G)

• Reference constraints (F references a member defined in G)

4. In effect, our modification takes a step toward coloring style sheets —
coloring restrictions that would conform to particular feature modulariza-
tion technologies like Scala, AHEAD, etc.

More complicated constraints also arise (see [24] for a list). For the
purposes of our discussion, we focus on simple constraints like
F⇒G as the treatment of complex constraints is the same.

The key observation in generalizing SC is that feature modules
must be replaced with derivatives. Whereas before we would pro-
duce the constraint F⇒G when feature module f references mem-
bers of feature module g, now, if we find that derivative a\b\f
references members introduced by derivative x\g, we produce the
constraint a\b\f⇒x\g. We need to convert derivative names into
formulas that reference only feature names. Derivative a\b\f is
present in a program if and only if features A, B, and F are present
in a program (A∧B∧F). Similarly, x\g is present if and only if both
X and G are present (X∧G). Therefore, the property that all programs
in an SPL must satisfy for a\b\f⇒x\g is:

A ∧ B ∧ F ⇒ X ∧ G

That is, if the features A, B, and F are in a program, so too must the
features X and G. Thus whenever we generate a constraint for deriv-
ative d whose name is c1\c2\…\cn, we replace d by the formula
φd, which is C1∧C2∧…∧Cn.

Given this straightforward translation, we observed the following:

• CIDE effectively eliminates refinement constraints. Derivative
x\d, which refines derivative d, maps directly to the
constraint (φx∧φd)⇒φd which is vacuously true. This is
because a derivative’s existence is associated with not just its
color but all of its ancestors’ colors as well. There is no need
to verify such conditions.

• Derivatives with different path names, but with the same set
of colors, such as l\r\b and r\l\b, have the same presence
condition (L∧R∧B), so many redundant constraints that are
generated can be eliminated.

• CIDE eliminates multiple introduction constraints. Only one
definition of a member is permitted in CIDE, as is in Java;
AHEAD allows multiple definitions in alternative features.
CIDE’s restriction means that (mutually exclusive)
alternatives are difficult to express in its current form. This is
yet another example where CIDE’s virtual modules and
AHEAD concrete modules are not quite the same.

We also realized that two new properties had to be verified. First,
recall from Section 4.2 that the feature RESTORE could have an
empty module. We do not want a composition of modules resulting
in an empty program. Thus, we require that for every program in
an SPL, at least one non-empty derivative be used. If {d1…dn} is
the set of non-empty derivatives, the property that an SPL must
satisfy is:

φd1 ∨ φd2 ∨ … ∨ φdn (4)

Second, we want to ensure that every derivative of a painted pro-
gram is used in some program of an SPL. If there is a derivative d
that appears in no product, d is effectively dead-code, and design-
ers should be alerted. Again, let {d1…dn} be the set of non-empty
derivatives. The properties that an SPL must satisfy are:

φd1 // constraint 1
...
φdn // constraint n (5)

5.2 Experimental Results
We compared AHEAD SC against CIDE SC on the same set of
product-lines, those listed in Figure 5 (first explained in Section 3).
Due to the similarity of results, we only show the calculations for
GPL, jak2java, and bali2jak SPLs in Figure 11a-c. Note that
the new constraint types NoEmptyProgram and NoUnusedDeriv-
ative are available only in CIDE SC. Also, Introduction con-
straints, for checking overwrites of introductions, are only
available in AHEAD SC.

5.2.1 Number of Constraints
Overall, the total number of unique constraints to verify is similar
between both versions for all SPLs, which is expected because 1)
the lack of refinement constraints in CIDE is compensated by the
new constraints in CIDE and 2) SC generalization basically
replaced features with derivatives, but did not change the number
of constraints. There are a few interesting differences though. The
number of non-unique referential constraints is considerably lower
in the CIDE version. The reason is that a derivative, such as log-
ging, typically references the parent code that it injects into, such
as the data to log. Because a derivative requires its parent in CIDE
by definition, these referential properties are trivially true and need
not be checked. The numbers of interface constraints produced for
jak2java are slightly different because AHEAD SC does not
count refinements that add interfaces, which it should.

5.2.2 Number of Failures
CIDE SC produces constraints that are different than those pro-
duced by AHEAD SC because constraints on a single feature are
now spread out across multiple derivatives. For example, in
Figure 2, LOG requires both RESTORE and BUFFER, while it
requires neither in its CIDE version, Figure 1, because there are no
refinement constraints in CIDE. So the fact that the results show
more referential failures in the CIDE version requires an explana-
tion. In GPL, PROG ⇒ (WEIGHTED∧BASE) because prog ⇒
(weighted\base). prog calls method addAnEdge(), which is
defined in weighted\base. Upon closer inspection, it turns out
that an identical version of addAnEdge() was also defined in
base, but was overwritten by weighted\base when all the fea-
tures in the AHEAD version were composed to produce the CIDE
version. Without the multiple introductions, the referential con-
straint would be PROG⇒BASE, which the feature model satisfies.
Further investigation confirmed that all the errors that were new in
the CIDE version were the result of multiple introductions. Errors
present in AHEAD were also present in CIDE.

While we knew there were multiple introduction warnings in
AHEAD, which are shown in Figure 11, we did not anticipate
them causing type safety errors in the CIDE version. In hindsight,
automated translation from AHEAD version to CIDE version
should have been preceded by a careful analysis of all the multiple
introductions present. But this would have been difficult as any set
of intended multiple introductions would need to be manually con-
verted into static alternatives expressible in the Java language, as
noted in the previous section. Even a seemingly simple case of rep-

resenting two methods with the same signature but different bodies
as alternatives requires highly manual, if not difficult, effort. This
observation illustrates once again the mismatch, or a trade-off,
between language-based separation of concerns, which provides
the benefits of wrapping and multiple introductions, and virtual
separation of concerns, which provides an appealing environment
for decomposing programs.

6. Natural Order
Although features can now be ordered in any way for localizing
interactions, we can still provide a check that determines whether
or not a reconstruction order of a program is as intuitive as a natu-
ral order that would have been used to construct a program from
scratch. A natural order corresponds to a strict definition of layered
development: a feature module can only reference and refine
classes that exist (i.e., that have been defined in feature modules
that have been composed previously).

A feature dependency graph (FDG) captures both refinement and
reference relationships. To create an FDG, we start with a pruned
derivative tree (Figure 4) which captures refinement relationships.
We superimpose referential dependencies on the tree as shown in
Figure 12a (imagine that l references b, creating b→l). We then
replace each derivative with the color that introduced it, i.e., the
last feature in its path, as shown in Figure 12b. Finally, we merge
nodes with the same feature names and merge redundant arrows
between pairs of nodes, to produce the FDG of Figure 12c. An
arrow A→B in a FDG means feature A references or refines B, and a
natural order corresponds to a topological sort of an FDG. A cycle,
e.g. A↔B, in an FDG means that features A and B either refine or
reference each other’s introductions. This could be a consequence
of a bad design (which could be resolved by a simple refactoring
that moves members of A into B, or into an ancestor feature of both
A and B, or by having A call empty stub methods which B can later
refine by injecting calls to B-introduced members). A cycle A↔B

could also mean features A and B are so closely coupled that they
must be designed together, or that features A and B actually belong
to a single feature that should never have been partitioned. All of
these situations are possible, but cycles do not distinguish which of
these possibilities have occurred. With cycles resolved manually, a
natural order is simply a topological sort of the FDG.

For each of the SPLs in Figure 5, we constructed an FDG, detected
cycles using a standard algorithm, determined a reason for each
cycle, and removed them. Then we checked whether the nominal
order of features (i.e. the order that AHEAD used to synthesize the
program) was a topological sort of its FDG. The results for five
SPLs, which are representative of the rest, are shown in Figure 13.

Interestingly, we discovered a number cycles in AHEAD SPLs.
One cycle, GSCOPE↔AST in jak2java, confirmed a long-held
suspicion that the GSCOPE and AST layers have never been fully
separated. But because they always appeared together in programs,
we were never quite sure. Other cycles, such as PREPRO-

Figure 11. Safe Composition Experiment Results

(a) GPL

(b) jak2java

(c) bali2jak

AHEAD Safe Composition CIDE Safe Composition

Constraint Type No. of
Constraints

No. of
Failures

No. of
Constraints

No. of
Failures

Refinement 49 0 0 0

Referential 448 0 131 1

Introduction 2 2 unavailable unavailable

Abstract class 0 0 0 0

Interface 0 0 0 0

NoEmptyProgram unavailable unavailable 1 0

NoUnusedDerivative unavailable unavailable 26 0

Total 499
(49 unique)

2 158
(63 unique)

1

AHEAD Safe Composition CIDE Safe Composition

Constraint Type No. of
Constraints

No. of
Failures

No. of
Constraints

No. of
Failures

Refinement 155 0 0 0

Referential 7,000 1 5,753 5

Introduction 3 3 unavailable unavailable

Abstract class 345 0 345 0

Interface 12 0 14 0

NoEmptyProgram unavailable unavailable 1 0

NoUnusedDerivative unavailable unavailable 26 0

Total 7,515
(147 unique)

4 6,139
(99 unique)

5

AHEAD Safe Composition CIDE Safe Composition

Constraint Type No. of
Constraints

No. of
Failures

No. of
Constraints

No. of
Failures

Refinement 22 0 0 0

Referential 2,378 0 1,349 1

Introduction 2 2 unavailable unavailable

Abstract class 57 0 57 0

Interface 18 0 18 0

NoEmptyProgram unavailable unavailable 1 0

NoUnusedDerivative unavailable unavailable 14 0

Total 2,477
(62 unique)

2 1,439
(56 unique)

1

Figure 12. Feature Dependency Graph Construction

b) Replace
derivatives with
colors

c) Merge nodes
and edges

0

b

l\b

l

l\r\b

r\b

0

BUFFER

LOG

LOG

LOG

RESTORE

0

BUFFER

RESTORE

LOG

a) Superimpose
referential
dependencies

CESS↔COMPINT in jampack, exposed design errors. PREPRO-
CESS unnecessarily references a member that was introduced by
COMPINT, a layer that is composed after PREPROCESS. COMPINT
should have refined PREPROCESS to add this reference. Most
cycles, however, were due to a layer introducing a method, and a
subsequent layer overriding that method with exactly the same def-
inition. This is an artifact of copy-and-paste programming which
was not a design error until the new SC analysis was performed.

In general, SC using derivatives exposes more errors than the orig-
inal version of SC found. This is a consequence of exposing con-
straints among finer-grained modules (derivatives) and their
relationships.

We were also surprised to discover that composition orders used in
AHEAD for some time are not natural orders. For example, the
PROG and BENCHMARK layers in GPL were permuted some time ago
(PROG references introductions of BENCHMARK, and thus should be
composed last). As the resulting programs didn’t have compilation
errors, we were unaware of the permutation.

7. Related Work
Our paper was inspired by CIDE [12] and recent work on treating
aspects as program transformations and the idea of pseudo-com-
mutativity (PC) [1][3]. PC was motivated by a long-held belief in
the AOP community that the order in which aspects are extracted/
refactored from programs doesn’t matter, but the implications of
ordering were not well-known. [3] showed that the order in which
aspects are refactored makes a difference in their implementation,
where some implementations are easy to understand and other
implementations are abstruce. See [3] for a thorough list of related
work in the AOP literature.

Our paper addresses the same problem for features but with impor-
tant differences. First, the mechanisms for reversing the order of
features in Section 4.2, FMCA, is a general and simple algorithm
to implement, whereas [3] may require sophisticated transforma-
tions to map one aspect to another. Second, our work is based not
on aspects but rather on feature interactions. Whether derivative
trees can be used to express compositions of functional aspects
(i.e., a functional aspect is an aspect that can be considered a trans-
formation) is an open problem. However, both [3] and our work

shed light on a fundamental commutativity property of composed
transformations in AOP and FOSD.

Our paper was also inspired by prior work on structural feature
interactions. Prehofer first proposed lifters as a way of expressing
2-way feature interactions [21]. Liu et al. generalized Prehofer’s
approach to allow for certain kinds of n-way interactions [17]. In
particular, a feature could only modify the contents (modules) of
previously composed features (called past interactions), and could
not modify the contents of features that are subsequently com-
posed, called future interactions. On the other hand, the Tree
Model of Section 3 uniformly and simply expresses both past and
future interactions, although having both future and past interac-
tions lead to cycles as discussed in Section 6. Still, the Tree Model
is similar to the previous models in that it can be used to study the
interactions of large-scale features as the size of features/deriva-
tives is irrelevant to the Tree Model. Although the research of this
paper was limited to illustrating the interaction of small features,
the notion of deriviatives need not be limited to small code frag-
ments. Features can be of arbitrary size and feature interactions can
always arise.

The Tree Model of feature interactions affects many research
areas, including safe composition, of FOSD. This paper general-
ized the safe composition presented in [24], which is based on the
notion of checking well-formedness of a feature-based model tem-
plate [10]. Safe composition of SPLs is an open and active
research area. For example, a formal approach to type-checking
CIDE product-lines based on extended Featherweight Java was
introduced recently [28]. The problem of representing alternatives
is also briefly discussed there, but is largely left open as is here.

Modularizing feature interactions based on virtual separation of
concerns is related to Fluid AOP [25]. Fluid AOP provides join
point models where aspects define editor-based views of a pro-
gram, through which the program can be analyzed and edited. For
example, in “Gather Join Point Model”, aspects localize a set of
join points in a view and allow them to analyzed and edited. Fea-
tures in the paper are similar to Fluid AOP aspects in that feature
modules as defined by an ordering are also editor-based views that
have traceability links to AST nodes in the original program. But
an important difference between these two concepts is that while
fluid AOP aspects are defined in terms of the static structure of a
program afforded by its language, features are defined in terms of a
more fundamental structure, namely, that of feature interactions.

8. Conclusions
FOSD — the study of feature modularity and feature-based pro-
gram synthesis in SPLs — rests on a small number of simple ideas.
Even so, the relationship between some ideas are not yet fully-
understood. In this paper, we explored the relationship between
feature modularity, feature interactions, and natural orders. We
showed how a recent advance in SPL tools, namely CIDE, is based
on the Tree Model, a new and general model of feature interac-
tions. We explored some of its consequences. Namely that for any
program, features can be composed in any order, and the recon-
struction order dictates the contents of feature modules.

Figure 13. Natural Order Experiment Results

Cycles Is nominal order natural after
cycles are resolved?

GPL 0 No. Reason:
PROG (at index 16) depends on
BENCHMARK (at index 17)

jak2java 3 (GSCOPE<->AST,
J2JBASE<->KERNEL, JAVA<->KERNEL)

No. Reason: J2JAST (at index 8)
depends on J2JBASE (at index 10)

jampack 5
(E.g. SORTFD <-> COMPCLASS,
PREPROCESS<->COMPINT,
COMMONBASE<->PREPROCESS)

No. Reason: COMPCLASSAST (at
index 9) depends on COMPCLASS
(at index 17)

bali2jak 7 (E.g. KERNEL<->BALI, BALI2JAK<->
REQUIREBALI2JAK, BALI<->SYNTAX)

Yes.

balicomposer 7 (E.g. REQUIRE <->
REQUIRECOMPOSER, BALI<->
COMPOSER, KERNEL<->COMPOSER)

Yes.

We explained how the contents of a program can be painted in
CIDE and how different nestings of colors map to a derivative tree,
an instance of the Tree Model. Each derivative encapsulates inter-
actions among particular compositions of features. We presented
FMCA, an algorithm that traverses a derivative tree, reassembles a
program given a particular feature order, and also produces con-
tents of the feature modules for that order. We observed that no sin-
gle order was the best for all needs. In fact, we explained how each
order achieved localization — the ability to modularize a feature’s
interactions with other features. Localization is a particular con-
crete manifestation of MDSoC.

With the Tree Model, we generalized safe composition, a basic
analysis of SPLs that verifies program type-safety, to prove that
every legal composition of derivatives produces a type-safe pro-
gram. We evaluated our ideas by converting feature-composed
programs in AHEAD into a CIDE-form to analyze derivative trees,
their safe composition, and natural orders, noting where CIDE
improves existing results, as well as exposing areas in which CIDE
can be improved.

Among the key topics for further work is addressing the misalign-
ment of CIDE’s preprocessor effects and wrapper effects of
AHEAD and other feature- and aspect-based languages, as well as
the need for CIDE’s improved support for alternatives (method/
field overrides and their subsequent refinements). These issues lie
at the intersection of tool-oriented and language-oriented solutions
for FOSD. Another important topic is semantic feature interactions
since features ultimately change program behaviour and are bound
to interact at runtime. Lastly, a formalization of our models may
reveal implicit assumptions on which our work is based. All of
these topics will be a source of interesting research in the future.

Acknowledgments. We appreciate the helpful and timely com-
ments of the referees. This work was supported by NSF’s Science
of Design Projects #CCF-0438786 and #CCF-0724979.

9. References
[1] S. Apel and J. Liu. “On the Notion of Functional Aspects in

Aspect-Oriented Refactoring”, ADI Workshop 2006.
[2] S. Apel, T. Leich, and G. Saake. “Aspectual Feature Mod-

ules”. IEEE TSE, April 2008.
[3] S. Apel, C. Kästner, and D. Batory, “Program Refactoring

using Functional Aspects”. GPCE 2008.
[4] AHEAD Tool Suite, www.cs.utexas.edu/users/schwartz/

index.html

[5] D. Batory and S. O'Malley. “The Design and Implementation
of Hierarchical Software Systems with Reusable Compo-
nents”. ACM TOSEM, October 1992.

[6] D. Batory, J.N. Sarvela, and A. Rauschmayer. “Scaling Step-
Wise Refinement”, IEEE TSE, June 2004.

[7] D. Batory. “Feature Models, Grammars, and Propositional
Formulas”, SPLC 2005.

[8] M. Calder, M. Kolberg, E.H. Magill, and S. Reiff-Marganiec.
“Feature Interaction: A critical Review and Considered Fore-
cast”. Computer Networks, January 2003.

[9] K. Czarnecki and U. Eisenecker. Generative Programming
Methods, Tools, and Applications. Addison-Wesley, Boston,
MA, 2000.

[10] K. Czarnecki and K. Pietroszek. “Verification of Feature-
Based Model Templates Against Well-Formedness OCL Con-
straints”. GPCE 2006.

[11] S. Trujillo, M. Azanza, and O. Diaz. “Generative Metapro-
gramming”, GPCE 2007.

[12] C. Kästner, S. Apel, and M. Kuhlemann. “Granularity in Soft-
ware Product Lines”. ICSE 2008.

[13] C. Kästner, M. Kuhlemann, and D. Batory. “Automating Fea-
ture-Oriented Refactoring of Legacy Applications”, ECOOP
2006 Poster Paper.

[14] C. Kästner, S. Apel, S. Trujillo, M. Kuhlemann, and D.
Batory. “Language-Independent Safe Decomposition of Leg-
acy Applications into Features”. TR #2, School of Computer
Science, University of Magdeburg, Germany, March 2008.

[15] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kirsten, J. Palm,
W.G. Griswold. “An Overview of AspectJ”, ECOOP 2001.

[16] C. H. P. Kim. Implementation accompanying GPCE 2008
submission available at www.cs.utexas.edu/~chpkim/
gpce08

[17] J. Liu, D. Batory, and C. Lengauer. “Feature Oriented Refac-
toring of Legacy Applications”, ICSE 2006.

[18] N. Nystrom, S. Chong, A.C. Myers. “Scalable Extensibility
via Nested Inheritance”. OOPSLA 2004.

[19] M. Odersky, P. Altherr, V. Cremet, I. Dubochet, B. Emir, S.
McDirmid, S. Micheloud, N. Mihaylov, M. Schinz, E. Sten-
man, L. Spoon, and M. Zenger. “An Overview of the Scala
Programming Language”. September 2004, EPFL Technical
Report IC/2004/64.

[20] B. Pierce. Basic Category Theory for Computer Scientists,
MIT Press, 1991.

[21] C. Prehofer, “Feature Oriented Programming: A Fresh Look
at Objects”. ECOOP 1997.

[22] P. Tarr, H. Ossher, W. Harrison, and S.M. Sutton. “N Degrees
of Separation: Multi-Dimensional Separation of Concerns”,
ICSE 1999.

[23] Y.Smaragdakis and D. Batory. “Mixin Layers: An Object-Ori-
ented Implementation Technique for Refinements and Collab-
oration-Based Designs”. ACM TOSEM, April 2002.

[24] S. Thaker, D. Batory, D. Kitchin, and W. Cook, “Safe Compo-
sition of Product Lines “, GPCE 2007.

[25] T. Hon and G. Kiczales. “Fluid AOP Join Point Models”.
OOPSLA Companion 2006.

[26] S. Thaker. “Design and Analysis of Multidimensional Pro-
gram Structures”, MA thesis, The University of Texas at Aus-
tin, 2006. Available at ftp://ftp.cs.utexas.edu/pub/
predator/SahilThesis.pdf

[27] J. Sun, H. Zhang, and H. Wang. “Formal Semantics and Veri-
fication for Feature Modeling”. ICECCS 2005.

[28] C. Kästner and S. Apel. “Type-checking Software Product
Lines - A Formal Approach”. ASE 2008.

