17-708 SOFTWARE PRODUCT LINES:
CONCEPTS AND IMPLEMENTATION

QUALITY ASSURANCE: SAMPLING

CHRISTIAN KAESTNER
CARNEGIE MELLON UNIVERSITY
INSTITUTE FOR SOFTWARE RESEARCH

READING
ASSIGNMENT NOV 16

Pohl, Klaus, and Andreas Metzger. "Software
product line testing." Communications of the
ACM 49, no. 12 (2006): 78-81.

Greller, Michaela, Arie Van Deursen, and
Margaret-Anne Storey. "Test confessions: a
study of testing practices for plug-in systems."
n Software Engineering (ICSE), 2012 34th
nternational Conference on, pp. 244-254.
EEE, 2012

LEARNING GOALS

Understand the product-line specific QA challenges

Differentiate and understand different sampling strategies,
their limitations, and their tradeoffs

Select a suitable sampling strategy for a given project

EXPLOENTIAL
CONFIGURATION SPACES

usually finite

but huge

more combinations than estimated

atoms in the universe

Configuration Bug

System exhibits bug when selecting multiple
options in specific combination

1. // 0Other definitions.. Configuration 1

2. #ifdef SPLT _

3. void png_handle_sPLT(){ #define SPLT (525
4. #1ifdef POINTER #define POINTER

S. png_sPLT_entryp p; . :

6. sandif Configuration 2

7. // Lines of code.. #undef SPLT

8. #1fdef POINTER #define POINTER

9. p = palette + 1; _ _

10. p->red = *start++; Configuration 3
11. #else #define SPLT

12. p = new_palette; #undef POINTER

13. p[i].red = *start++;

14. #endif Configuration 4
1g.iendif #undef SPLT (525
17.// More definitions.. #undef POINTER

@ Compilation succeed ® Compilation error

void main() {
int 1 = 0;
int j = 10;

#ifdef PLUS
i=1+ 1;

#endif

printf(“%d - %d”, i, j);
1
DIV & 'PLUS:

Floating point exception (core dumped)

Detecting Compilation Errors in Busybox Configurations

check signaturelé,

compiled if

BUNZIP2 || UNCOMPRESS || ...

check_signaturel6()
>

compiled if
FEATURE_COMPRESS_USAGE
MODINFO || RPM || GUNZIP ||
FEATURE _SEAMLESS XZ|| ...

init tran=zformer aux data, and open transformer are

sometimes called in contexts where file open transformer.c is not compiled.

The probklem occurs if

undef
undef
undef
undef
undef
undef
undef
undef
undef
undef

and any of the following iz activated:

CONFIG FEATURE COMPEESS USAGE
CONFIG FEATURE SEAMLESS XZ
CONFIG | MODINFC

CONFIG FEATURE SEAMLESS BZZ
CONFIG FEATURE SEAMLESS Z
CONFIG RPH

CONFIG GUNZIF

CONFIG FEATURE SEAMLESS GZ
CONFIG FEATURE SEAMLESS LZMA
CONFIG INSHMOD

CONFIG UNXZ
CONFIG EUNZIPZ
CONFIG UNCOHMPRESS

11-way Interaction.
First repair attempt

resulted in 26-way
Interaction.

[:weather:]

Today's weather: [:Weath<©

Feature Interactions

Features designed in isolation
(divide and conquer)

Interact in intended and unintended ways
when composed

(Failure of compositionality
due to hidden underlying domain)

la & Ib
la& b &lc

la&lb&lc&!d
la&lb&lc&!d
axorb

(a & b) xor c
(a&b &c)xord

a&bé&lc
a&b&!c&!d.f

H
N B P P

R N W O

[Abal, ASE’14] [Medeiros’15]

Interaction

Bugs

INn Practice

135 bugs across 24 open source systems

4 > 1
4 6 7
Optio

What's the Specification?

Typically global property x for every program
Syntactically correct, well-typed
Absence of double-free vulnerabilities
Returns positive number for parameter 3
Terminates within 10 seconds

Challenge is checking all configurations
e.g., Vp € PL:pEx

Brute-Force

A Product Configuration

/A

Conventional
Analysis

more combinations than estimated

atoms in the universe

One Configuration

A Product Configuration

\Af’

Checking Products

ﬁ 2000 Features
100 Printers

30 New Printers per Year

Printer ['5,0]

Firmware

—
O

10000 Features

210000 Configurations

AUTOMATION?

Frameworks vs Components

Implications for QA?

Sampling

A Product Configuration

\Af’

Conventional
Analysis

Check random configurations ()
Check representative configurations
Check maximum configuration
Check config. used by customers f-
Combinatorial interaction testing

(pairwise, etc) Y/ M
Code coverage heuristics “

CODE COVERAGE

#1if defined (CONFIG_ARCH _FPGA11107)

S+ fpga cpu/bus are currently 30 times slower so
scale fregquency as well to slow down Linux’s
sense of time =/

[vn.]

#define TIMER3_ FREQUENCY KHZ (tmrHw_HIGH_ FREQUENCY_ HZ
/1000 = 30)

felse

[...]

#define TIMER3_FREQUENCY_ KHZ (tmrHw_HIGH_FREQUENCY_HZ
/1000)

#endir

static struct clk =spBl4_timer3_clk = {
.name = "spdl4-timer-3",
.type = CLK_TYPE PRIMAERY,
.mode = CLE_MODE_ XTAL,
.rate_hz = TIMER3_ FEEQUENCY KHZ + 1000,

#i1fdef CONFIG_D

ISCONTIGMEM

Block 1

static inline int pfn_to_nid(unsigned long

pfn)
{

#ifdef CONFIG_NUMA

return ((int) physnode_map[(pfn) /
PAGES_PER_ELEMENT]) ;

#felse
return 0;
#endif

}
#endif

Block 1

+— DISCONTIGMEM

e
-~

-
-

Block 2.

++ Block 1 A NUMA

Block 2

Block 3

Block 1

Block 3

+3+ Block 1 A —Block 2

CemcEmcmmcE PDairwise
on on on on

on on on off
]

e = Samplin
on on off off p 9
on off on on

on off on off

on off off on

on off off off

off on on on

off on on off

off on off on

off on off off

off off on on

off off on off

off off off on

off off off off

e Pajrwise
on on on off

A -_-7
- 20 -
on

on

=
O1
!

S——
on

—on——

o
O

off |
” 1 10 100 1000

e # Options

off off on off http://math.nist.gov/coveringarrays/

Samples
H
o

o1
!

o

% = style koward clarity and grace - Google 5...

&

\ /

Qmeinickell"-.-'arex:l ' GitHUb

—

© tartler_12_ost.pdf {applicationfpdf Object)

|:ﬂ rnath.nist.govcoveringarraws fipof fkables table. 2. 2 html

Table for CA(2.k,2)

Covenng array sizes are given for each & listed, where (=2 and v=2. The arrays, as generated by the IPOG-F program, are given as links t

Bacl to mem

Change ¢ Increase

Change v: Increase

k |CAQ@k2) |Filesize
304 1.0K
4 |6 1.0K
s s 10K
& 10K
7 s 1.0K
I 1.0K
9 g 1.0K
0 |8 10K
11 |8 10K

CA(2,k,2)

22

20

18

16

14

12

10

Covering Array Sizes for t=2, v=2

Best

IPOG-F

——

A -
--_—
- -
A
— A
X
W -
x

Sampling

A Product Configuration

\Af’

Conventional
Analysis

Check random configurations ()
Check representative configurations
Check maximum configuration
Check config. used by customers f-
Combinatorial interaction testing

(pairwise, etc) Y/ M
Code coverage heuristics “

[Abal, ASE’14] [Medeiros’15]

a 59

&b . Interaction
a&bé&c 5 BUQS
1

a&b&c&d&e

a 16 |N Practice

la & 1D 8 135 bugs across 24 open source systems
la& b &lc 1

la&lb&lc&!d 1
la&lb&lc&!ld&le&!f&!g

axorb 17

(a & b) xor c 6

(a&bé&c)xord 3 L rauts

a&bé&lc 2 Bl
a&b&lc&!d&le&!f] Y =L,

o 12—

ir 10 — Six—-wise @

g 8- e

@ 6 — Five—wise o

E‘ ; N Stmt_cwerageOne—enabled One—disabled Ran:l om Four-wise

a g T Au-enlabled'-ﬁt?led Pair-wise T“’IEE‘W'SE |
80 90 100 110 120 130 140

Configuration—Related Faults

Sampling Algorithm Faults Samples
Statement-coverage 90 1.3
All-enabled-disabled 105 1.3
One-enabled 107 1.7
One-disabled 108 1.7
Random 124 2.6
Pair-wise 125 1.8
Three-wise 129 2.5
Four-wise 132 3.7
Five-wise 135 6.0

Six-wise 135 10.0

- 10—
a g_ all
3 — __C288¢cy
S 4—|= Combination . a B8 C3
£ o] Individual g C1
0‘.’% » Pareto Front
0
| | | | | |
80 90 100 110 120 130 140

Configuration—Related Faults

Sampling Algorithm

C1 Pair-wise and one-disabled

C2 One-enabled, one-disabled and statement-coverage
C3 One-enabled, one-disabled and all-enabled-disabled
C4 One-enabled, one-disabled and pair-wise

Faults Samples Faults Samples

C1 131 3.5 C2 132 4.8
C3 133 4.8 C4 134 5.3

CHALLENGES FOR
SAMPLING

Constraints
Build system information
Global vs local analysis

Header files

Algorithms Constraints Global Analysis Header Files Build System
Faults Configs Rank| Faults Configs Rank| Faults Configs Rank| Faults Configs Rank
Pair-wise 33 | 30 ¢ 5 — — - 39 =936 ¢ 4 33 2.81 4
Three-wise - - - - - - 43 = 12187 5 42 | 3.91 5
Four-wise - - - - - - 45= 1639 ¢ 7 45 = 571 3
Five-wise — — — — — - — — - 47= 8.31 9
Six-wise — — — — — - — — — 47= 121 10
Most-enabled-disabled 23 | 1.4 = 1 27= 14 = 1 2T= 14 = 1 26 | 1.4 1 2
One-enabled 30 1 1.1} 3 311 7943 ¢ 3 311 890 1 6 20 | 2.3 1 7
One-disabled 38| 1.1} 4 39= 7943 ¢ 2 39 =890 1 3 39= 231 3
Random 39 | 4.1 = 6 29), 8,123 ¢ 4 40 | 17.2 1 2 41 = 4.2 6
Stmt-coverage 321 411 2 — — - — — 25= 131 1

Some algorithms do not scale, indicated using dashes (—). We use 1 and | to represent small changes in the number
of faults and size of sample set, as compared to our first study. Furthermore, we use { and || to represent larger changes.

SUMMARY
Using a global analysis, we can potentially detect non-
modular faults that span multiple files; it causes an ex-
plosion in the number of considered configuration op-
tions that leads to large sample sets; too large for t-unse
and statement-coverage.

SUMMARY
When incorporating header files, there is a potential to
detect additional faults from header files; but a difficult
setup; and much larger sample sets (if feasible at all),
leading to ranking changes.

SUMMARY
When considering constraints, we face an essential re-
duction of false positives; but high costs for generating
sample sets, which are often not optimal or unique; it
1s infeasible for three-wise and higher.

SUMMARY
When including build-system information, we face a dif-
ficult analysis, a few more configuration options to con-
sider, but no significant changes.

