
An Orthogonal Access Modifier Model
for Feature-Oriented Programming

Sven Apel and Jörg Liebig
Department of Informatics and Mathematics

University of Passau, Germany
{apel, joliebig}@fim.uni-passau.de

Christian Kästner and Martin Kuhlemann
School of Computer Science

University of Magdeburg, Germany
{kaestner, kuhlemann}@iti.cs.uni-magdeburg.de

Thomas Leich
Metop Research Center
Magdeburg, Germany

thomas.leich@metop.de

ABSTRACT
In feature-oriented programming (FOP), a programmer de-
composes a program in terms of features. Ideally, features
are implemented modularly so that they can be developed in
isolation. Access control is an important ingredient to attain
feature modularity as it provides mechanisms to hide and
expose internal details of a module’s implementation. But
developers of contemporary feature-oriented languages did
not consider access control mechanisms so far. The absence
of a well-defined access control model for FOP breaks the
encapsulation of feature code and leads to unexpected and
undefined program behaviors as well as inadvertent type er-
rors, as we will demonstrate. The reason for these problems
is that common object-oriented modifiers, typically provided
by the base language, are not expressive enough for FOP and
interact in subtle ways with feature-oriented language mech-
anisms. We raise awareness of this problem, propose three
feature-oriented modifiers for access control, and present an
orthogonal access modifier model.

1. INTRODUCTION
The goal of feature-oriented programming (FOP) is to mod-
ularize software systems in terms of features [19,11]. A fea-
ture is a unit of functionality of a program that satisfies
a requirement, represents a design decision, and provides
a potential configuration option [2]. A feature module en-
capsulates exactly the code that contributes to the imple-
mentation of a feature [8]. The goal of the decomposition
into feature modules is to construct well-structured software
that can be tailored to the needs of the user and the appli-
cation scenario. Typically, from a set of feature modules,
many different programs can be generated that share com-
mon features and differ in other features, which is also called
a software product line [12,18].

Many feature-oriented languages aim at feature modular-
ity, e.g, AHEAD/Jak [11], FeatureC++ [7], and Feature-
House [6]. Feature modules are supposed to hide implemen-
tation details and to provide access via interfaces. The ratio-
nale behind such information hiding is to allow programmers
to develop, type check, and compile features in isolation.
However, contemporary feature-oriented languages do not
perform well with regard to feature modularity [16]; they
lack sufficient abstraction and modularization mechanisms
to support (1) independent development based on informa-
tion hiding, (2) modular type checking, and (3) separate
compilation. In a theoretical work, Hutchins has shown that,
in principle, feature-oriented languages should be able to at-
tain this level of feature modularity [14]. However, there are
many open issues regarding the implementation on the basis
of a mainstream programming language, such as the inter-
action with other language mechanisms, efficiency, and tool
support.

An important ingredient for feature modularity that is miss-
ing in contemporary feature-oriented languages is a proper
mechanism for access control. Access modifiers allow pro-
grammers to define the scope and visibility of their program
elements such that implementation details can be encapsu-
lated. For example, in Java, programmers use access modi-
fiers (e.g., private or public) to grant or prohibit access to
classes, methods, and fields. However, there are no specific
modifiers tailored to feature-oriented language mechanisms.
Well, since a feature-oriented language usually extends an
object-oriented language (e.g., Jak extends Java [11] and
FeatureC++ extends C++ [7]), the object-oriented access
modifiers are (re)used. But it is not possible to grant ac-
cess, e.g., to a program element for all other program ele-
ments from the same feature and to disallow the access for
all program elements of other features.

As said before, access control has not been considered so
far in research on feature-oriented languages. In some sense
access control mechanisms were for free when extending an
existing object-oriented language. Of course, the object-
oriented modifiers were not intended for the use in FOP, so
one can say that they are misused. We contribute an ana-
lysis of object-oriented modifiers used in FOP and identify
several shortcomings and problems that lead to a limited ex-

1



pressiveness of feature-oriented languages, unexpected and
undefined program behaviors, and inadvertent type errors.
We explore the design space of feature-oriented access con-
trol mechanisms and propose three concrete access modi-
fiers. Furthermore, we present an orthogonal access modifier
model, which integrates common object-oriented modifiers
with our novel feature-oriented modifiers.

2. BACKGROUND
Often, a feature-oriented language extends an object-oriented
base language by mechanisms for the abstraction and mod-
ularization of features.1 In order to implement the additions
and changes a feature makes, feature-oriented languages like
Jak introduce a mechanism for class refinement.

In Figure 1, we depict a class Stack written in Jak, which
is an extension of Java and belongs to the AHEAD tool
suite [11]. The class definition is identical to a definition
in Java except for the layer declaration, which defines the
feature to which class Stack belongs – in our case feature
Base.

Feature Base

1 layer Base;
2 class Stack {
3 private LinkedList elements = new LinkedList();
4 public void push(Object element) {
5 elements.addFirst(element);
6 }
7 public Object pop() {
8 if(elements.size() > 0) { return elements.removeFirst(); }
9 else { return null; }

10 }
11 }

Figure 1: A basic stack implemented in Jak.

In Figure 2, we depict a refinement of class Stack, declared
by the keyword refines. The refinement is part of feature
Undo, which allows the clients of the stack to revert the last
operation. When feature Undo is composed with feature
Base, the refinement adds a new method undo and two new
fields lastPush and lastPop to class Stack. Furthermore,
it refines the methods push and pop (by overriding) in order
to store the last item added to or removed from the stack.
The keyword Super is used to invoke the method that has
been refined.2

Typically, a feature comprises multiple class declarations
and class refinements, which implement the feature in con-
cert. We visualize a feature-oriented program design – like
the design of our stack example – using a collaboration di-
agram [20, 23, 21]. In Figure 3, we show a sample feature-
oriented design, which decomposes the underlying object-
oriented design into features. The design in Figure 3 con-
sists of the four classes A−D (represented by medium-gray
boxes), which are located in the two packages P1 and P2

(represented by light-gray boxes). The diagram displays

1We are aware that some feature-oriented tools build on
languages that are not object-oriented [11, 1, 6]. These lan-
guages are outside the scope of the paper, as they do not
provide access modifiers like the ones we consider here.

2Note that, for brevity, we use a slightly less verbose
notation than in Jak; other feature-oriented languages use
different keywords anyway.

Feature Undo

12 layer Undo;
13 refines class Stack {
14 private Object lastPush = null;
15 private Object lastPop = null;
16 public void push(Object item) {
17 lastPush = item; lastPop = null;
18 Super.push(item);
19 }
20 public Object pop() {
21 lastPop = Super.pop();
22 lastPush = null; return lastPop;
23 }
24 public void undo() {
25 if(lastPush != null) { Super.pop(); }
26 else if(lastPop != null) { Super.push(lastPop); }
27 }
28 }

Figure 2: A refinement of class Stack implemented
in Jak.

P
1

P
2

F
2

F
1

F
3

package role feature class refinement inheritance

1

2

3

1

2

3

C

C

C

D

D

D

A
1

A

A

2

3

1

2

3

B

B

B

A DCB

Figure 3: A sample feature-oriented design.

features (F1 − F3) as slices that cut across the core object-
oriented design (represented by dark-gray boxes). Hence, a
class is decomposed into several fragments, called roles, that
belong to different features [23]; the set of roles belonging
to a feature is called a collaboration [21] and is encapsulated
by a feature module [8]. For example, class A consists of
the roles A1, A2, and A3; feature F1 is implemented by the
roles A1, B1, C1, and D1. The top most role of a class is
also called the base class (e.g., A1) and the other roles are
called class refinements (e.g., A2 and A3) [11]. The solid
arrow denotes the refinement relationship between roles and
the empty arrow denotes inheritance between full classes.

3. PROBLEM STATEMENT
We explain the problems we encountered with feature-orien-
ted languages by means of the Jak language. Jak, as a
Java extension, has inherited the access modifiers of Java.
Hence, like in Java, programmers can control the access to
classes and members in Jak using the modifiers private,
protected, package, and public.3 But there are two prob-
lems with this:

3We assume a basic knowledge on Java’s access modifiers.
In Java, if a class, field, or method does not have an access
modifier then only elements from the same package may ac-
cess them. For sake of symmetry with the other modifiers,
we introduce modifier package for this case.

2



1. Undefined semantics: object-oriented modifiers in-
teract in undefined ways with feature-oriented mecha-
nisms such as class refinements

2. Limited expressiveness: object-oriented modifiers
are not expressive enough to control the access to ele-
ments introduced by features.

Undefined Semantics
Let us illustrate the first problem by means of our stack
example. Suppose we refine our class Stack by applying a
feature Trace. Feature Trace monitors the accesses to
the stack and, as soon as the stack is changed, it writes
all stack elements to the console. In Figure 4, we depict a
corresponding refinement, which refines the methods push

and pop, accesses the list storing the stack’s elements, and
prints them to the console.

Feature Trace

1 layer Trace;
2 refines class Stack {
3 public void push(Object item) {
4 Super.push(item);
5 trace();
6 }
7 public Object pop() {
8 Object res = Super.pop();
9 trace(); return res;

10 }
11 private void trace() {
12 for(int i = 0; i < elements.size(); i++) {
13 System.out.print(elements.get(i).toString() + ””);
14 }
15 }
16 }

Figure 4: A refinement of class Stack to trace ac-
cesses to a stack instance.

The question is whether the above example is correct. Is it
allowed for the class refinement to access the private field
elements of the refined class? The answer is not obvious
since feature-oriented languages usually do not come with a
specification (the behavior is de facto defined by the imple-
mentation of the composition engine) and formally specified
subsets of feature-oriented languages do not include modi-
fiers [5, 13, 4]. Compiling this code (or similar code) with
the Jak compiler reveals that it depends on certain compiler
flags whether this code is considered correct.

The background is that the Jak compiler generates Java
code in an intermediate step and it supports two options
to do so [15]: in the first option, called Mixin, the compiler
generates an inheritance hierarchy with one subclass per re-
finement; in the second option, called Jampack, the compiler
generates a single class consisting of the elements of the base
class and all of its refinements. Comparing the two options
it becomes clear why they show different behaviors in our
example, which we illustrate in Figure 5. In the first op-
tion, private field elements cannot be accessed because the
refinement is translated to a subclass, which cannot access
private members of superclasses. In the second option, pri-
vate field elements can be accessed because all code of all
refinements is moved to the class that is refined. So we have
two different behaviors of a single program depending on a
compiler flag that is intended for optimization.

1 class StackBase {
2 private LinkedList elements ...
3 }
4 class Stack extends StackBase {
5 ...
6 private void trace() {
7 ... elements.size() ...
8 ... elements.get(i) ...
9 }

10 }

1 class Stack {
2 private LinkedList elements ...
3 ...
4 private void trace() {
5 ... elements.size() ...
6 ... elements.get(i) ...
7 }
8 }

Figure 5: Mixin vs. Jampack.

One can argue for one or the other behavior, and certainly
it is possible to fix either Mixin or Jampack such that both
obey an equal behavior, but what we would like to stress is
that the semantics of access modifiers and their interaction
with feature-oriented mechanisms such as class refinements
is not well-defined. This fact is not only a matter of tool
support since it can affect the program semantics beyond
type errors. Have a look at the example shown in Figure 6.4

Which value is returned by method bar? Again, it depends
on the composition mechanism: using Jampack, bar returns
23; using Mixin, bar returns 42. A comprehensive discus-
sion of the reason of difference is outside the scope of the
paper and we leave it as“homework”for the reader. A hint is
that it depends again on the underlying composition mecha-
nism (Mixin-like or Jampack-like) and that it has to do with
Java’s overloading mechanism.

Feature Base

1 layer Base;
2 class A {}
3 class B extends A {}
4 class Foo {
5 protected int foo(A a) { return 23; }
6 private int foo(B b) { return 42; }
7 }

Feature Ext

8 layer Ext;
9 refines class Foo {

10 public int bar() { return foo(new B()); }
11 }

Figure 6: Which value is returned by method bar?

In Table 1, we compare different (variants of) feature-orien-
ted languages with respect to their rules for accessing fields
from a refinement and the program behavior with respect to
our example of Figure 6. We argue that the differences be-
tween the individual (variants of) feature-oriented languages
are not intended but stem solely from the fact that research
on FOP did not consider access modifiers so far. The lan-
guage developers got modifiers for free from the base lan-
guage and the implementation of the composition in a pre-
processing step decides over the semantics of the composed
program.

We hope that the above examples make clear that we need
well-defined semantics of feature-oriented languages includ-
ing access modifiers as well as a scientific discussion that
motivates the choices of the semantics definition. What we

4For brevity we have merged the definitions of the classes
A, B, and Foo in a single listing.

3



Ja
k

1
(M

ix
in

)

Ja
k

1
(J

am
pa

ck
)

Fe
at

ur
eH

ou
se

2

Fe
at

ur
eC

+
+

3

C
la

ss
bo

x/
J

4

C
ae

sa
rJ

5

O
T

/J
6

private × X X X X × X
protected X X X X X X X
package X X X — X — X
public X X X X X X X
bar() (Fig. 6) 23 42 42 42 42 23 42

1
http://www.cs.utexas.edu/~schwartz/ATS.html

2
http://www.fosd.de/fh/

3
http://wwwiti.cs.uni-magdeburg.de/iti_db/forschung/fop/featurec/

4
http://scg.unibe.ch/research/classboxes/

5
http://caesarj.org/

6
http://www.objectteams.org/

Table 1: Which members of a class can be accessed by a refinement? What is the return value of bar?
(× access prohibited; X access granted; — not supported)

do not want is that internal implementation details of com-
pilers or the use of compiler flags, which target at optimiza-
tion [15], decide arbitrarily over the program semantics.

Limited Expressiveness
With regard to the second problem (object-oriented modi-
fiers are not expressive enough for feature-oriented mecha-
nisms), consider the following example. Suppose we refine
our class Stack such that accessing the stack’s methods is
thread-safe. The refinement shown in Figure 7 adds a new
field lock and overrides the methods push and pop in or-
der to synchronize access via the methods lock and unlock.
Furthermore, suppose that feature Sync also refines many
other classes in order to attain thread safety (e.g., Queue,
Map, and Set) and that a central registry keeps track of all
locks in use. In order to grant the lock registry access to
the lock fields of the synchronized stack (queue, map, set,
. . .) objects, we have to change the access modifier in Line 3
from private to public (similarly for the other synchro-
nized classes). However, this also means that every class
of the entire program has access to the lock (not only the
lock registry), which is certainly not desired. Other mod-
ifiers such as package and protected are not sufficient as
well, which is easy to see and omitted for brevity. Instead,
we envision a modifier that states that all roles of a given
feature may access a member within the same feature. In
our case, we would like to grant access to the locks from the
lock registry, which is introduced in the same feature as the
locks are. The synchronization example illustrates that the
access modifiers available in contemporary feature-oriented
languages are not sufficient for fine-grained, feature-based
access control.

Summary
Our previous discussion shows that we need access modi-
fiers that are specific to the needs of FOP. Programmers
would like to provide access to a program element from cer-
tain features. Furthermore, we would like to define how the
feature-oriented modifiers interplay with the object-oriented
modifiers in order to avoid inadvertent interactions. To this
end, in the next section, we define an orthogonal access mod-
ifier model for feature-oriented languages.

Feature Sync

1 layer Sync;
2 refines class Stack {
3 private Lock lock = new Lock();
4 public void push(Object item) {
5 lock.lock();
6 Super.push(item);
7 lock.unlock();
8 }
9 public Object pop() {

10 lock.lock();
11 Object res = Super.pop();
12 lock.unlock(); return res;
13 }
14 }

Figure 7: A refinement of class Stack to synchronize
accesses to a stack instance.

4. AN ORTHOGONAL ACCESS MODIFIER
MODEL

Next, we explore the design space of possible and poten-
tially useful modifiers for feature-oriented language mecha-
nisms. First, we introduce three feature-oriented modifiers
and, second, we explain how they can be combined with the
modifiers commonly found in object-oriented languages.

4.1 Feature-Oriented Modifiers
Using the sample feature-oriented design of Figure 3, we
explain three possible modifiers that control the access to
members of roles. The motivation for the modifiers comes
directly from the fact that features cut across the underlying
object-oriented design.

Modifier feature
The idea for modifier feature is motivated by our exam-
ple, in which we added synchronization support to a stack
and other data structures. There we had the problem that
with object-oriented modifiers we were not able to express
that only elements introduced by the synchronization fea-
ture may access the lock fields of the refined classes. The
modifier feature grants exactly this access and forbids the
access from other features, as we illustrate for our stack ex-
ample in Figure 8. Modifying a member with feature allows
every other role of the same feature to access the member
in question, in our example, including the lock registry.

4

http://www.cs.utexas.edu/~schwartz/ATS.html
http://www.fosd.de/fh/
http://wwwiti.cs.uni-magdeburg.de/iti_db/forschung/fop/featurec/
http://scg.unibe.ch/research/classboxes/
http://caesarj.org/
http://www.objectteams.org/


Feature Sync

1 layer Sync;
2 refines class Stack {
3 feature Lock lock = new Lock();
4 ...
5 }

Figure 8: Using modifier feature to grant access to
field lock from all members of feature Sync.

Modifier subsequent
The proposal of modifier subsequent is motivated by the
fact that some FOP approaches treat features as stepwise
refinements. That is, starting from a base program, fea-
tures gradually refine the existing program code and pro-
duce in each step a new version [11, 17]. Some researchers
even draw a connection to functions that map programs to
programs [10,11,17]. In the stepwise refinement scenario, it
has been argued that a feature (represented by a function)
does never “know” about program elements applied by fea-
ture that have been applied subsequently. The positive effect
of such a disciplined programming style is that inadvertent
interactions cannot occur with program elements that are
not known at the development time of a feature [17]. This is
especially important for languages that support a pattern-
based selection of extension points such advice and implicit
invocation [22,3], which have been discussed recently in the
context of FOP [17,8]. In order to support this view, we pro-
pose a modifier subsequent that grants access to a program
element from all elements of the same feature or of features
added subsequently. Features that have been added previ-
ously cannot access the program element in question.

Modifier program
Modifier program broadens the scope of access to a mem-
ber from program elements of all features. This is like the
current situation in feature-oriented languages where pro-
grammers have no fine-grained access control with regard to
feature-related code, except that in our novel proposal the
semantics of object-oriented modifiers and their interplay
with feature-oriented mechanisms is well-defined, which we
explain in Section 4.2.

Discussion
A question that arises is whether the new modifiers are
expressive enough or whether we need even a more fine-
grained access control mechanism. The smallest modular-
ization unit in feature-oriented designs is the role. With our
three feature-oriented modifiers, we are able to precisely con-
trol the access of individual roles to the elements of another
role. So there is no need for a more fine-grained access. At
the other end of the spectrum, it is possible to grant univer-
sal access, which is like leaving out feature-oriented access
modifiers at all. The modifier subsequent is in the middle
and motivated by previous work on program design. One
can imagine a further modifier previous, which would be
the inverse of subsequent, but we argue that such a modi-
fier is not of practical value. Although it has been observed
that there are situations, in which a feature access elements
that have been introduced later, this is not the rule [3]. In
these situations, a programmer can use modifier program be-
cause it is certainly not meaningful full to forbid the access
from subsequent features.

A2 feature subsequent program

private A2 A2, A3 A1, A2, A3

protected
A2,
B2

A2, A3,
B2, B3

A1, A2, A3,
B1, B2, B3

package

A2,
B2,
C2

A2, A3,
B2, B3,
C2, C3

A1, A2, A3,
B1, B2, B3,
C1, C2, C3

public

A2,
B2,
C2,
D2

A2, A3,
B2, B3,
C2, C3,
D2, D3

A1, A2, A3,
B1, B2, B3,
C1, C2, C3,
D1, D2, D3

Table 2: Overview of the roles that may access a
member that has been introduced in role A2.

A further possibility would be to grant access only to a spe-
cial feature or a subset of features. We did not consider
this possibility so far because we would like to minimize the
coupling between feature implementation and feature man-
agement. Apart from the layer declaration at the beginning
of each Jak file, there is no information about the actual fea-
tures. Instead, the relation between features and code is im-
plicit and managed externally by the tool infrastructure. We
believe that this separation of concerns (feature implemen-
tation vs. feature management) is one of the success factors
for contemporary feature-oriented languages and tools [2].
But the last word is not spoken on this issue.

Some feature-oriented languages support to modify the ac-
cess to individual roles, e.g., public refines class A {

. . . }. Using such a modifier in such a position we can subse-
quently broaden the access to a class. That is, we can make
a private class protected or public but not vice versa. Thus,
a modifier in such a position does not control the access to
program elements of feature-related code, but it overrides an
existing object-oriented modifier. This mechanism can also
be used to broaden the access to the members of a class.

Finally, it remains open how modifiers like abstract and
final fit into the picture and how they can be combined
gainfully with feature-oriented modifiers. We shall address
this issue in further work.

4.2 Object-Oriented and Feature-Oriented
Modifiers in Concert

We have proposed three feature-oriented access modifiers,
which interact with object-oriented modifiers in different
ways. In Table 2, we depict the interplay between object-
oriented and feature-oriented modifiers with respect to the
sample feature-oriented design of Figure 3. For each combi-
nation of object-oriented and feature-oriented modifiers, the
table shows the roles that may access the members of role
A2 in our sample design of Figure 3. That is, each cell of Ta-
ble 2 contains the roles that are allowed to access role A2’s
members, which have the combined modifiers corresponding
to the cell’s column and row. For example, a member of
role A2 with the modifiers protected and feature can be
accessed by the roles A2 and B2 (first column, second row);
a member of role A2 modified with private and program

can be accessed by the roles A1, A2, and A3 (third column,
first row).

5



private

feature

protected

subsequent

package

program

protected

program

package

feature

public

subsequent

public

feature

public

program

package

subsequent

protected

feature subsequent

private

private

program

Figure 9: A lattice formed by modifier combina-
tions.

Looking closer at Table 2, it is interesting to observe that the
individual modifier combinations constitute a lattice with
‘private feature’ as bottom element and ‘public program’
as top element, as illustrated in Figure 9. The lattice can
guide the formalization and implementation of a correspond-
ing type system, which is concerned with the question wheth-
er the scope of the requested access is smaller or larger than
the one of the accessed element. When a programmer over-
rides a member, as in the case of method overriding, the
scope of the member’s access may stay unchanged, can be
extended, but cannot be limited, which means the modifier
itself or any modifiers below the original modifier.

5. FORMALIZATION AND
IMPLEMENTATION ISSUES

Although Table 2 captures the idea of our modifiers nicely, in
further work, a formal definition of the operational semantics
and type system of a feature-oriented language that supports
these modifiers is desirable. This way, we will be able to
define the semantics of our modifiers unambiguously and to
guide the implementation of feature-oriented compilers. As
a formal system, we will use the Feature Featherweight Java
(FFJ) calculus [5], which extends a minimal core of Java
with feature-oriented mechanisms. The formalization of the
orthogonal access modifier model should be straightforward
and we believe that we will be able to prove the soundness
of the corresponding type system.

Furthermore, we intend to implement a compiler on the ba-
sis of an existing feature-oriented language, preferably Jak
or FeatureHouse, which can be used for an empirical eval-
uation. The problem of current language implementations
is that they do not provide a type system that takes the
feature-oriented abstractions into account. Merely, feature-
oriented code is translated to object-oriented code, and an
object-oriented compiler type checks the translated code.
Since our feature-oriented modifiers do not have correspond-
ing constructs in the generated object-oriented code, the
object-oriented compiler is not able to detect access viola-

tions offhand. Hence, we need a feature-oriented compiler
with feature-oriented type system. Whereas there are some
formalizations of subsets of feature-oriented type systems,
there are no fully-fledged compilers that have been devel-
oped with feature orientation in mind. Another possibility
is to adapt existing compilers of related languages such as
CaesarJ [9].

Once we have a feature-oriented compiler, case studies should
explore the practicality of feature-oriented modifiers and re-
veal potential problems but also potential benefits for the
mission of attaining real feature modularity.

6. CONCLUSION
Based on our experience with contemporary feature-oriented
languages, we have proposed three modifiers targeting specif-
ically at feature-oriented languages mechanisms. Further-
more, we have developed an orthogonal access modifier model
that seamlessly integrates object-oriented and feature-orien-
ted modifiers. The background is that the notion of access
control has not gained much attention in feature-oriented
language design, which leads to a suboptimal modularity
and expressiveness and unintuitive semantics and inadver-
tent errors in feature-oriented programs.

A question that remains is whether the novel modifiers will
prove of value in practical software development. Certainly,
in order to attain real modularity, further ingredients are
necessary (e.g., declarative completeness and modular link-
ing), which are outside the scope of this paper (see the work
of Hutchins for details [14]). Also it is not clear whether our
names of the modifiers match the intuition of the program-
mers well. In the case a program element has no modifiers,
which modifiers should we assume as default? We intend
to initiate a discussion about these and other open issues
and inspire further research that evaluates the benefits and
drawbacks of our model and its successors.

Furthermore, it is open which further mechanisms are nec-
essary to attain the properties necessary for real modularity
(information hiding, modular type checking, and separate
compilation) and how they interact with our orthogonal ac-
cess modifier model.

Acknowledgments
This work is being supported in part by the German Re-
search Foundation (DFG), project number AP 206/2-1 and
by the Metop Research Center.

7. REFERENCES
[1] F. Anfurrutia, O. Dı́az, and S. Trujillo. On Refining

XML Artifacts. In Proceedings of International
Conference on Web Engineering (ICWE), volume
4607 of Lecture Notes in Computer Science, pages
473–478. Springer-Verlag, 2007.

[2] S. Apel and C. Kästner. An Overview of
Feature-Oriented Software Development. Journal of
Object Technology (JOT), 8(5):49–84, 2009.

[3] S. Apel, C. Kästner, and D. Batory. Program
Refactoring using Functional Aspects. In Proceedings
of the International Conference on Generative
Programming and Component Engineering (GPCE),

6



pages 161–170. ACM Press, 2008.

[4] S. Apel, C. Kästner, A. Größlinger, and C. Lengauer.
Type-Safe Feature-Oriented Product Lines. Technical
Report MIP-0909, Department of Informatics and
Mathematics, University of Passau, 2009.

[5] S. Apel, C. Kästner, and C. Lengauer. Feature
Featherweight Java: A Calculus for Feature-Oriented
Programming and Stepwise Refinement. In
Proceedings of the International Conference on
Generative Programming and Component Engineering
(GPCE), pages 101–112. ACM Press, 2008.

[6] S. Apel, C. Kästner, and C. Lengauer. FeatureHouse:
Language-Independent, Automated Software
Composition. In Proceedings of the International
Conference on Software Engineering (ICSE), pages
221–231. IEEE Computer Society, 2009.

[7] S. Apel, T. Leich, M. Rosenmüller, and G. Saake.
FeatureC++: On the Symbiosis of Feature-Oriented
and Aspect-Oriented Programming. In Proceedings of
the International Conference on Generative
Programming and Component Engineering (GPCE),
volume 3676 of Lecture Notes in Computer Science,
pages 125–140. Springer-Verlag, 2005.

[8] S. Apel, T. Leich, and G. Saake. Aspectual Feature
Modules. IEEE Transactions on Software Engineering
(TSE), 34(2):162–180, 2008.

[9] I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann.
An Overview of CaesarJ. Transactions on
Aspect-Oriented Software Development (TAOSD),
1(1):135–173, 2006.

[10] D. Batory. Program Refactoring, Program Synthesis,
and Model-Driven Development. In Proceedings of the
International Conference on Compiler Construction
(CC), volume 4420 of Lecture Notes in Computer
Science, pages 156–171. Springer-Verlag, 2007.

[11] D. Batory, J. Sarvela, and A. Rauschmayer. Scaling
Step-Wise Refinement. IEEE Transactions on
Software Engineering (TSE), 30(6):355–371, 2004.

[12] P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley, 2002.

[13] B. Delaware, W. Cook, and D. Batory. A
Machine-Checked Model of Safe Composition. In
Proceedings of the International Workshop on
Foundations of Aspect-Oriented Languages (FOAL),
pages 31–35. ACM Press, 2009.

[14] D. Hutchins. Pure Subtype Systems: A Type Theory
For Extensible Software. PhD thesis, School of
Informatics, University of Edinburgh, 2008.

[15] M. Kuhlemann, S. Apel, and T. Leich. Streamlining
Feature-Oriented Designs. In Proceedings of the
International Symposium on Software Composition
(SC), volume 4829 of Lecture Notes in Computer
Science, pages 168–175. Springer-Verlag, 2007.

[16] R. Lopez-Herrejon, D. Batory, and W. Cook.
Evaluating Support for Features in Advanced
Modularization Technologies. In Proceedings of the
European Conference on Object-Oriented Programming
(ECOOP), volume 3586 of Lecture Notes in Computer
Science, pages 169–194. Springer-Verlag, 2005.

[17] R. Lopez-Herrejon, D. Batory, and C. Lengauer. A
Disciplined Approach to Aspect Composition. In
Proceedings of the International Symposium on Partial

Evaluation and Semantics-Based Program
Manipulation (PEPM), pages 68–77. ACM Press,
2006.

[18] K. Pohl, G. Böckle, and F. van der Linden. Software
Product Line Engineering. Foundations, Principles,
and Techniques. Springer-Verlag, 2005.

[19] C. Prehofer. Feature-Oriented Programming: A Fresh
Look at Objects. In Proceedings of the European
Conference on Object-Oriented Programming
(ECOOP), volume 1241 of Lecture Notes in Computer
Science, pages 419–443. Springer-Verlag, 1997.

[20] T. Reenskaug, E. Andersen, A. Berre, A. Hurlen,
A. Landmark, O. Lehne, E. Nordhagen,
E. Ness-Ulseth, G. Oftedal, A. Skaar, and P. Stenslet.
OORASS: Seamless Support for the Creation and
Maintenance of Object-Oriented Systems. Journal of
Object-Oriented Programming (JOOP), 5(6):27–41,
1992.

[21] Y. Smaragdakis and D. Batory. Mixin Layers: An
Object-Oriented Implementation Technique for
Refinements and Collaboration-Based Designs. ACM
Transactions on Software Engineering and
Methodology (TOSEM), 11(2):215–255, 2002.

[22] F. Steimann, T. Pawlitzki, S. Apel, and C. Kästner.
Types and Modularity for Implicit Invocation with
Implicit Announcement. ACM Transactions on
Software Engineering and Methodology (TOSEM),
2009.

[23] M. VanHilst and D. Notkin. Using Role Components
in Implement Collaboration-based Designs. In
Proceedings of the International Conference on
Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), pages 359–369. ACM
Press, 1996.

7


	Introduction
	Background
	Problem Statement
	An Orthogonal Access Modifier Model
	Feature-Oriented Modifiers
	Object-Oriented and Feature-OrientedModifiers in Concert

	Formalization andImplementation Issues
	Conclusion
	References

